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Abstract

We propose a new trust region algorithm for solving the system of nonsmooth equations
Fix) = 0 by using a smooth function satisfying the Jacobian consistency property to
approximate the nonsmooth function F(x). Compared with existing trust region methods
for systems of nonsmooth equations, the proposed algorithm possesses some nice conver-
gence properties. Global convergence is established and, in particular, locally superlinear
or quadratical convergence is obtained if F is semismooth or strongly semismooth at the
solution.

1. Introduction

In this paper, we consider the system of nonsmooth equations

(1.1)

where F : R" -*• K" is locally Lipschitz continuous but not differentiable.
Many methods have been developed for solving the above nonsmooth system, see

for example [1,6,13-17]. Some of these methods have established locally superlinear
or quadratic convergence, see for example [1,6,14,17].

If F is smooth, then damped Newton methods are a class of important iterative
methods with global convergence for solving system (1.1). In general, given an iterate
xk, one computes a search direction dk by solving the Newton equation

F(xk) + F'(xk)dk = 0, (1.2)

then let xk+1 = JC* + akdk, where step size ak 6 [0, 1] can be obtained by some line
search. The line search method is a class of important globalisation strategies.
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In the case when F is nonsmooth, Qi and Chen [16] decomposed F(x) into F(x) =
fk(x)+gk(x), where fk(x) is a smooth function, \\gk\\ = supx6R. \\gk(x)\\ < a\\F(xk)\\
and a e (0, 1) is a constant; then/t'(jr*) was used to replace F'(xk) in (1.2), thus the
successive approximation method was proposed and global convergence was estab-
lished. Recently, by applying a smooth function satisfying the Jacobian consistency
property to approximate a nonsmooth function, Chen, Qi and Sun [1] proposed a
smoothing Newton method and obtained global and locally superlinear/quadratic con-
vergence.

The trust region method is another class of well-known globalisation strategies
and is often said to be more reliable than the corresponding line search method for
smooth problems. In the past twenty years, many trust region methods for solving
nonsmooth optimisation problems have been proposed, see for example [2,10,18-
21]. Globally and superlinearly convergent trust region methods for systems of
smooth equations have also been constructed, see [12] for a general survey on this
development. However, there are relatively few studies on trust region methods
for solving nonsmooth systems. Based on the work in [16], Qi [15] proposed two
trust region methods for solving nonsmooth systems and established their global
convergence, but did not obtain any rate of convergence result.

Since the function F is nonsmooth, it is not possible to use a standard trust region
method for systems of smooth equations. In this paper, based on the Jacobian consis-
tency property, we propose a trust region method for solving the nonsmooth system
(1.1). The proposed trust region method is different from the classical trust region
method in that after a successful iteration we use some fixed positive constant as a
lower bound for the new radius. This type of updating rule for the trust region radius
has also been used in recent works on nonsmooth trust region methods [3,5,7,9,11].
Compared with existing trust region methods for systems of nonsmooth equations,
this modified updating rule enables us not only to show global convergence but also to
establish locally superlinear or even quadratic convergence under suitable conditions.

Throughout this paper, the symbol || • || will refer to the Euclidean vector norm or
its associated matrix norm and jV :— {0, 1, . . . } . For the sake of convenience, we
denote

K+ = {s | e > 0, e e K"} and K++ = {e | e > 0, e e R"}.

This paper is organised as follows. In the next section, we introduce the concept of
the Jacobian consistency property of a smoothing approximation function and recall
some important properties of semismooth functions. In Section 3, we present a trust
region algorithm for systems of nonsmooth equations and prove that it is well-defined.

In Section 4, we show that the proposed algorithm is globally convergent and lo-
cally superlinearly/quadratically convergent under mild conditions. Some conclusive
remarks are given in the last section.
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2. Preliminaries

In this section we introduce several fundamental concepts. First we give several
definitions of the generalised Jacobian on nonsmooth functions (see [1,14] for details).

Let F : R" —*• R" be locally Lipschitz continuous. According to Rademacher's
theorem, F is differentiable almost everywhere. Let DF be the set where F is
differentiable. The B-differential of F at x is defined by

dBF(x) = lim F'(xk).
xk-+x
xksDF

The generalised Jacobian of F at x in the sense of Clarke is

dF(x) =convdBF(x).

In this paper we use the following definition of generalised Jacobians:

dcF(x) = 3 F i ( x ) x dF2(x) x ••• x dFn(x).

