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In this experimental study, multiscale rough surfaces with regular (cuboid) elements
are used to examine the effects of roughness-scale hierarchy on turbulent boundary
layers. Three iterations have been used with a first iteration of large-scale cuboids
onto which subsequent smaller cuboids are uniformly added, with their size decreasing
with a power-law as the number increases. The drag is directly measured through a
floating-element drag balance, while particle image velocimetry allowed the assessment
of the flow field. The drag measurements revealed the smallest roughness iteration can
contribute to nearly 7 % of the overall drag of a full surface, while the intermediate
iterations are responsible for over 12 % (at the highest Reynolds number tested). It is
shown that the aerodynamic roughness length scale between subsequent iterations varies
linearly, and can be described with a geometrical parameter proportional to the frontal
solidity. Mean and turbulent statistics are evaluated using the drag information, and
highlighted substantial changes within the canopy region as well as in the outer flow,
with modifications to the inertial sublayer (ISL) and the wake region. These changes are
shown to be caused by the presence of large-scale secondary motions in the cross-plane,
which itself is believed to be a consequence of the largest multiscale roughness phase
(spacing between largest cuboids), shown to be of the same order of magnitude as the
boundary-layer thickness. Implications on the classical similarity laws are additionally
discussed.
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1. Introduction

Understanding turbulent flows over rough walls is paramount to a wide range of practical
problems. In engineering applications, they manifest in internal flow systems such as in
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pipes and ducts, marine transportation or turbomachinery (Shockling, Allen & Smits 2006;
Bons 2010; Monty et al. 2016). They are also ubiquitous in natural environments such
as in the atmospheric boundary-layer (ABL), urban areas or in fluvial processes (Nezu,
Tominaga & Nakagawa 1993; Garratt 1994; Cheng & Castro 2002; Nikora & Roy 2012).
In all the aforementioned examples, roughness plays a fundamental role, influencing the
overall drag, turbulent mixing and transport properties (Jiménez 2004).

One of the long-standing questions remains the characterisation of the drag by means
of the surface properties; however, there is a plethora of arrangements and shapes under
which roughness can be present. Following Grinvald & Nikora (1988) and Stewart et al.
(2019) definitions, roughness can be classified into two categories. It can be considered
discrete (regular), when presented as an amalgamation of discrete elements defined by a
combination of linear length scales such as height, width and pitch (e.g. cube roughness).
Alternatively, it can be interpreted as continuous (irregular), when the roughness is
randomly distributed among a wider range of scales and defined by its statistical moments
such as standard deviation, skewness and flatness (e.g. naturally corroded pipes). The
seminal work of Nikuradse (1933) followed by the comprehensive reviews by Schlichting
(1937) and Colebrook et al. (1939) served as the basis for the early drag predictions
performed by Moody (1944) for pipe flows, using the equivalent sandgrain roughness
height /. The latter has since become the common currency for predicting drag, with
the aim of correlating surface properties to this aerodynamic roughness length scale
hg. Several studies have attempted to provide relations that would predict drag at high
Reynolds numbers based on either laboratory measurements or numerical simulations.
However, the existence of a universal correlation that would generically represent any
rough surface is unlikely, due to its simultaneous dependence on various parameters such
as front and plan solidities (Van Rij, Belnap & Ligrani 2002), effective slope (Napoli,
Armenio & De Marchis 2008), roughness skewness (Flack & Schultz 2010), roughness
directionality (Nugroho, Hutchins & Monty 2013), spanwise heterogeneity (Anderson
et al. 2015) among other parameters.

