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Abstract

In this paper we consider a risk model where claims arrive according to a Markovian
arrival process (MAP). When the surplus becomes negative or the insurer is in deficit,
the insurer could borrow money at a constant debit interest rate to repay the claims. We
derive the integro-differential equations satisfied by the discounted penalty functions and
discuss the solutions. A matrix renewal equation is obtained for the discounted penalty
function provided that the initial surplus is nonnegative. Based on this matrix renewal
equation, we present some asymptotic formulae for the discounted penalty functions
when the claim size distributions are heavy tailed.
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1. Introduction

In this paper we assume that the claims in the surplus process arrive according to a Markovian
arrival process (MAP). The underlying environment process, say {J (t), t ≥ 0}, is a continuous-
time Markov process with representation {α, D0, D1}, where α is the initial probability vector
and D0 + D1 is the intensity matrix. Assume that J (t) is irreducible with finite space E =
{1, . . . , m}. The submatrices D0 = [D0,ij ]mi,j=1 and D1 = [D1,ij ]mi,j=1 are such that

0 ≤ D1,ij < ∞, 0 ≤ D0,ij < ∞, i �= j,

D0,ii < 0,

m∑
j=1

(D0,ij + D1,ij ) = 0.

Let π = (π1, . . . , πm) be the stationary probability row vector of J (t), such that

π [D0 + D1] = 0, πe = 1,

where 0 is an m-dimensional row vector of 0s and e is an m-dimensional column vector of 1s.
The submatrices D1 and D0 respectively denote the intensities of state changes with and

without an accompanying claim. Furthermore, assume that the claim size is dependent on
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the Markovian state of J (t) immediately before and after the state transition. Whenever the
transition from state i to state j occurs and a claim arrives, the claim size has distribution
Fij = 1 − F ij , density fij , mean µij , and Laplace transform f̂ij (s) = ∫ ∞

0 e−sxfij (x) dx.
Given the initial surplus u ≥ 0, the risk model is defined as U∞(t) = u + Y (t) with

Y (t) = ct −
N(t)∑
i=1

Xi,

where c > 0 is the premium rate, {N(t), t ≥ 0} is the claim number process, and {Xn}n≥1
is a sequence of claim size random variables taking positive values. The bivariate Markov
process {(J (t), N(t)), t ≥ 0} is called a MAP, and, accordingly, the risk model U∞(t) is
called the MAP risk model. In Section XI of Asmussen (2003), the bivariate Markov process
{(J (t), Y (t)), t ≥ 0} is called the Markov additive process. Throughout this paper, we use
MAP as an abbreviation of Markovian arrival process, not Markov additive process.

For notational convenience, let

Ei (·) = E(· | J (0) = i), Pi (·) = P(· | J (0) = i).

By Proposition XI.2.2 of Asmussen (2003), the matrix-valued moment generating function of
Y (t) is given by

Ei[esY (t); J (t) = j ] = [eK(s)t ]ij
with the matrix cumulant generating function K(s) given by

K(s) = csI + D0 + D1 ◦ f̂ (s),

where I is the identity matrix, f̂ (s) = [f̂ij (s)]mi,j=1. Here, for two matrices A = [Aij ] and
B = [Bij ] with the same dimension, A ◦ B = [AijBij ] denotes the entrywise multiplication.
Note that K(s) is well defined at least for Re(s) ≥ 0.

The MAP risk model, as an extension of the classical risk model and the Markov-modulated
risk model, has received a lot of attention in the last few years. Badescu et al. (2005a), (2005b)
studied the ruin probability and the joint distribution of the surplus before and after ruin. Ahn
and Badescu (2007) studied the discounted penalty function. Note that in these papers the
assumption on the phase-type claim size distribution is important, so that the risk model can
be connected to the fluid flow model. For the same MAP risk model, Cheung and Landriault
(2010) studied a generalized discounted penalty function incorporating the maximum surplus
before ruin.

Recently, more and more researchers have paid attention to the risk model with debit interest.
It is assumed that the company does not cease to operate when the traditional ruin occurs,
i.e. the surplus drops below level 0 for the first time. The insurer could borrow money at a
constant interest rate and then repay the debts continuously from its premium income. Gerber
(1971) first considered the absolute ruin probability in the compound Poisson risk model when
the debit and credit interest rates are the same; Dassios and Embrechts (1989) studied the
absolute ruin probability using a martingale approach and the theory of piecewise deterministic
Markov processes; Embrechts and Schmidli (1994) considered the absolute ruin probability
in a piecewise-deterministic Markov risk process; Gerber and Yang (2007) considered the
absolute ruin probability in a jump-diffusion model with different credit and debit rates. Cai
(2007) studied the discounted penalty function at absolute ruin in the classical risk model;
Yin and Wang (2010) studied the absolute ruin in a perturbed compound Poisson risk process
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with investment and debit interest. More recently, Konstantinides et al. (2010) studied the
asymptotic expressions for the absolute ruin probabilities in a renewal risk model with constant
force of interest.

Now consider the same situation as in U∞(t), but we assume that, whenever the surplus falls
below the zero level or the company is in deficit, the insurer could borrow an amount of money
equal to the deficit at a debit interest force r > 0. Under such a modification, we denote the
surplus process by Ur(t). The mathematical description of Ur(t) is

dUr(t) =
{

dY (t), Ur(t) > 0,

rUr(t) dt + dY (t), Ur(t) < 0.

Note that, when the surplus is equal to or below the critical level −c/r , it will not be able to
return to a positive level. Let Tr = inf{t ≥ 0 : Ur(t) ≤ −c/r} be the absolute ruin time, where
Tr = ∞ if absolute ruin never occurs in any finite time.

Given the initial environment J (0) = i and the initial surplus Ur(0) = u, the discounted
penalty function is defined as

�ij (u) = Ei[e−δTr w(Ur(Tr−), |Ur(Tr)|) 1{Tr<∞, J (Tr )=j} | Ur(0) = u],
where δ ≥ 0 is the interest force, 1A is the indicator function of event A, and w : (−c/r, ∞) ×
[c/r, ∞) → (0, ∞) is a measurable penalty function of the surplus immediately before ruin,
Ur(Tr−), and the deficit at ruin, |Ur(Tr)|. Throughout this paper, we assume that w is a bounded
function. Furthermore, we assume that the following net profit condition holds:

m∑
i=1

m∑
j=1

πiD1,ijµij < c. (1)

The discounted penalty function was first introduced in Gerber and Shiu (1998) in a classical
insurance risk model; it is often called the Gerber–Shiu function.