As was defined in [1], we introduce the Jacobian consistency property of a smoothing
approximation function as follows.

DEFINITION 2.1. Let F be a locally Lipschitz continuous function in W. We call
/ : R" x R++ -»• R" a smoothing approximation function of F if / is continuously
differentiable with respect to the first variable and there is a constant /x > 0 such that
for any x e Rn and s e R++,

||/(jc,e)-F(je)||</ie. . (2.1)

Furthermore, if for any x e R",

limdist((V,/ (x, e))7", 3CF(JC)) = 0, (2.2)

then we say / satisfies the Jacobian consistency property.

For simplicity, we denote fx{x, e) = (Vxf (x, s))T, *(*,£) = \\f (x, e)\\2/2. Qi
and Chen [16] proved that for any continuous function F, a smoothing approximation
function/ of F can be constructed using convolution. Chen, Qi and Sun [1] investi-
gated the case in which / has the Jacobian consistency property, and proved that the
smoothing approximation functions introduced in [4,16] possess this property.

To discuss the convergence rate of the proposed algorithm, we introduce the concept
of the semismooth operator and give some of its properties. For more details, we refer
the reader to [14,17].
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DEFINITION 2.2. We say that F : R" - • K" is semismooth at x if F is locally
Lipschitzian at x and

lim {Vh'} (2.3)
VeBFOc+ih')

h'-*h,tiO

exists for any h e

Obviously, if F is semismooth at x, then for any h e R\ the directional derivative
F'{x;h) of F at A; along the direction ft exists and is equal to the limit in (2.3).
Moreover, we have the following lemma.

LEMMA 2.1. Suppose that F : OS" -> R" w a locally Lipschitzian function. Then F
is semismooth at x if and only if for any V e dF(x + h) and h -> 0,

Vh-F\x\h) = o{\\h\\). (2-4)

The above property motivates the following definition.

DEFINITION 2.3. If F is locally Lipschitzian at x and for any V e dF(x + h) and
h -»• 0 ,

, (2.5)

then we say that F is strongly semismooth at jr.

The following results play an important role in the analysis of the convergence rate
of the proposed algorithm.

LEMMA 2.2. (i) If F is semismooth at x, then for any h —> 0,

F(x + h)- F(x) - F'{x\h) = O(\\h\\). (2.6)

(ii) If F is strongly semismooth at x, then for any h —> 0,

F{x + h)- F(x) - F'(x;h) = O(\\h\\2). (2.7)

3. Algorithm

In this section, we shall propose a trust region algorithm for solving the nonsmooth
system (1.1) and prove that the proposed algorithm is well-defined.

Throughout this and the following section, we assume that / has the Jacobian
consistency property.

Let*0 be the initial point of the algorithm, a 6 (0, l)andA/0 := (l+a)\\F(x°)\\ ^
0. We make the following assumptions.
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ASSUMPTION A. (i) The level set Lo := {x e K" | || F(x)\\ < Mo} is bounded;
(ii) Ve e R++ and x e L0,fx(x, e) is nonsingular.

We now state our trust region algorithm for solving the nonsmooth system (1.1)
and then give some remarks.

ALGORITHM 3.1. StepO. Choose positive constants c\, cz, c3, c4, y, r}, Ami,,, Ao
satisfying c2 < c, < 1, c3 < 1 < c4, n < 1. Let /30 := ||F(JC°)||, £0 := a^/(2M0/Li)
and set k := 0.
Step 1. Solve the subproblem

:= ||/ (xk, ek) +fx{xk, ek)d\\2/2 \ \\d\\ < A , } . (3.1)

Let dk be the solution of (3.1).
Step 2. Set

\[ C2' (3.3)
| J : , otherwise,

max{Amin, A*}, i f c 2 < r * < c , , (3.4)

max{Amin, c4A*}, otherwise.

Step 3. If F(JC*+1) = 0, stop; otherwise, go to Step 4.
Step 4. If || F(;c*+1)|| < max {ij/Jt, a"11| F(xM) - f (xM, et)ll}, then set

fik+i •= \\F(xk+l)\\

and choose £t+] satisfying

and

dist(fAxk+\ ek+l), dcF(xk+l)) < yfo+l; (3.6)

otherwise, let p k + i := pk and sk+\ := ek.
Step 5. Set)t := k + 1, go to Step 1.