There exists an extensive body of research dedicated to the study of flows over idealised
two- and three-dimensional topographies such as cubes, bars, pyramids or spheres (see e.g.
Cheng & Castro 2002; Schultz & Flack 2009; Volino, Schultz & Flack 2009). However,
these surfaces have typically a limited range of scales through which they can interact
with the turbulent flows. Fractal-like geometries on the other hand, have an inherent
capacity to interact with turbulent flows through a much broader range of length scales.
These flows have received special attention in the previous two decades from both the
numerical and experimental communities, such as in flows encountering fractal grids or
trees (see e.g. Meneveau & Katz 2000; Mazzi & Vassilicos 2004; Chester, Meneveau
& Parlange 2007; Hurst & Vassilicos 2007; Gomes-Fernandes, Ganapathisubramani &
Vassilicos 2012; Graham & Meneveau 2012). Particularly, realistic surfaces such as urban
areas and natural landscapes are generally multiscale, exhibiting a fractal-like behaviour
with a height spectral slope ranging between —1 and —3 (Huang & Turcotte 1989;
Passalacqua et al. 2006; Wan & Porté-Agel 2011). These have only until the last decade
started earning a wider attention from researchers, especially the modelling community.
The readers are encouraged to refer to the recent study by Zhu & Anderson (2018)
which offers an excellent and comprehensive review of the different contributions in the
literature. One of the challenges when examining these flows is the determination of the
smallest spatial resolution needed in order to accurately predict the bulk-flow quantities
over surfaces featuring a multitude of scales. In fact, unless direct numerical simulations
(DNS) or well-controlled laboratory measurements are accessible, computational fluid
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dynamics (CFD) methods such as large-eddy simulations (LES) or Reynolds-averaged
Naviers—Stokes (RANS) require modelling of the unresolved roughness features.

Both ‘discrete’ and ‘continuous’ types of rough surfaces have recently been documented
within the multiscale roughness framework. Using LES data obtained from an ABL flow
over various irregular topographies, Wan & Porté-Agel (2011) examined the effect of the
subgrid-scale roughness on the effective aerodynamic roughness length scale, and found
the latter quantity to linearly increase with the root-mean-square (r.m.s.) of the unresolved
roughness topography. In an LES study of a channel flow over multiscale fractal-like
surfaces, Anderson & Meneveau (2011) developed a dynamic roughness model whereby
the unresolved small-scale topography fluctuations are modelled using a local equilibrium
wall model. The effective roughness length scale is parameterised through the r.m.s.
height and a roughness parameter determined a posteriori and validated with an invariance
resolution test. They showed that, by including more and more subgrid-scale roughness,
the wall shear stress increased, indicating the importance of correctly modelling the
unresolved roughness fluctuations.

In an effort to examine the effect of the intermediate and small topographical
length scales, Mejia-Alvarez & Christensen (2010, 2013) experimentally studied a
turbulent boundary-layer flow over a highly irregular surface roughness replicated from
a turbine-blade damaged by deposition of foreign materials, from which they created
filtered models. By comparing the original surface to its lower order representations, they
observed the mean and turbulent statistics in the outer region to be self-similar as they
are predominately governed by the large topographical scales. However, they reported that
the filtered models failed to appropriately reproduce the contributions of the most intense
Reynolds shear stress events (sweeps and ejections) within the roughness sublayer (RSL).
In a similar approach to Anderson & Meneveau (2011), Barros, Schultz & Flack (2018)
investigated a channel flow over systematically generated multiscale rough surfaces with
varying spectral slopes, with predefined statistical moments. They showed that the surfaces
with shallower spectral slopes led to higher drag, suggesting that high wavenumbers
(small scales) can noticeably contribute to the overall drag. Stewart et al. (2019) have
examined three different self-affine bed roughness in two different open-channel flows,
and reported similar findings to Barros et al. (2018), such that decreasing the roughness
spectral exponent leads to higher drag. They explained this behaviour by analytically
demonstrating the existence of a relation between the effective slope with the roughness
spectral exponent (also validated with experimental data), which increases as the spectral
exponent decreases. They suggested that this drag increase is due to contributions from an
increase in the flow separation around steeper, scaling-range roughness features.

For the discrete roughness type, Yang & Meneveau (2017) used LES to examine
turbulent boundary layers over randomly distributed prism-like roughness elements with
a fractal-like size distribution, and investigated the flow response to the addition of
smaller roughness generations. To account for the drag that rises from the unresolved
scales, they developed a dynamic-roughness model which assumes the flow to become
scale-invariant when it interacts with the scale-invariant roughness, which was then
validated by the independence of the mean-flow profiles on grid resolution. They also
proposed an analytical model that explicitly accounts for the sheltering effect within
the canopy flow; however, its predictions seem to depend on the number of generations
included in the roughness. In a similar approach to Yang & Meneveau (2017), Zhu &
Anderson (2018) performed a series of LES simulations of a turbulent channel flow over
cube-like fractal topographies, with varying fractal dimensions (spectral slope). They
assessed the drag penalty associated with changing the spectral slope and the number of
smaller generations. They showed that the drag associated with the unresolved generations
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can be parametrised with the first few generations, and proposed a logarithmic law-based
model to model their contributions. They further added that the turbulence statistics are
predominantly controlled by the first generation of elements.