In the rest of this paper, matrix notation will be frequently used. Write �(u) = [�ij (u)]mi,j=1,
f (x) = [fij (x)]mi,j=1, and F (x) = [Fij (x)]mi,j=1, and F (x) = [F ij (x)]mi,j=1. For a matrix A,
we denote its (i, j)th entry by [A]i,j , its transpose by A�. For two functions f1 and f2 supported
on [0, ∞), the convolution is defined by

f1 ∗ f2(x) =
∫ x

0
f1(y)f2(x − y) dy, x ≥ 0.

For two matrix-valued functions A1(x) and A2(x) with the same dimension, define

A1 ∗ A2(x) =
∫ x

0
A1(y)A2(x − y) dy, x ≥ 0.

Furthermore, for n > 1, let f ∗n(x) = f ∗(n−1) ∗ f (x) and A∗n(x) = A∗(n−1) ∗ A(x). The
Laplace transform of a function is denoted with a ‘hat’ symbol. Note that, for a matrix-valued
function A(x) = [Aij (x)]mi,j=1, Â(s) means [Âij (s)]mi,j=1.

2. Integro-differential equations and their solutions

In this section we first derive a system of integro-differential equations with boundary condi-
tions for the discounted penalty functions, and then discuss the solutions. For convenience, let
�+,ij (u) = �ij (u) for u ≥ 0 and �−,ij (u) = �ij (u) for u < 0. Set �+(u) = [�+,ij (u)]mi,j=1
and �−(u) = [�−,ij (u)]mi,j=1.
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Theorem 1. The discounted penalty functions �+(u) and �−(u) satisfy the following integro-
differential equations: for u ≥ 0,

(δI − D0)�+(u) = c�′+(u) +
∫ u

0
[D1 ◦ f (x)]�+(u − x) dx

+
∫ u+c/r

u

[D1 ◦ f (x)]�−(u − x) dx + D1 ◦ ω(u) (2)

and, for −c/r < u < 0,

(δI − D0)�−(u) = (ur + c)�′−(u) +
∫ u+c/r

0
[D1 ◦ f (x)]�−(u − x) dx + D1 ◦ ω(u), (3)

where ω(u) = [ωij (u)]mi,j=1 with ωij (u) = ∫ ∞
u+c/r

w(u, x − u)fij (x) dx.

Proof. For u ≥ 0, by conditioning on the time of the first state change of the Markov process
(J (t), N(t)), we have

�+,ij (u) =
∫ ∞

0
e(D0,ii−δ)t

m∑
k=1, k �=i

D0,ik�+,kj (u + ct) dt

+
∫ ∞

0
e(D0,ii−δ)t

m∑
k=1

D1,ik

[∫ u+ct

0
�+,kj (u + ct − x)fik(x) dx

+
∫ u+ct+c/r

u+ct

�−,kj (u + ct − x)fik(x) dx

]
dt

+
∫ ∞

0
e(D0,ii−δ)tD1,ij

∫ ∞

u+ct+c/r

w(u + ct, x − u − ct)fij (x) dx dt.

Making the change of variable s = u + ct , we obtain

�+,ij (u) =
∫ ∞

u

1

c
e(D0,ii−δ)(s−u)/c

m∑
k=1, k �=i

D0,ik�+,kj (s) ds

+
∫ ∞

u

1

c
e(D0,ii−δ)(s−u)/c

m∑
k=1

D1,ik

[∫ s

0
�+,kj (s − x)fik(x) dx

+
∫ s+c/r

s

�−,kj (s − x)fik(x) dx

]
ds

+
∫ ∞

u

1

c
e(D0,ii−δ)(s−u)/cD1,ijωij (s) ds. (4)

Differentiating both sides of (4) gives

c�′+,ij (u) = δ�+,ij (u) −
m∑

k=1

D0,ik�+,kj (u)

−
m∑

k=1

D1,ik

[∫ u

0
�+,kj (u − x)fik(x) dx +

∫ u+c/r

u

�−,kj (u − x)fik(x) dx

]

− D1,ijωij (u).

Equation (2) is the matrix form of the above equation.
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For −c/r < u < 0, let t0 = (1/r) ln c/(ur + c), which is the solution of the following
equation:

h(u, t) := uert + c
ert − 1

r
= 0.

Note that before time t0, the surplus process Ur(t) stays below level 0. In particular, for t < t0,
Ur(t) = h(u, t) prior to the first claim arrival. By conditioning on the time of the first state
change of the Markov process (J (t), N(t)), we have

�−,ij (u) =
∫ t0

0
e(D0,ii−δ)t

m∑
k=1, k �=i

D0,ik�−,kj (h(u, t)) dt

+
∫ t0

0
e(D0,ii−δ)t

m∑
k=1

D1,ik

∫ h(u,t)+c/r

0
�−,kj (h(u, t) − x)fik(x) dx dt

+
∫ t0

0
e(D0,ii−δ)tD1,ijωij (h(u, t)) dt

+
∫ ∞

t0

e(D0,ii−δ)t
m∑

k=1, k �=i

D0,ik�+,kj (c(t − t0)) dt

+
∫ ∞

t0

e(D0,ii−δ)t
m∑

k=1

D1,ik

[∫ c(t−t0)

0
�+,kj (c(t − t0) − x)fik(x) dx

+
∫ c(t−t0)+c/r

c(t−t0)

�−,kj (c(t − t0) − x)fik(x) dx

]
dt

+
∫ ∞

t0

e(D0,ii−δ)tD1,ijωij (c(t − t0)) dt. (5)

By changing some variables in (5), we can obtain

�−,ij (u) =
∫ 0

u

1

sr + c

(
sr + c

ur + c

)(D0,ii−δ)/r

×
[ m∑

k=1, k �=i

D0,ik�−,kj (s)

+
m∑

k=1

D1,ik

∫ s+c/r

0
�−,kj (s − x)fik(x) dx + D1,ijωij (s)

]
ds

+
(

c

ur + c

)(D0,ii−δ)/r

×
∫ ∞

0
e(D0,ii−δ)s/c

[ m∑
k=1, k �=i

D0,ik�+,kj (s) + D1,ijωij (s)

+
m∑

k=1

D1,ik

(∫ s

0
�+,kj (s − x)fik(x) dx

+
∫ s+c/r

s

�−,kj (s − x)fik(x) dx

)]
ds.