REMARK 1. (i) When a successful iteration arises, the updating rule of the trust
region radius in the above trust region method is different from one in the classical
trust region method. More precisely, when rk > ci, Algorithm 3.1 uses a fixed positive
constant Amin as a lower bound for the new radius. This idea has also been used in
recent literature [3,5,7,9,11].
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(ii) It is not difficult to prove that if Algorithm 1 in [15] uses (3.4) as the updating
rule of the trust region radius, its convergence result is still valid.

(iii) Notice that the choice of the parameter et+1 in the above algorithm might be
difficult for general nonsmooth systems. However, it has been shown in [1] how
to choose an ek+\ satisfying (3.5) and (3.6) for general box-constrained variational
inequality problems and order complementarity problems.

Without loss of generality, we assume that ||F(;c*)|| ^ 0 for all it > 0. Set

K :={0} U {* | ||F(x*)|| < maxtoAM.crML/V, ek_x) - F(xk)\\),k

={ko = 0 < * i < *2 • • •}. (3.7)

The following proposition shows that Algorithm 3.1 is well defined.

PROPOSITION 3.1. Under Assumption A (ii), Algorithm 3.1 is well defined and the
generated sequence [xk} remains in Lo-

PROOF. For all k > 0, let kj be the largest number in K such that kj < k, then
ek = ekj and fik = fikj. Thus iterations kj to k of Algorithm 3.1 may be regarded as
some iterations of Algorithm 1 in [15] with F(x) = p(x) =f(x, ekj), q(x) = 0 and
the updating rule (3.4).

Let Uj := {x e K" | \\f(x,ekj)\\ < \\f(xk\ ekj)\\). In the following, we will prove
by induction that

Uj c Lo, V/ > 0. (3.8)

In fact, Wx 6 Uj,

\\F(x)\\ < \\f{x,ekj)\\+pekj < \\f (xk<, skj)\\ +/iekj

< ||F(xk')\\ + 2(iekj = 0kj + 2fiekj. (3.9)

For; = 0, Wx € £/„, ||F(JC)|| < ||F(JC°)|| + 2/xe0 < (1 +a)||F(jc°)||, which implies
Uo C Lo. Suppose that Uj-\ c / , 0 for somey > 1. Set

K,:=[keK\ r,/}k_y > «-'|l/(**, ek-i) - F(xk)\\],

K2:={keK\ ^ _ , < a-'Wf (xk,ek^) - F(xk)\\).

By Step 4 of Algorithm 3.1, we have fikj < r]Pkj-\ = r]^.^, if kj e K\, or
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Let r = max{l/2, /?}. Then 0kj < r&;_, and ekj < ekj-x/2 = ekj_,/2, Vkj e K. Thus,
ioxj > 1, we get

and ft, <r^0 = ri\\F(x°)\\.

It follows from (3.9) and the above analysis that Vx e Uj,

II TOII < rM|F(jc°)|| + | - | |F(*0) | | < r>M0, (3.10)

which implies that Us c Lo and hence (3.8) holds. This shows

xk € Uj c Lo, as kj <k < kj+i. (3.11)

Moreover, by (2.1) and Step 4 of Algorithm 3.1, we deduce

| | / (x*,e t ) -F( jc t ) | |<a | |F(**) | | , V* > 0. (3.12)

This implies / (xk, ek) ^ 0 for all k > 0 and hence by Assumption A (ii), dk ^ 0.
The proof is complete.

4. Global and superlinear convergence

In this section, we shall prove that Algorithm 3.1 converges to the solution of the
nonsmooth system (1.1) globally and superlinearly/quadratically. To this end, we
shall first show that the index set K is infinite so that the global convergence follows
from (3.10) and (3.11). Then we shall prove that there exists infinitely many k e K
such that for each k, the (k — l)th iteration is successful and under mild conditions,
eventually the kth iteration is also successful and the trust region radius in (3.1) is
inactive, thus the desired result is obtained.

PROPOSITION 4.1. Under Assumption A, the index set K defined by (3.7) is infinite.

PROOF. The proof is by contradiction. Assume that K is finite and let k be the
largest number in K. Then for all k > k, ek — ek and fik = fik. Denote e := £j,
fi :=&and<7(;t) := F(x) -f(x, e). Then Wk > k,

\\F(xk)\\ >max{^,a-|||g(^i)||} (4.1)
and

F(xk)=f(xk,i) + q(xk). (4.2)
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Therefore Algorithm 3.1 may be regarded as the case in [15, Algorithm 1] with
F{x) = p(x) = f(x,e) and the updating rule (3.4). From [15, Theorem 2] and
Remark 1 (ii), we deduce that iff is an accumulation point of [xk], then/ (x, e) = 0.