Despite the burgeoning interest in this area, there is still a need for experimental
studies that relate to flows over such complex surfaces. To our knowledge, the systematic
investigation of the multiscale roughness hierarchy effect on turbulent flows in regular
roughness has only been reported in a limited number of works (e.g. Yang & Meneveau
2017; Zhu & Anderson 2018; Vanderwel & Ganapathisubramani 2019), and remain
experimentally largely unexplored. It is also worth mentioning that when simulating
turbulent flows over these types of surfaces, the previous LES studies usually rely on
channel flow conditions, in which case the conclusions may not be fully applicable,
for instance, to external flow systems such as an ABL flow. Therefore, wind-tunnel
experiments in addition to the modelling techniques can prove beneficial with the different
lines of enquiries mentioned above. In fact, understanding the dynamics of turbulent flows
over multiscale rough surfaces will result in appropriate modelling strategies and better
predictions of flows such as in urban environments.

To this end, a comprehensive experimental study is designed aimed at examining the
effect of roughness-scale hierarchy on turbulent boundary layers. The design used is
similar to the one employed by Yang & Meneveau (2017) and Zhu & Anderson (2018)
which first builds large-scale cuboids, subsequently adding smaller iterations where their
size decreases with a power-law as the number increases (see e.g. the study of Zhu &
Anderson (2018) for a detailed description of an iterated function system). The main
difference between the current investigation and the former studies lies in the layout of
the roughness in the horizontal plane, currently chosen to be uniform instead of randomly
distributed. To uncover the effects of the multiscale roughness on the turbulent boundary
layer, direct wall drag as well as flow field measurements are conducted using an in-house
floating-element drag balance (Ferreira, Rodriguez-Lopez & Ganapathisubramani 2018)
and particle image velocimetry (PIV). The remainder of the manuscript is presented in
three sections. The experimental methodology is described in § 2 depicting the multiscale
roughness topography, drag and flow-field measurement techniques. The results and
discussion are presented in § 3, analysing the near-wall and outer-flow regions. Finally,
a summary and concluding remarks are provided in § 4.

2. Experimental methodology
2.1. Facility

Measurements were carried out in an open-circuit suction-type wind tunnel at the
University of Southampton. The working section follows a 7:1 contraction and extends
4.5m in the streamwise direction, with a cross-section of 0.6 m x 0.9 m x 4.5 m in
wall-normal and spanwise directions, respectively. The test section was designed with
a weak diverging cross-section to allow a constant free stream along the streamwise
direction and a growth of a turbulent boundary layer with a nominally zero pressure
gradient. The acceleration parameter K = ((v/Uxso)(dU/dx)), where v and U, the air
kinematic viscosity and free-stream velocity, respectively, have been observed in the range
1-5 x 1078 from various recent studies performed in this facility (see e.g. Ferreira et al.
2018; Medjnoun, Vanderwel & Ganapathisubramani 2018). The turbulent boundary layer
grows over a flat surface composed of five equally sized wooden boards onto which the
roughness was mounted. In order to assess the skin friction, the boundary-layer plate
at the measurement location was cut out to allow the floating-element drag balance
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Figure 1. (a) Schematics of the experimental arrangements including the planar- and stereo-PIV set-ups along
with (b) a close-up on the floating-element drag balance developed by Ferreira et al. (2018). (¢) Example of
instantaneous planar and stereoscopic velocity fields performed at two streamwise and spanwise symmetry
planes. Both PIV and drag-balance measurements are performed at a fetch distance x & 305 from the leading
edge, with § being the boundary-layer thickness at this fetch determined from the horizontally averaged velocity
profiles.

to be inserted in. The boundary-layer plates were preceded by a ramp of 0.2m long
inclined by four degrees to the horizontal, ensuring a smooth transition of the flow
from the bottom floor of the test section. The free-stream velocity can reach up to 30

ms~!, with a turbulence level less than 0.5 %, and was monitored and acquired using
the Micromanometer FCO510 by Furness Controls. To account for air-density variations,
temperature was also acquired, and its standard deviation for an average run was less than
40.5°C. The facility schematic as well as the experimental procedures employed in this
study are shown in figure 1.