(6)
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Differentiating both sides of (6) with respect to u gives

(ur + c)�′−,ij (u) = δ�−,ij (u) −
m∑

k=1

D0,ik�−,kj (u)

−
m∑

k=1

D1,ik

∫ u+c/r

0
�−,kj (u − x)fik(x) dx − D1,ijωij (u).

Rewriting the above equation in matrix form gives (3).

We can obtain some boundary conditions from the above derivation procedure. Firstly,
from (4) and (6), we have

�+(0) = �−(0−). (7)

Rewrite (6) as

�−,ij (u) =
∫ 0
u
(sr + c)(D0,ii−δ)/r−1W1,ij (s) ds

(ur + c)(D0,ii−δ)/r
+

(
c

ur + c

)(D0,ii−δ)/r

W2,ij ,

where

W1,ij (s) =
m∑

k=1, k �=i

D0,ik�−,kj (s) +
m∑

k=1

D1,ik

∫ s+c/r

0
�−,kj (s − x)fik(x) dx

+ D1,ijωij (s),

W2,ij =
∫ ∞

0
e(D0,ii−δ)s/c

[ m∑
k=1, k �=i

D0,ik�+,kj (s) + D1,ijωij (s)

+
m∑

k=1

D1,ik

(∫ s

0
�+,kj (s − x)fik(x) dx

+
∫ s+c/r

s

�−,kj (s − x)fik(x) dx

)]
ds.

Because w is a bounded function, it is not hard to see that W2,ij < ∞. Furthermore, if

lim
u↓−c/r

∫ 0

u

(sr + c)(D0,ii−δ)/r−1ωij (s) ds = ∞, i, j ∈ E , (8)

then

lim
u↓−c/r

∫ 0

u

(sr + c)(D0,ii−δ)/r−1W1,ij (s) ds = ∞.

In this case, by l’Hôpital’s rule, we have

�−,ij

(
−c

r

)
= lim

u↓−c/r

∫ 0
u
(sr + c)(D0,ii−δ)/r−1W1,ij (s) ds

(ur + c)(D0,ii−δ)/r

+ lim
u↓−c/r

(
c

ur + c

)(D0,ii−δ)/r

W2,ij (s)

= −W1,ij (−c/r)

D0,ii − δ
,

https://doi.org/10.1239/aap/1300198513 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198513


On the absolute ruin in a MAP risk model with debit interest 83

that is, for i, j ∈ E ,

m∑
k=1

D0,ik�−,kj

(
−c

r

)
− δ�−,ij

(
−c

r

)
+ D1,ijωij

(
−c

r

)
= 0.

Rewriting the above equation in matrix form gives

[δI − D0]�−
(

−c

r

)
= D1 ◦ ω

(
−c

r

)
.

Since D0 is a subgenerator matrix, δI − D0 is nonsingular. Then

�−
(

−c

r

)
= [δI − D0]−1

[
D1 ◦ ω

(
−c

r

)]
. (9)

We remark that most of the penalty functions used in ruin theory satisfy (8).
Now we discuss the solutions to (2) and (3). Firstly, we consider (3). Note that

∫ u

−c/r

∫ t+c/r

0
[D1 ◦ f (x)]�−(t − x) dx dt

=
∫ u

−c/r

∫ t

−c/r

[D1 ◦ f (t − x)]�−(x) dx dt

=
∫ u

−c/r

∫ u

x

[D1 ◦ f (t − x)] dt�−(x) dx

=
∫ u

−c/r

[D1 ◦ F (u − x)]�−(x) dx.

Then replacing u in (3) by t and integrating both sides from −c/r to u gives

�−(u) =
∫ u

−c/r

K−(u, x)�−(x) dx + H−(u), −c

r
< u < 0, (10)

where

K−(u, x) = (δ + r)I − D0 − [D1 ◦ F (u − x)]
ur + c

,

H−(u) = − 1

ur + c

∫ u

−c/r

[D1 ◦ ω(t)] dt.

Under some regular conditions, for example, the penalty function w is bounded, we can obtain

lim
u↓−c/r

�−(u) = lim
u↓−c/r

∫ u

−c/r

K−(u, x)�−(x) dx + lim
u↓−c/r

H−(u)

= 1

r
[(δ + r)I − D0]�−

(
−c

r

)
− 1

r
D1 ◦ ω

(
−c

r

)

thanks to l’Hôpital’s rule, which will recover boundary condition (9) again after some rear-
rangement.
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Equation (10) is a matrix Volterra integral equation of the second kind. Obviously, H−
is absolutely integrable and the kernel K− is continuous. Then �−(u) can be approximated
recursively by Picard’s sequence {�n,−(u), n ≥ 0}, where �0,−(u) = H−(u), and, for n ≥ 1,

�n,−(u) =
∫ u

−c/r

K−(u, x)�n−1,−(x) dx + H−(u). (11)

We cannot get the desired explicit expression for �−(u) by (11). However, we can adopt some
numerical approach to approximate �−(u) at some lattice points. In particular, with boundary
condition (9) in hand, this problem can be reduced to solving some linear system of algebraic
equations. We refer the readers to Linz (1985) for the solution procedure, where many methods
of solving the Volterra integral equations are presented.

Next, we consider (2). Let V (u) be the solution of the homogeneous integro-differential
equation

(δI − D0)V (u) = cV ′(u) +
∫ u

0
[D1 ◦ f (x)]V (u − x) dx

with initial condition V (0) = I . Then by the general theory of differential equations we have

�+(u) = V (u)�+(0) − 1

c

∫ u

0
V (x)Br (u − x) dx

= V (u)�−(0) − 1

c

∫ u

0
V (x)Br (u − x) dx, (12)

due to the continuity condition (7), where

Br (u) =
∫ u+c/r

u

[D1 ◦ f (x)]�−(u − x) dx + D1 ◦ ω(u).