On the other hand, Assumption A (i) implies that there exist an accumulation point
x e Lo and a subsequence {xk}keK, such that as k e K3 and k -> oo, xk -> x. Thus

which shows that there exists k > k such that for all k 6 K3 with k > k,

By (4.1), (4.2) and the above expression, we deduce that for all k e K3 with k > ic,

||/(jc*,e)|| < (1 - a ) || F(xk) || < (1 - a)(||g(je*)|| +

which implies that \\f (xk, e)\\ < (a"1 - l)||<7(;c*)|| and hence

This contradicts (4.1). The proof is complete.

It follows from (3.10) and (3.11) that for kj < k < kj+u \\F(xk)\\ < rj Mo. This,
combined with Proposition 3.1 and Proposition 4.1, shows that the following global
convergence result holds.

THEOREM 4.1. Under Assumption A, we have lim* ,̂*, F(xk) = 0; that is, every
accumulation point of {xk} is a solution of the nonsmooth system (1.1).

From the proof of Proposition 4.1, we see that Proposition 4.1 is still true if As-
sumption A (i) is replaced by the assumption that there exists at least one accumulation
point in the sequence [xk). Hence the following result is deduced.

COROLLARY 4.1. Under Assumption A (ii), every accumulation point of [xk] is a
solution of the nonsmooth system (1.1).

The next proposition shows that K includes infinitely many indices obtained by
successful iterations.

PROPOSITION 4.2. Under Assumption A, there exist infinitely many k 6 K such that
for each k, the {k — \)th iteration is successful.
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PROOF. We proceed by contradiction. Suppose that the proposition is false. Then
there exists an index ic e K such that for all k e K with k > k,

xk=xk-1 (4.3)

and

||F(JC*)|| < max {!»&_,,«-'||/(**,£*_,)- F(xk)\\}. (4.4)

We claim that k—\ e K. In fact, if k-\ <£ AT,then#t_i = ^i_2and£i_1 = e*_2. This,
together with (4.3) and (4.4), shows that k — 1 e K and hence we get a contradiction.

By Proposition 4.1 and repeating the above process, we may prove that k e K, for
all k > k, which implies that for all k > k, xk = xk, 0k = || F(xk)\\ and ek < ek/2

k-'k.
By (2.1) and (4.4), we get ||F(x*)|| < max {»7l!F(x*)||, ixs^/a), which contradicts
F(xk) ^ 0, sk -> 0 and 0 < n < 1. The assertion is proved.

In order to analyse the convergence rate of Algorithm 3.1, we first give an important
proposition.

PROPOSITION 4.3. Suppose that Assumption A holds and that Ko is an infinite
subset of K such that for all k e Ko, the (k — \)th iteration is successful and [xk}keKo

converges to x*. Suppose that all V e dcF(x*) are nonsingular. Then there exists
k e Ko such that for all k e Ko with k > k, the kth iteration is successful and the
trust region radius in the subproblem (3.1) is inactive; that is,

xk+i=xk + dk and dk = -fAxk,sk)-
1f(xk,Ek). (4.5)

PROOF. From (3.12) and Theorem 4.1, we get F(x*) = 0 and

l im/(**,e t ) = 0. (4.6)
k-*oo

we note that for any x 6 R", 3cF(x) is a compact set. Let Vk e dcF(xk) such that

distCAC**, £*), dcF(xk)) = \\fx(x
k, et) -Vk\\.

By (3.6), we have

H/xCx*. £*) ~Vk\\< yfik, Vk 6 Ko. (4.7)

It follows from Theorem 4.1 that fik -*• 0 as k —> oo. By the compactness of
dcF(x*), the nonsingularity of all V e dcF(x*) and the upper semicontinuity of
3CF() at x*, we deduce from (4.7) that there exist M > 0 and k > 0 such that for all
k e Ko with k > ifc, \\fx(x

k, e*)-'ll <M.
We now consider the subproblem (3.1). By (4.6), we deduce that there exists k •> k

such that for all k e Ko with k > k.
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which implies that

dk = -fx(x
k,eky

lf(xk,sk) and Qk(dk) = 0. (4.8)

This shows <P(xk, ek) - Qk(dk) = \\f (xk, £k)\\
2/2 and

4>(**, ek) - <f(xk + dk, ek) = ^\\f(xk, ek)\\
2 -

Hence we have

tee tee
which implies that there exists k > k such that for all k e Ko with k > k, rk > c2;
that is,

xk+1=xk + dk. (4.9)

The assertion then follows from (4.8) and (4.9).