2.2. Multiscale roughness

The surface roughness considered in the current investigation is based on a multiscale
distribution pattern as illustrated in figure 2. The design is inspired by a Sierpinski
carpet model, which essentially builds the roughness by superimposing size-decreasing
self-similar cuboid elements. The model offers an easy control of the geometrical
characteristics of the roughness, allowing numerical simulations to be replicated in wind
tunnels and vice versa. To generate the fractal-like roughness, a similar method employed
by Zhu & Anderson (2018) is used, which considers an iterated function system to
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Figure 2. Schematics of the different multiscale roughness combinations tested in the present investigation
labelled Itery, Iteryy, Iter;3 and Iterjps.

construct the successive generations with 201 = yh® | with 1) and r being the cuboid
height at the ith iteration and the scale-reduction factor, respectively. The cuboid-side
width is defined as w = A,h®, with A, being the width-to-height aspect ratio. These
roughness elements are uniformly distributed in the horizontal (x, z)-plane with each
individual cuboid of a given iteration being equidistant from its neighbouring ones, that is
S)(f) = S§') = SO, with S® being the streamwise/spanwise spacing between two successive
elements at the ith iteration. For the first iteration, S(V) = 2w whereas for the following
iterations, S = w(®_ It should be noted that for scaling purposes, S will exclusively be
referred to as S in the remainder of the manuscript. The subsequent self-similar cuboids
following the first iteration are overlaid both at the surrounding as well as on top of the
previous parent cuboid.

Due to both roughness manufacturing constraints and flow considerations, the height
of the first iteration roughness element was set to 2"’ = 8 mm, so that §/A") > 10. This
constrained the number of iterations to three due to the lowest cuboid height that can be
manufactured. The scale-reduction factor r and the width-to-height aspect ratio A, were
fixed to 1/4 and 4.2, respectively, whereas the number of elements was set to 1, 36 and
576 for the three successive iterations, namely, large, intermediate and small cuboids,
respectively. The roughness elements were confined in a 100 mm x 100 mm repeating
unit tile, which was 3-D printed then replicated using a moulding-casting manufacturing
process to cover the floor of the wind-tunnel test section.

In order to investigate the effect of the multiscale roughness on the turbulent
boundary-layer flow and assess the contributions of different length scales, four
combinations are considered. (i) Iter;: which considers the presence of a single iteration
with a cuboid height R (ii) Tterjo: which looks at the presence of two iterations with
cuboid heights A and @ (iii) Iter;3: which examines the presence of two iterations
with cuboid heights 2" and 4®. Finally, (iv) Iter;»3: which investigates the effect of
the presence of all three iterations with cuboid heights A", A®) and A®. Schematics for
the different cases are illustrated in figure 2 while a summary of their different statistical
attributes are presented in table 1.

2.3. Floating element

The wall shear stress was directly measured by means of a floating-element drag balance,
developed and validated by Ferreira et al. (2018) in both smooth- and rough-wall flow
conditions. This method relies on the determination of the streamwise net force Fj;
acting on a finite and structurally independent area A, representative of the surface being
investigated. It makes use of the parallel-shift linkage principle, through pairs of bending
beam transducers which allow the isolation of both the streamwise load as well as the
induced pitching moment. The wall shear stress is then deduced via t,, = Fz/A. The
floating element used consists of a 200 x 200 mm? surface area, on top of which four
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Case h (mm) 1 (mm) Ry (Mm) R Ar (%) Ap (%) o

Iter; 8 0.88 2.51 2.48 2.66 11.09 0.94
Itery» 10 1.38 2.65 2.14 3.66 33.13 1.90
Itery3 8.5 1.01 2.52 245 291 33.13 1.16
Iteri23 10.5 1.50 2.66 2.12 3.91 49.79 2.20

Table 1. Essential geometrical characteristics of the different multiscale rough surfaces with /1, h, hyyg, By
being the maximum, mean, root-mean-square and skewness of the roughness height, while Ay, A, represent the
frontal and plan solidities within one repeating unit. The parameter @ = (f_z/h,ms)/lf is a geometrical parameter
used to describe the aerodynamic roughness length scale of the surfaces discussed in § 3.1.3.

roughness tiles are placed. The balance was flush-mounted with the wind-tunnel floor and
positioned around 3.1 m downstream of the leading edge. Additional care was taken when
setting up the surrounding roughness owing to the tight tolerance of the air gap which is
only 0.5 mm wide.