From (12), we know that �+(u) is heavily dependent on the functions V (u) and �−(u). As
remarked in Cheung and Landriault (2010), if the elements in the Laplace transform f̂ (s) are
rational then the elements in the Laplace transform V̂ (s) are also rational. In this case, V (u)

can be readily obtained by inverting the Laplace transforms.
We can also rewrite (12) as

�+(u) = V (u)�−(0) − 1

c

∫ 0

−c/r

∫ u

0
V (u − x)[D1 ◦ f (x − t)] dx�−(t) dt

− 1

c

∫ u

0
V (u − x)[D1 ◦ ω(x)] dx. (13)

Thus, we can first get the approximative values of �−(t) at some lattice points −c/r = t0 <

t1 < · · · < tn−1 < tn = 0, and then apply (13) to approximate �+(u) by some numerical
integration methods.

The above arguments show that it is feasible to calculate the discounted penalty functions
by some numerical methods. However, due to the difficulty of finding the explicit expressions,
asymptotic results become significant and interesting.

3. A matrix renewal equation for �+(u)

In this section we derive a matrix renewal equation for �+(u) that is useful in studying the
asymptotic behavior of the discounted penalty function. Firstly, we present some preliminaries
that are due to Breuer (2008).
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Consider a bivariate process (J̃ , Ỹ ) which represents the time reversed process (J, Y ) from
a fixed time in the future when J starts from the stationary distribution π . That is,

J̃ (s) = J ((t − s)−), Ỹ (s) = Y (t) − Y ((t − s)−), 0 ≤ s ≤ t,

under Pπ := ∑
i∈E πi Pi . The bivariate process (J̃ , Ỹ ) is still a Markov additive process. In the

sequel, we will use a tilde to indicate the characteristics associated with (J̃ , Ỹ ). The intensity
matrix D̃0 + D̃1 must satisfy

D̃0 = �−1
π D�

0 �π , D̃1 = �−1
π D�

1 �π ,

with �π = diag(π1, . . . , πm). The matrix cumulant generating function associated with Ỹ is
given by

K̃(s) = �−1
π K(s)��π .

In the rest of the paper, whenever we talk about the process (J̃ , Ỹ ), we will refer to it under the
probabilities {P̃i : i ∈ E}.

For x ≥ 0, let τ+
x = inf{t ≥ 0 : Y (t) = x} be the first time when Y reaches the level x.

Due to the net profit condition (1), {τ+
x , x ≥ 0} is a nonterminating continuous-time Markov

process. From Section 3 of Breuer (2008), we know that there exists a matrix Qδ such that, for
δ ≥ 0,

Ẽi[e−δτ+
x ; J (τ+

x ) = j ] = [eQδx]ij . (14)

Under the probabilities {P̃i : i ∈ E}, Q0 is the generator matrix of {τ+
x }, whereas, for δ > 0,

Qδ is a subgenerator matrix. Thus, all eigenvalues of Qδ are in the left-half complex plane. By
Theorem 1 of Breuer (2008) we know that Qδ satisfies the following nonlinear matrix equation:

cQδ = D̃0 − δI +
∫ ∞

0
[D̃1 ◦ f̂ (x)]eQδx dx. (15)

Furthermore, Theorem 2 of Breuer (2008) states that Qδ can be computed as the limit of the
sequence {Qδ,n, n ≥ 0}, where Qδ,0 = (1/c)[D̃0 − δI ], and, for n ≥ 1,

cQδ,n = D̃0 − δI +
∫ ∞

0
[D̃1 ◦ f̂ (x)]eQδ,n−1x dx. (16)

As will be seen later, it is more convenient for us to consider the matrix Pδ :=−[�πQδ�
−1
π ]�.

Rewriting (15) in terms of Pδ gives

cPδ = δI − D0 −
∫ ∞

0
e−Pδx[D1 ◦ f (x)] dx. (17)

While from (16) we know that Pδ can be approximated by the sequence {Pδ,n, n ≥ 0}, where
Pδ,0 = (1/c)[δI − D0], and, for n ≥ 1,

cPδ,n = δI − D0 −
∫ ∞

0
e−Pδ,n−1x[D1 ◦ f (x)] dx.

Furthermore, the following lemma shows that Pδ can also be obtained by diagonalization under
some conditions.
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Lemma 1. Let ρδ,1, . . . , ρδ,m be the eigenvalues of Pδ , and respectively denote by

�ρδ = diag(ρδ,1, . . . , ρδ,m), �δ =
⎡
⎢⎣

γδ,1
...

γδ,n

⎤
⎥⎦

the eigenvalues matrix and the left eigenvectors matrix of Pδ . If the eigenvalues are distinct
then Pδ has a diagonalized form, Pδ = �−1

δ �ρδ�δ . Furthermore, the ρδ,is are the roots of the
equation

det[K(s) − δI ] = 0, (18)

and the eigenvectors, γδ,i , can be obtained by solving the equations

γδ,i[K(ρδ,i) − δI ] = 0, i = 1, . . . , m. (19)

Proof. Obviously, if the eigenvalues are distinct then the eigenvectors are nonsingular and
Pδ can be diagonalized as Pδ = �−1

δ �ρδ�δ . Since Pδ satisfies (17), we have

c�−1
δ �ρδ�δ = δI − D0 − �−1

δ

∫ ∞

0
e−�ρδ

x�δ[D1 ◦ f (x)] dx.

Premultipling the above equation by �δ gives

c�ρδ�δ = δ�δ − �δD0 −
∫ ∞

0
e−�ρδ

x�δ[D1 ◦ f (x)] dx,

which is equivalent to (19). Finally, (19) implies that the ρδ,is are roots of (18).

Remark 1. Since Qδ is a (sub)generator matrix and Pδ is similar to −Q�
δ , then the eigenvalues,

ρδ,i , must be in the right-half complex plane. Furthermore, by the Perron–Frobenius theorem
(see, e.g. Corollary A4.8 of Asmussen (2000)), we know that the eigenvalue of Pδ with the
minimum real part, say ρδ , is real and strictly less than other eigenvalues. Let γδ and hδ be
the associated left and right eigenvectors normalized by γδhδ = 1 and γδe = 1. Then all
components of γδ and hδ are real and positive. In particular, when δ = 0, we have ρ0 = 0 and
γ0 = π . In the rest of this paper, we will denote h0 by h.

The following theorem is the main result of this section.