We are now ready to present a rate of convergence result for Algorithm 3.1.

THEOREM 4.2. Suppose that Assumption A holds. Suppose that for any accumu-
lation point x of the sequence [xk] generated by Algorithm 3.1, all V € 8cF(x) are
nonsingular and F is semismooth at x. Then the whole sequence {xk} converges to a
solution x* of F{x) = 0 superlinearly. Moreover, if F is strongly semismooth at x*,
then the convergence rate is quadratic.

PROOF. Leti be an accumulation point of {xk}. ByTheorem4.1, we have F(x)=0.
Since dBF(x) c dcF(x), by [14, Proposition 2.5], there exists a neighbourhood of x
such thati is the unique solution in this neighbourhood. Therefore the sequence {xk}
only has finitely many accumulation points.

It follows from Proposition 4.2 and Assumption A (i) that for at least one accu-
mulation point x*, there exists an infinite subset KQ of K such that for all k € Ko,
the (k — l)th iteration is successful and [xk}keKo converges to JC*. By the proof of
Proposition 4.3, there exist M > 0 and k e Ko such that for all k e Ko with k > k,
(4.5) holds and \\fx(x

k, £*)-'» < M.
If F is semismooth at **, from (2.4) and (2.6), we have

|| Vk(x
k - x*) - F{xk) + F(x')\\ = o(\\xk - * 1 ) as k -+ oo, k e Ko. (4.10)
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Therefore, by (2.1), (4.5), (4.7) and (4.10), we deduce that for all k e Ko with k > k,

\\x
k+l-x*\\ = \\x

k + dk-x*\\

< \\fAxk,ekr
l\\(\\(fx(x

k,ek)-VkKxk-x')\\

+ || Vk(x
k-x*) - F(xk) + FOOH + \\F(xk) +fx(x

k, ek)dk\\)
k - x*\\ + o(\\xk - x*\\) + vLek). (4.11)

By the local Lipschitz continuity of F, for all k e Ko,

and

ek=O(\\xk-x*\\2). (4.12)

Thus, it follows from (4.11) that

||;ct+1 - j c l = O(||JC* - jc*||) as jfe -> oo, * 6 Ko. (4.13)

From the proof of Theorem 3.1 in [14], we deduce

||F(;ct+1)|| = O(| |F(JC*)| |), as k - • oo, k e Ko.

So there exists k > k such that for all k e Ko with k > k,

\\F(xk+l)\\<ri\\F(xk)\\ = Tipk,

which implies that k + 1 € K and [xk+i}keK0 converges to x*. Hence, by Proposi-
tion 4.3, k+ 1 e Ko.

Repeating the above process, we may prove that k 6 Ko, for all k > k. This,
together with (4.13), implies that [xk] converges tox* superlinearly.

If F is strongly semismooth at x*, from (2.5) and (2.7), we have

| |Vi (**- jc*) - F(X*) + F(JC*)|| = O ( | | J C * - * * | | 2 ) as k -»• oo. (4.14)

By (4.11), (4.12) and (4.14), we deduce that as k -*• oo,

||**+1 - JC*|| < M(ypk\\x
k - jc-l + O(||ac* - x*||2)

which shows that [xk] quadratically converges tox*.

https://doi.org/10.1017/S1446181100012967 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012967


606 - Y.F.Yang [12]

5. Conclusion

In this paper we developed a new trust region algorithm for solving systems of
nonsmooth equations. The proposed algorithm is based on the Jacobian consistency
property of a smoothing approximation function and has some nice convergence prop-
erties. We not only establish global convergence but also recover locally superlinear or
even quadratic convergence under mild conditions in spite of the fact that the function
involved in the system of equations is nonsmooth.

We observe that Kanzow and Pieper [8] considered a line search method without a
condition like Assumption A (ii) and established the desired convergence properties.
How to develop a corresponding method within the trust region framework might be
an interesting topic for future research.
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