To assess whether these surfaces can reach the fully rough regime, the floating element
was exposed to a series of nine free-stream speeds ranging from 9 up to 27 ms~!. Each
acquisition lasted 30 s with a sampling rate of 150 Hz (corresponding to 2500 eddy
turnover times at the lowest speed), with a total of five repetitions per speed. Pre- and
post-calibrations were performed for each configuration without notable discrepancies.
A more detailed discussion on the complete design, acquisition procedure and uncertainty
of the measurement technique can be found in Ferreira et al. (2018).

2.4. Particle image velocimetry

The turbulent boundary-layer flow was diagnosed in both the streamwise-wall-normal
plane (x,y) as well as in the cross-plane (y,z), using planar two-dimensional
two-component (2D2C) and stereoscopic two-dimensional three-component (2D3C)
PIV measurements, respectively. Both types of PIV measurements were performed at
approximately 3.2m downstream of the contraction. As illustrated in figure 1(c), two
2D2C-(x, y) measurements were conducted at the spanwise symmetry planes z/S = 0, 0.5
(at the roughness valley and ridge), and two additional 2D3C-(y, z) measurements were
also acquired at two successive streamwise symmetry planes, at x = 3.2 and 3.25 m. The
flow was seeded with vaporised glycerol-water particles generated by a Magnum 1200 fog
machine, then illuminated with a laser light sheet sourced by a two-pulse Litron Nd:YAG
laser operating at 200 mJ. A LaVision optical system for the beam focus/expansion of the
light sheet was used, which comprised convex and concave lenses in order to focus the
beam, and a cylindrical lens in order to expand the sheet with relatively constant thickness
in the measurement plane (=1 mm thickness).

The particle images were recorded by high-resolution LaVision Imager LX 16 MP
CCD cameras fitted with 200 and 300 mm AF Micro Nikon lenses for the 2D2C- and
2D3C-PIV measurements, respectively. One camera was used for the planar-PIV set-up,
and positioned at nearly 1 m away from the object plane, whereas two cameras mounted
on Scheimpflug adapters to account for the oblique view angle (£42°) were needed for the
stereo-PIV measurements, and placed at nearly 1.3 m from the object plane at either sides
of the test section, also depicted in figure 1(a). A single and a double-sided dual plane
calibration target aligned with the laser light sheet were used to determine the mapping
function for each set-up, using a third-order polynomial fit. This resulted in a field of
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view of approximately 0.95 x 1.44 in the (x, y)-plane and 1.3§ x § in the (y, z)-plane for
the planar and stereoscopic PIV, respectively. In terms of the largest roughness length
scale S, this was equivalent to 1.1S x 1.4S in the (x, y)-plane, whereas in the (y, z)-plane
it spanned 1.5 x 1.1, for the planar and stereoscopic PIV, respectively.

A total of 3000 statistically independent realisations of image pairs were acquired for
each case at 0.6 Hz, with a time delay between pulses of 50 and 20 ps for the 2D2C and
2D3C PIV, respectively. In order to allow a comparison between the different surfaces,
the PIV measurements were performed at different speeds to obtain a relatively matched
roughness function AU™, and ensure they reached a fully rough regime (although it
will be seen later that Iter; never reached the fully rough condition). The free-stream

speeds were adjusted from case to case, with Uy, = 18.7, 10.3, 18.5 and 10.2 ms~! for
the cases Itery, Iter|p,Iter;3 and Iters3, respectively. The velocity vector fields were then
obtained by interrogating particle images using a decreasing multipass scheme starting
from 48 pixels x 48 pixels down to a final pass of 16 pixels x 16 pixels for the 2D2C
and 24 pixels x 24 pixels for the 2D3C. Using a 50 % interrogation window overlap, the
resulting effective vector spacing ranged between 0.4 and 0.5 mm for the different cases
both in the planar and stereoscopic-PIV measurements.

3. Results and discussion

This section focuses on the analysis of results reported from the floating-element drag
balance with the data from both planar- and stereoscopic-PIV measurements. Section 3.1
discusses the results of the direct-drag estimates along with the flow topology in the
canopy region, with the assessment of the aerodynamic parameters associated with
themean-flow profiles. Section 3.2 reveals the multiscale-roughness effects on the flow
topology in cross-plane, focusing on the turbulence properties in the outer region as well
as the assessment of the outer-layer similarity hypothesis. The results presented in this
study are openly accessible on the roughness database http://roughnessdatabase.org/ and
the University of Southampton repository at: https://doi.org/10.5258/SOTON/D1765.