Theorem 2. The discounted penalty function �+(u) satisfies the matrix renewal equation

�+(u) =
∫ u

0
gδ(y)�+(u − y) dy + Zδ(u), (20)

where

gδ(y) = 1

c

∫ ∞

0
e−Pδx[D1 ◦ f (x + y)] dx,

Zδ(u) = 1

c

∫ ∞

0
e−PδxBr (x + u) dx.

Remark 2. Equation (20) is a generalization of the defective renewal equation (14) of Cai
(2007), where only the case m = 1 and δ = 0 is considered. We will present two approaches to
derive (20). The first approach is analytic, which is based on the assumption that the eigenvalues
are distinct. While the second approach is based on some purely probabilistic arguments without
any assumption on the eigenvalues. It seems that the second approach is more interesting, but
the first approach is practical because in almost all the applications the eigenvalues are distinct.
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Proof of Theorem 2 (analytic approach). In this proof we assume that the eigenvalues, ρδ,i ,
are distinct. We start from the integro-differential equation (2). Taking Laplace transforms on
both sides of (2) gives

[K(s) − δI ]�̂+(s) = c�+(0) − B̂r (s). (21)

Note that the matrix sI − Pδ is nonsingular for s �= ρδ,1, . . . , ρδ,m. Since Pδ satisfies (17), for
s �= ρδ,1, . . . , ρδ,m, we have

K(s) − δI = csI − δI + D0 +
∫ ∞

0
e−sIx[D1 ◦ f (x)] dx

−
[
cPδ − δI + D0 +

∫ ∞

0
e−Pδx[D1 ◦ f (x)] dx

]

= (sI − Pδ)

[
cI − (Pδ − sI )−1

∫ ∞

0
(e−sIx − e−Pδx)[D1 ◦ f (x)] dx

]

= (sI − Pδ)

[
cI − (Pδ − sI )−1

∫ ∞

0
(e−(sI−Pδ)x − I )e−Pδx[D1 ◦ f (x)] dx

]

= (sI − Pδ)

[
cI −

∫ ∞

0

∫ x

0
e−(sI−Pδ)y dye−Pδx[D1 ◦ f (x)] dx

]

= (sI − Pδ)

[
cI −

∫ ∞

0
e−sy

∫ ∞

y

e−Pδ(x−y)[D1 ◦ f (x)] dx dy

]
. (22)

Setting s = ρδ,i in (21) and then premultiplying both sides by γδ,i gives

cγδ,i�+(0) = γδ,iB̂r (ρδ,i) =
∫ ∞

0
e−ρδ,ixγδ,iBr (x) dx, i = 1, . . . , m.

Rewriting the above equations in matrix form gives

c�δ�+(0) =
∫ ∞

0
e−�ρδ

x�δBr (x) dx.

Hence,

c�+(0) = �−1
δ

∫ ∞

0
e−�ρδ

x�δBr (x) dx =
∫ ∞

0
e−PδxBr (x) dx. (23)

By (23) we have

c�+(0) − B̂r (s) =
∫ ∞

0
e−PδxBr (x) dx −

∫ ∞

0
e−sxBr (x) dx

= (sI − Pδ)(sI − Pδ)
−1

∫ ∞

0
[I − e−(sI−Pδ)x]e−PδxBr (x) dx

= (sI − Pδ)

∫ ∞

0

∫ x

0
e−(sI−Pδ)u due−PδxBr (x) dx

= (sI − Pδ)

∫ ∞

0
e−su

∫ ∞

u

e−Pδ(x−u)Br (x) dx du,
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which together with (21) and (22) gives[
cI −

∫ ∞

0
e−sy

∫ ∞

y

e−Pδ(x−y)[D1 ◦ f (x)] dx dy

]
�̂+(s)

=
∫ ∞

0
e−su

∫ ∞

u

e−Pδ(x−u)Br (x) dx du, (24)

where s �= ρδ,1, . . . , ρδ,m. By analytic continuation, (24) holds for all s in the right-half
complex plane. Finally, inverting the Laplace transforms in (24) gives (20).

Proof of Theorem 2 (probabilistic approach). Let τ−
0 = inf{t ≥ 0 : Y (t) < 0} be the first

time when Y (t) drops below the level 0. Given the initial Markovian state J (0) = i, let
fij (t, x, y) be the joint density of τ−

0 , Y (τ−
0 −), and −Y (τ−

0 ), assuming that the Markovian
state at time τ−

0 is j . For u > 0, consider the following situations when the process Ur(t) first
drops below the initial surplus u:

(a) if the overshoot, −Y (τ−
0 ), is less than u then the surplus stays above the level 0 and the

company does not borrow money;

(b) if the overshoot is greater than u but less than u+c/r , then the surplus becomes negative
and the company will borrow money to repay the claims;

(c) if the overshoot is larger than u + c/r , absolute ruin occurs and the surplus immediately
before the absolute ruin and the deficit at absolute ruin are respectively u + Y (τ−

0 −) and
−Y (τ−

0 ) − u.

Distinguishing the above three situations, for i, j ∈ E , we have

�+,ij (u) =
m∑

k=1

∫ ∞

0

∫ ∞

0

∫ u

0
e−δtfik(t, x, y)�+,kj (u − y) dy dx dt

+
m∑

k=1

∫ ∞

0

∫ ∞

0

∫ u+c/r

u

e−δtfik(t, x, y)�−,kj (u − y) dy dx dt

+
∫ ∞

0

∫ ∞

0

∫ ∞

u+c/r

e−δtfij (t, x, y)w(x + u, y − u) dy dx dt

=
m∑

k=1

∫ ∞

0

∫ u

0
fδ,ik(x, y)�+,kj (u − y) dy dx

+
m∑

k=1

∫ ∞

0

∫ u+c/r

u

fδ,ik(x, y)�−,kj (u − y) dy dx

+
∫ ∞

0

∫ ∞

u+c/r

fδ,ij (x, y)w(x + u, y − u) dy dx, (25)

where fδ,ij (x, y) = ∫ ∞
0 e−δtfij (t, x, y) dt . Set fδ(x, y) = [fδ,ij (x, y)]mi,j=1, and write (25) in

the following matrix form:

�+(u) =
∫ ∞

0

∫ u

0
fδ(x, y)�+(u − y) dy dx +

∫ ∞

0

∫ u+c/r

u

fδ(x, y)�−(u − y) dy dx

+
∫ ∞

0

∫ ∞

u+c/r

fδ(x, y)w(x + u, y − u) dy dx. (26)
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Now we identify fδ,ij (x, y) for i, j ∈ E . Conditioning on the Markovian state immediately
before time τ−

0 , we obtain

fij (x, y) dx dy

=
∫

t∈(0,∞)

e−δt Pi (τ
−
0 ∈ dt, Y (τ−

0 −) ∈ dx, −Y (τ−
0 ) ∈ dy, J (τ−

0 ) = j)

=
∑
k∈E

∫
t∈(0,∞)

e−δt Pi (τ
−
0 ∈ dt, Y (τ−

0 −) ∈ dx, −Y (τ−
0 ) ∈ dy,

J (τ−
0 −) = k, J (τ−

0 ) = j)

=
∑
k∈E

∫
t∈(0,∞)

e−δt Pi (τ
−
0 ≥ t, Y (t−) ∈ dx, J (t−) = k)D1,kj fkj (x + y) dt dy

=
∑
k∈E

∫
t∈(0,∞)

e−δt Pi (τ
−
0 ≥ t, Y (t) ∈ dx, J (t) = k)D1,kj fkj (x + y) dt dy

:=
∑
k∈E

R(δ)
ik (dx)D1,kj fkj (x + y) dy, (27)

where, by time reversal,

R(δ)
ik (dx) =

∫
t∈(0,∞)

e−δt Pi (τ
−
0 ≥ t, Y (t) ∈ dx, J (t) = k) dt

= πk

πi

∫
t∈(0,∞)

e−δt P̃k(τ
+
x ≥ t, Y (t) ∈ dx, J (t) = i) dt.

Note that
P̃k(τ

+
x ≥ t, Y (t) ∈ dx, J (t) = i) = P̃k(τ

+
x ∈ dt, J (t) = i)

and dt = (1/c) dx. We have

R(δ)
ik (dx) = πk

cπi

∫
t∈(0,∞)

e−δt P̃k(τ
+
x ∈ dt, J (t) = i) dx = πk

cπi

[eQδx]ki dx, (28)

where the second step follows from (14). Substituting (28) into (27) gives

fij (x, y) =
∑
k∈E

πk

cπi

[eQδx]kiD1,kj fkj (x + y),

or, in matrix form,

fδ(x, y) = 1

c
e−Pδx[D1 ◦ f (x + y)]. (29)

Finally, substituting (29) into (26), we recover (20).

It is not hard to see that the matrix
∫ ∞

0 gδ(y) dy is strictly substochastic under either δ > 0
or the net profit condition (1). Then the matrix renewal equation (20) has the minimal solution
such that, for u ≥ 0,

�+(u) = Zδ(u) +
∫ u

0
�δ(y)Zδ(u − y) dy, (30)

where �δ(y) = ∑∞
n=1 g∗n

δ (y).
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4. Asymptotic results for heavy-tailed claims

From Section 2 we know that it is very hard to find explicit expressions for the discounted
penalty functions. In this section we will investigate the asymptotic behavior of �(u) when
the claim size distributions are heavy tailed. We remark that the asymptotic behavior for the
ruin probability in the Markov-modulated risk model has been studied by, e.g. Asmussen et al.
(1994), Rolski et al. (1999, pp. 522–525, 549–551), and Asmussen (2000, pp. 269–271).

In the rest of this paper, for two scale-valued functions a1(x) and a2(x), we use a1(x) ∼
a2(x), a1(x) ∼ o(a2(x)), and a1(x) ∼ O(a2(x)) to denote limx→∞(a1(x)/a2(x)) = 1,
limx→∞(a1(x)/a2(x)) = 0, and 0 < lim infx→∞(a1(x)/a2(x)) ≤ lim supx→∞(a1(x)/a2(x))

< ∞, respectively. For two matrix-valued functions A1(x) and A2(x), we use A1(x) ∼
A2(x), A1(x) ∼ o(A2(x)), and A1(x) ∼ O(A2(x)) to denote [A1(x)]ij ∼ [A2(x)]ij ,
[A1(x)]ij ∼ o([A2(x)]ij ), and [A1(x)]ij ∼ O([A2(x)]ij ). Associated with a distribution
function F defined on [0, ∞), let F = 1 − F be the tail function and define the convolution
F�2(x) = F � F(x) = ∫ x

0− F(x − y) dF(y).
We introduce some classes of heavy-tailed functions and list some of their properties. Some

excellent references on heavy-tailed distributions are Klüppelberg (1988), (1989), Embrechts
et al. (1997, pp. 36–57), Asmussen (2000, pp. 251–259), and Asmussen et al. (2003).

Definition 1. A distribution function F on [0, ∞) is said to belong to the class L of long-tailed
distributions if

lim
x→∞

F(x − y)

F (x)
= 1 for all y ∈ R.

Definition 2. A distribution function F is said to belong to the class S of subexponential
distributions if F ∈ L and

lim
x→∞

F�2(x)

F (x)
= 2.

Definition 3. A measurable function f : [0, ∞) → [0, ∞) is said to belong to the class Ld if
f (x) > 0 for all large x > 0 and

lim
x→∞

f (x − y)

f (x)
= 1 for all y ∈ R.

Definition 4. A measurable function f is said to belong to the class Sd if f ∈ Ld and the
following limit exists:

lim
x→∞

f ∗2(x)

f (x)
= 2d < ∞.

When f ∈ Sd is a density function, we call it a subexponential density. It is well known
that the classes L and S are closed with respect to tail equivalence, while the classes Ld and
Sd are closed with respect to asymptotic equivalence.

Lemma 2. (Tang and Wei (2010).) If f ∈ Ld then, for all ε > 0, there are some constants
c0, x0 > 0 such that, for all x ≥ y ≥ x0,

c−1
0 e−ε(x−y) ≤ f (x)

f (y)
≤ c0eε(x−y).

By some standard arguments (see, e.g. Proposition 7 and Proposition 8 of Asmussen et al.
(2003)), we can obtain the following results.

https://doi.org/10.1239/aap/1300198513 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198513


On the absolute ruin in a MAP risk model with debit interest 91

Lemma 3. Let f, f1, . . . , fk be densities on R+ such that fi(x) ∼ cif (x) for ci > 0, i =
1, . . . , k. If f is a subexponential density then the following statements hold.

