NON-UNIQUENESS OF THE SOLUTION TO A GENERALIZED DIRICHLET PROBLEM

BY
E. L. KOH

It is generally known [1] that the singular partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{2 v}{r} \frac{\partial v}{\partial r}+\frac{\partial^{2} v}{\partial z^{2}}=0, \quad v<-\frac{1}{2} \tag{1}
\end{equation*}
$$

may not have a unique solution because of the existence of nontrivial representations of zero. This situation arises even more remarkably (e.g. v need not be $<-\frac{1}{2}$) when the boundary conditions are distributional in nature, i.e. $v(r, z)$ converges in some generalized sense to certain Schwartz distributions at the boundaries. In this note we give an example of a Dirichlet problem with distributional conditions whose solution is not unique.

The following problem was solved in [2]:
Find a function $v(r, z)$ on the domain $0<r<\infty, 0<z<\infty$, that satisfies Laplace's equation

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{\partial^{2} v}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

and the boundary conditions:
(a) as $z \rightarrow 0^{+}, v(r, z)$ converges in some generalized sense to the distribution $f(r)$ whose support is a compact subset of $0<r<\infty$.
(b) as $z \rightarrow \infty, v(r, z)$ converges to zero uniformly on $0<r<\infty$.
(c) as $r \rightarrow \infty, v(r, z)$ converges to zero for every $z>0$.
(d) as $r \rightarrow 0^{+}, v(r, z)$ remains finite.

To show non-uniqueness of the solution to the above problem, we replace condition (a) by

$$
\left(\mathrm{a}^{\prime}\right) \text { as } z \rightarrow 0^{+}, v(r, z) \rightarrow 0 \text { uniformly on } 0<r<\infty,
$$

and find a nontrivial solution $v_{h}(r, z)$ to the resulting problem. Thus by the principle of superposition, some multiple of $v_{h}(r, z)$ added to the solution in [2] will yield another solution.

As in [2], we set $u(r, z)=(r)^{1 / 2} v(r, z)$ in (2) and apply the zero-order Hankel transformation with respect to r. The Hankel transform of $u(r, z)$ so obtained can now be inverted by an appeal to the Lipschitz-Hankel integral [3, p. 9]. Thus,
it is easily shown that a solution to the problem with condition $\left(a^{\prime}\right)$ is given by

$$
\begin{equation*}
v_{h}(r, z)=\frac{n!}{\left(z^{2}+r^{2}\right)^{(n+1) / 2}} P_{n}\left[\frac{z}{\left(z^{2}+r^{2}\right)^{1 / 2}}\right], \quad n=\text { odd integer } \tag{3}
\end{equation*}
$$

where $P_{n}(x)$ is the Legendre polynomial of x of degree n.
It might be mentioned in passing that equation (3) represents the potential on the (r, z) plane due to a multipole located at the origin. The special case of $n=1$ gives the potential due to a dipole:

$$
\begin{equation*}
v_{h}(r, z)=\frac{z}{\left(z^{2}+r^{2}\right)^{3 / 2}} \quad(\text { see [4, p. 302]). } \tag{4}
\end{equation*}
$$

References

1. David Colton, Applications of a Class of Sinsular partial Differential Equations to Gegenbauer Series which converge to zero, SIAM J. Math. Anal. Vol. 1 No. 1 (1970), pp. 90-95.
2. A. H. Zemanian, A distributional Hankel transformation, J. Soc. Ind. Appl. Math. 14 (1966), pp. 561-576.
3. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Table of integral transforms, Vol. II, McGraw-Hill, New York, 1954.
4. N.S.Koshlyakov, M. M. Smirnow, and E. B. Gliner, Differential Equations of Mathematical Physics, North-Holland, Amsterdam, 1964.

Department of Mathematics
University of Saskatchewan
Regina, Saskatchewan
Canada