3.1. Inner region

3.1.1. Surface drag
Results from the floating-element drag balance are presented in figure 3. They describe
the response of the wall shear stress to the four multiscale rough surfaces investigated.
Figure 3(a) examines how the skin-friction coefficient Cy varies with respect to Re, (with
varying free-stream speed) in a linear-logarithmic scale. At the lowest tested Reynolds
numbers (Re, < 3 x 10°), the roughest surface Itery23 is distinctively shown to experience
the largest frictional drag, and is noticeably higher than Iter;>. On the other hand, the
surfaces Iter] and Iter;3 exhibit relatively similar values and are the weakest among the four
cases. Beyond a certain Reynolds number (Re, > 3 x 10), the skin-friction coefficients
are seen to weakly vary for the cases Iteryo, Iterj3 and Iterjp3 with an average variation
about the mean less than £2 %, which is within the uncertainty of the measurements.
Conversely, a substantial decay of Cy is observed for the Iter; case, perhaps with a steeper
slope in comparison with the smooth-wall curve represented by Schlichting’s power-law
Cr = b Re{ (Schlichting 1979), highlighted with the black solid line.

It is also observed that at the highest Reynolds numbers of the facility, Iter;> experiences
a reduction in Cy of approximately 4 % from its mean value across Reynolds numbers.
These two different behaviours demonstrate that Iter; and maybe Iterj, still remain
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Figure 3. (a) Skin-friction coefficient estimates for one repeating unit at various moderate Re,, with the black
solid line representing Schlichting’s power-law for smooth-wall with a ~ —1/5 and b ~ 0.058, and the blue
stars representing the smooth-wall data from Medjnoun et al. (2018). The red stars highlight the skin-friction
estimates corresponding to the flow conditions where PIV measurements are performed. (b) Variation of the
skin-friction coefficient and (c) relative drag increase for the different multiscale rough surfaces with respect
to the non-dimensional roughness parameter «. The data points in panels (b,c) represent values averaged over
the different Reynolds numbers.

transitionally rough, whereas the cases Iter;s and Iter|»3 have reached the fully rough
regime, i.e. Reynolds number invariance of Cy (Jiménez 2004; Flack & Schultz 2014).
As demonstrated by other studies (see e.g. Napoli ef al. 2008; Yuan & Piomelli 2014),
the fully rough regime stems from pressure-drag contributions prevailing compared with
the viscous drag. This suggests that the viscous-drag contributions still represent a
considerable fraction in the Iter; case (at least within the range of Rey tested herein),
as opposed to the other cases, whose pressure-drag contributions dominate owing to the
presence of additional roughness scales. Although this result seems counterintuitive since
the large cuboid is essentially a sharp-edged bluff body, it should be recalled that the
frontal and plan solidities of Iter; are noticeably smaller in comparison with the other
cases. This is further investigated in § 3.1.2.

The magnitude of the skin-friction coefficient is also considerably affected by the
roughness content of the surface, such that the addition of subsequent smaller scales
enhances the shear stress acting at the wall. This is clear when examining the skin-friction
coefficient averaged over the different Reynolds numbers Cr as shown in figure 3(b). It
indicates that the magnitude of the skin-friction coefficient Cr increases monotonically
with increasing o (with o = (h/h;s)Ar being a non-dimensional roughness parameter
proportional to the frontal solidity). There are many alternatives and possible ways that
can be used to correlate the drag with roughness statistics. In this instance, the use of this
surface parameter is justified by the fact that its variation approaches a linear trend with
the drag, while other parameters such as 4, would fail to capture a clear trend.