(a) For all n1, . . . , nk ∈ N,

(f
∗n1
1 ∗ · · · ∗ f

∗nk

k )(x) ∼
k∑

i=1

nicif (x),

and f
∗n1
1 ∗ · · · ∗ f

∗nk

k is also a subexponential density.

(b) For any ε > 0, these exist some xε ≥ 0 and 0 < Nε < ∞ such that

(f
∗n1
1 ∗ · · · ∗ f

∗nk

k )(x) ≤ Nε(1 + ε)n1+···+nkf (x)

for all x ≥ xε and n1, . . . , nk ∈ N.

We will study the asymptotic behavior of �(u) when u is sufficiently large. It suffices to
study the asymptotic behavior of �+(u). To this end, we need the following assumption.

Assumption 1. There exist a matrix H = [Hij ]mi,j=1 and a distribution function F with density
f , such that, for i, j = 1, . . . , m,

lim
x→∞

fij (x)

f (x)
= Hij < ∞, Hij > 0.

Lemma 4. (a) For δ > 0, if Assumption 1 holds with f ∈ Ld , we have

gδ(y) ∼ 1

c
P −1

δ [D1 ◦ f (y)]. (31)

(b) For δ = 0, if Assumption 1 holds with F ∈ Ld , we have

g0(y) ∼ 1

c
hπ [D1 ◦ F (y)].

Proof. Recall Remark 1. By the Perron–Frobenius theorem we have

e−Pδx = e−ρδxhδγδ + O(e−βx), (32)

where β > ρδ .
Firstly, for part (a), we have

gδ(y)

f (y)
= 1

c

∫ ∞

0
e−Pδx

D1 ◦ f (x + y)

f (x + y)

f (x + y)

f (y)
dx.

By the dominated convergence theorem justified by (32), Assumption 1, and Lemma 2 with
ε < ρδ , we have

lim
y→∞

gδ(y)

f (y)
= 1

c

∫ ∞

0
e−Pδx lim

y→∞
D1 ◦ f (x + y)

f (x + y)

f (x + y)

f (y)
dx = 1

c
P −1

δ [D1 ◦ H ],

which implies that (31) holds.
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Next, we consider part (b). By (32) we have

g0(y) = 1

c
hπ [D1 ◦ F (y)] + O

(
1

c

∫ ∞

0
e−βx[D1 ◦ f (x + y)] dx

)
.

The condition F ∈ Ld also implies that f ∈ Ld . It follows from Lemma 4.4(1) of Tang and Wei
(2010) that f (x) ∼ o(F (x)). Then, by Assumption 1 and the dominated convergence theorem
again, it is not hard to see that, compared with hπ [D1 ◦ F (y)], the matrix-valued function∫ ∞

0
e−βx[D1 ◦ f (x + y)] dx

is asymptotically negligible. This completes the proof.

To continue, we need to specify the matrix I −Gδ , where Gδ = ∫ ∞
0 gδ(y) dy. Setting s = 0

in (22) gives

Pδ[I − Gδ] = 1

c
[δI − D]. (33)

For δ > 0, Pδ is nonsingular. Then (33) gives

I − Gδ = 1

c
P −1

δ [δI − D], δ > 0.

For δ = 0, firstly, we have

hπ [I − G0] = hπ − 1

c

∫ ∞

0

∫ ∞

0
hπe−P0x[D1 ◦ f (x + y)] dx dy

= hπ

[
I − 1

c
D1 ◦ µ

]
(34)

thanks to πP0 = 0, where µ = [µij ]mi,j=1. Then, by (34) and (33) with δ = 0, we obtain

[hπ − P0][I − G0] = hπ

[
I − 1

c
D1 ◦ µ

]
+ 1

c
D. (35)

The matrix hπ − P0 is nonsingular and [hπ − P0]hπ = hπ . Then (35) gives

I − G0 = hπ

[
I − 1

c
D1 ◦ µ

]
+ 1

c
[hπ − P0]−1D.

Lemma 5. (a) For δ > 0, if Assumption 1 holds with f ∈ Sd , we have

�δ(y) ∼ 1

c
[I − Gδ]−1P −1

δ [D1 ◦ f (y)][I − Gδ]−1. (36)

(b) For δ = 0, if Assumption 1 holds with F ∈ Sd , we have

�0(y) ∼ 1

c
[I − G0]−1hπ [D1 ◦ F (y)][I − G0]−1.
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Proof. We only prove (a) since (b) can be obtained similarly. Let ǧδ(y) = [ǧδ,ij (y)]mi,j=1,
where ǧδ,ij (y) = gδ,ij (y)/[Gδ]ij . By (31) we have

ǧδ,ij (y) ∼ [P −1
δ [D1 ◦ H ]]ij

c[Gδ]ij f (y). (37)

For fixed n, we have

[g∗n
δ (y)]ij =

m∑
i1=1

· · ·
m∑

in−1=1

(gδ,ii1 ∗ · · · ∗ gδ,in−1j )(y)

=
m∑

i1=1

· · ·
m∑

in−1=1

([Gδ]ii1 · · · [Gδ]in−1j )(ǧδ,ii1 ∗ · · · ∗ ǧδ,in−1j )(y). (38)

By Lemma 3(a) and (37), we have

[g∗n
δ (y)]ij ∼

m∑
i1=1

· · ·
m∑

in−1=1

([Gδ]ii1 · · · [Gδ]in−1j )

×
( [P −1

δ [D1 ◦ H ]]ii1
c[Gδ]ii1

+ · · · + [P −1
δ [D1 ◦ H ]]in−1j

c[Gδ]in−1j

)
f (y).

In matrix form, we have

g∗n
δ (y) ∼ 1

c

n−1∑
k=0

Gk
δP

−1
δ [D1 ◦ H ]Gn−1−k

δ f (y)

∼ 1

c

n−1∑
k=0

Gk
δP

−1
δ [D1 ◦ f (y)]Gn−1−k

δ . (39)

By Lemma 3(b) and (38), we know that, for any ε > 0, there exists some Nε < ∞ such that,
for large y,

[g∗n
δ (y)]ij ≤

m∑
i1=1

· · ·
m∑

in−1=1

([Gδ]ii1 · · · [Gδ]in−1j )Nε(1 + ε)nf (y),

that is,
g∗n

δ (y) ≤ Gn
δNε(1 + ε)nf (y).