To quantify the difference between these surfaces, a relative drag-increase coefficient

(where 8 = 100 % x Cg)/C?) with i = 1-4 for Itery, Itery, Iter;3 and Iter;»3) is shown in
917 A1-9
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figure 3(c) for the different cases. We observe that the largest cuboid alone is responsible
for over 80 % of the drag of the full surface. It is also shown that the drag increase is
higher for Iterj> than Iter;z (93 % against 87 % of drag of the full surface), indicating
that the drag increment that stems from the intermediate iteration is more prominent
than the one caused by the smaller iteration despite Iter;> and Iter;s having a similar
plan solidity 4,. Therefore, it can be implied that the contributions to the full multiscale

surface from the smallest cuboid roughness alone amount to B3 = p123) _ g2 ~ 79,
Similarly, the contributions from the intermediate roughness scale alone amount to ) =
B2 — U3 ~ 12 9%. These results are in agreement with the observations reported in
the previous LES studies, highlighting the importance of small roughness features and
emphasising the attention needed when modelling the unresolved subgrid-scale roughness
in numerical simulations (Yang & Meneveau 2017; Zhu & Anderson 2018).

3.1.2. Flow topology in the canopy

The effect of the multiscale rough surfaces on the flow topology is explored by examining
the normalised mean streamwise velocity maps from the planar-PIV measurements, at
the peak symmetry plane (z/S = 0.5). Two cases, Iter; and Iter|y3, are illustrated for
comparison in figure 4. Results show that, away from the wall, the flow is unaffected by the
surface condition, while in the roughness-affected layer it undergoes strong changes in the
streamwise direction (as shown by the streamline contours). Specifically within the surface
canopy, the maps highlight the presence of a separation bubble past the large cuboid,
whose size and intensity appear to depend on the surface condition. This is illustrated
in figure 4(b) which shows that by adding the intermediate and smaller scales, Iteriy3
produces a weaker streamwise velocity deficit within the canopy.

The impact of the multiscale roughness on the recirculation region is further assessed
by examining the separation length as shown in brown in figures 4(a) and 4(b), and
highlighted in an appropriate scaling in figure 4(c). The results show the extent of the
zero contour-level curves to be relatively conserved for the different cases, irrespective
of the surface condition, and is approximately 341 Tt is, however, reported that the
wall-normal extent subtly weakens with addition of iterations. This behaviour is believed
to be caused by the increased turbulent mixing and wall drag at the top of the large
cuboid, owing to the interaction of a broader range of roughness scales with the separating
shear layer. To explore further the effect of the multiscale roughness on turbulence, the
normalised Reynolds shear stress —uv ™ and its associated turbulence production Pyy,8/ U:f
(with Py, = —uv dU/dy) fields are examined, as shown in panels (a—d) and panels (e-h)
of figure 5, respectively. For Iter;, the shear layer formed at the top surface of the large
cuboid separates at its trailing edge, from which strong vortices are shed towards the
canopy. By comparing the area within the encapsulated contour level in panels (a—d)
of figure 5, we observe that the separated shear layer carries a weaker vortical activity
as more roughness length scales are imposed. However, a plausible explanation for this
behaviour can be related to the range over which turbulent and roughness length scales
interact with each other. In fact, when a turbulent flow encounters a broader range of
scale, such as in the case of Iterj»3, the A1) -scale vortical structures as seen for Iter; break
down to smaller eddies. This means that while the overall drag increases when increasing
the roughness content, the shear stress activity is redistributed among scales whereby the
intermediate and smaller scales are responsible for a larger portion of drag. Consequently,
this results in a relatively shorter extent and a weaker separation bubble and more drag
emanating from these additional scales. These observations are further substantiated by
the turbulence production maps which show stronger shear layers to be associated with
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Figure 4. Contour maps of the (x, y)-plane normalised mean streamwise velocity for (a) Iter; and (b) Iterjo3
measured at the peak symmetry plane z/S = 0.5. The cross-sections of the roughness geometries are included
at the bottom of the figures to scale for reference. The brown solid line represents the zero-velocity contour
level illustrating the separation length, while the mean in-plane streamlines are superimposed to highlight
the recirculation region. (¢) Contours of the separation lengths for the different multiscale rough surfaces
normalised by the first iteration cuboid height #(1)| with % being the streamwise distance from the leeward side
of the cuboid.

substantial turbulence production. In contrast, weaker shear layers are accompanied with
weaker turbulence production.

Using the streamwise-wall-normal PIV measurements, the mean pressure distributions
are additionally estimated at the peak symmetry plane (z/S = 0.5), by means of the
two-dimensional Reynolds-averaged Naviers—Stokes equations. For more details on the
methodology as well as the numerical integration schemes employed, the reader should
refer to the study by Ferreira & Ganapathisubramani (2020). The mean pressure is
expressed by its non-dimensional form as C, = (P — Pso) /o0, With P and P, being the
mean static and free-stream pressure, while g is the free-stream dynamic pressure.