Since Gδ is strictly substochastic, we can choose ε small enough such that the spectral radius
of (1 + ε)Gδ is less than 1. Then, by the dominated convergence theorem and (39), we obtain

�δ(y) ∼ 1

c

∞∑
n=1

n−1∑
k=0

Gk
δP

−1
δ [D1 ◦f (y)]Gn−1−k

δ = 1

c
[I −Gδ]−1[P −1

δ [D1 ◦f (y)]][I −Gδ]−1.

This completes the proof.

Let 
ij (u) = ∫ ∞
u

ωij (x) dx and Fe,ij (u) = ∫ ∞
u

F ij (x) dx, and set 	(u) = [
ij (u)]mi,j=1
and F e(u) = [Fe,ij (u)]mi,j=1.
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Theorem 3. (a) For δ > 0, assume that limu→∞ ωij (u)/F ij (u) = κ > 0 and that Assump-
tion 1 holds with f ∈ Sd . Then

�+(u) ∼ 1

c
[I − Gδ]−1P −1

δ [D1 ◦ ω(u)].

(b) For δ = 0, assume that limu→∞ 
ij (u)/F e,ij (u) = κ > 0 and that Assumption 1 holds
with F ∈ Sd . Then

�+(u) ∼ 1

c
[I − G0]−1hπ [D1 ◦ 	(u)].

Proof. We only show part (a) since part (b) can be obtained similarly. First, note that

Zδ(u) = 1

c

∫ ∞

0

∫ 0

−c/r

e−Pδx[D1 ◦ f (x + u − y)]�−(y) dy dx

+ 1

c

∫ ∞

0
e−Pδx[D1 ◦ ω(x + u)] dx

:= M1(u) + M2(u).

The condition f ∈ Sd implies that F ∈ S and F ∈ Ld . We have

lim
x→∞

ωij (x)

F (x)
= lim

x→∞
ωij (x)

F ij (x)

F ij (x)

F (x)
= κHij

thanks to Assumption 1 and l’Hôpital’s rule, which implies that ωij ∈ Ld , since the class Ld

is closed with respect to asymptotic equivalence. Thus, by exactly the same arguments as in
the proof of Lemma 4(a), we can show that all entries of M2(u) belong to the class Sd and

M2(u) ∼ κ

c
P −1

δ [D1 ◦ H ]F(u). (40)

The conditionf ∈ Sd implies thatf (x) ∼ o(F (x))due to Lemma 4.4(1) ofTang andWei (2010)
again. Then, by Assumption 1 and the dominated convergence theorem, we know that

M1(u)

F (u)
= 1

c

∫ ∞

0

∫ 0

−c/r

e−Pδx
D1 ◦ f (x + u − y)

f (x + u − y)

f (x + u − y)

F (u)
�−(y) dy dx

tends to a zero matrix as u → ∞. By this and (40), we have M1(u) ∼ o(M2(u)), and

Zδ(u) ∼ κ

c
P −1

δ [D1 ◦ H ]F(u). (41)

It is more convenient to write (41) in the form

Zδ,ij (u) ∼ aijF (u), (42)

where Zδ,ij (u) is the (i, j)th entry of Zδ(u) and

aij = κ

c
[P −1

δ [D1 ◦ H ]]ij .

Similarly, we write (36) in the form

�δ,ij (y) ∼ bij f (y), (43)
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where �δ,ij (y) is the (i, j)th entry of �δ(y) and

bij = 1

c
[[I − Gδ]−1P −1

δ [D1 ◦ H ][I − Gδ]−1]ij .

For any fixed x0 > 0 and u > 2x0, by (30), we have

�+,ij (u) = Zδ,ij (u) +
m∑

k=1

∫ u

0
�δ,ik(y)Zδ,kj (u − y) dy

= Zδ,ij (u) +
m∑

k=1

(∫ x0

0
+

∫ u−x0

x0

+
∫ u

u−x0

)
�δ,ik(y)Zδ,kj (u − y) dy

:= Zδ,ij (u) +
m∑

k=1

(Likj,1(u) + Likj,2(u) + Likj,3(u)). (44)

By F ∈ Ld , (42), and the dominated convergence theorem,

Likj,1(u) ∼
∫ x0

0
�δ,ik(y) dyZδ,kj (u). (45)

By F ∈ S, (42), and (43), it is not hard to see that (see, e.g. Klùppelberg (1988))

lim sup
x0→∞

lim sup
u→∞

Likj,2(u)

F (u)
= lim sup

x0→∞
lim sup
u→∞

bikakj

∫ u−x0

x0

F(u − y)

F (u)
dF(y) = 0. (46)

Recall that the penalty function is bounded. Furthermore, Zδ,kj (u) must be bounded by some
constant, say d > 0. Then

Likj,3(u) ≤ d

∫ u

u−x0

�δ,ik(y) dy ∼ dbik[F(u − x0) − F(u)] ∼ o(F (u)). (47)

Thus, letting first u → ∞ and then x0 → ∞, using (42) and (45)–(47), we obtain∫ u

0
�δ,ik(y)Zδ,kj (u − y) dy ∼

∫ ∞

0
�δ,ik(y) dyakjF (u),

which together with (42) and (44) gives

�+,ij (u) ∼ aijF (u) +
m∑

k=1

∫ ∞

0
�δ,ik(y) dyakjF (u).

Rewriting the above equation in matrix forms gives

�+(u) ∼ κ

c
P −1

δ [D1 ◦ H ]F(u) + κ

c

∫ ∞

0
�δ(y) dyP −1

δ [D1 ◦ H ]F(u)

= κ

c
[I − Gδ]−1P −1

δ [D1 ◦ H ]F(u)

∼ 1

c
[I − Gδ]−1P −1

δ [D1 ◦ ω(u)].

This completes the proof.
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Remark 3. Theorem 3 generalizes the corresponding results in Cai (2007) and Yin and Wang
(2010). As remarked in Yin and Wang (2010), the assumption on the penalty function is not
very restrictive. In fact, asymptotic behaviors of several interesting ruin related functions, such
as the Laplace transform of the time to absolute ruin, the absolute ruin probability, and the
(discounted) distribution of the deficit at ruin, can be obtained from Theorem 3.
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