An example of a pressure field is shown in figure 6(a) for the Iter; case. The coefficient
of pressure field is shown to be dominated by an alternating high- and low-pressure
region in the canopy, whereas it quickly recovers to the free-stream pressure in the outer
region (y > 0.24). In fact, the high pressure is seen to be associated with accelerating
flow regions while low pressures are accompanied with decelerating flow regions. More
specifically, the highest pressure regions are recorded at the windward side of the cuboid,
while the lowest pressure magnitude is shown to occur right past the leading edge of the
upper surface of the cuboid, reflecting the presence of a strong shear layer shedding off
from the blunt leading edge. This negative pressure is shown to trail downstream, forming
a weak patch of low pressure within the recirculation region until the reattachment point.
The pressure transitions to a positive magnitude as the flow reaccelerates again past the
reattachment point.
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Figure 5. Contour maps of the (x, y)-plane normalised panels (a—d) Reynolds shear stress and panels (e—h)
turbulence production for (a,e) Itery, (b,f) Iterz, (c,g) Iterjz and (d,h) Iterj23 measured at the peak symmetry
plane z/S = 0.5. The cross-sections of the roughness geometries are included at the bottom of the figures to
scale for reference.
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Figure 6. (a) Normalised mean pressure field reconstructed from the 2D2C-PIV for Iter; case measured at the
peak symmetry plane z/S = 0.5. The cross-sections of the roughness geometries are included at the bottom of
the figures to scale for reference. The brown solid line represents the zero-velocity contour level illustrating the
separation length, while the mean in-plane streamlines are superimposed to highlight the recirculation region.
(b) Mean streamwise pressure difference profile assessed from a single cuboid element of height 4" for Iter; .

The profile of the streamwise pressure difference across the largest cuboid is additionally
examined and shown in figure 6(b). The pressure difference is expressed as AP(y) =
P,,(y) — P;(y) (with the w and [ subscripts referring to the windward and leeward sides
of the cuboid, respectively), normalised by the wall-normal-averaged pressure (AP),
and plotted against the wall-normal distance normalised by the cuboid height. Although
the profile is not fully resolved down to the wall (due to the spurious region below 1
mm height), the drag profile shows similarities with the results of urban-like roughness
(Ferreira & Ganapathisubramani 2020), with a maximum at nearly two-thirds of the
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cuboid height, and decreasing when getting close to the wall. The profile is subsequently
used to get an estimate of the pressure drag produced by the large cuboid. This is done
by integrating the streamwise pressure-difference profile over the cross-sectional area
KD x W (assuming the pressure distribution around the cuboid is uniform in the
spanwise direction). The drag force and the friction velocity over the large cuboid are

expressed as
FO) 1/2
FO — 0 f APdy, UM =(——_) . (3.1a,b)
0

phWWO

with p being the air density. The results reveal that the ratio between the friction velocity
estimated from the largest cuboid to the total friction velocity estimated with the drag
balance is approximately 60 % for Iter;. Assuming this ratio to remain constant throughout
the different cases, the pressure-drag contributions from the addition of intermediate and
small roughness scales ultimately leads to the fully rough regime. In fact, for the other
three surfaces, the intermediate and small roughness length scales proportionally add
form-drag contributions to the overall drag, resulting in the Reynolds number invariance
of Cr observed in figure 3. In contrast, the pressure drag contribution for Iter; that stems
from the largest cuboid alone is insufficient to result in a flow that is fully rough. Due to the
viscous drag which amounts to nearly 40 % of the total drag, the skin-friction coefficient
Cr remains dependant of Rey as seen in figure 3. It should be noted that despite the
inherent degree of uncertainty that rises from the PIV-based pressure and the assumption
of the spanwise uniformity of the profiles, this method gives a reasonable indication of the
expected form drag.

A

3.1.3. Aerodynamic parameters
In order to estimate the aerodynamic quantities that characterise the rough-wall flow,
both the peak and valley symmetry planes (z/S = 0, 0.5) PIV data are used. Figure 7(a)
compares the wall-normal distribution of the mean streamwise velocity at the symmetry
planes for Iter;. The angled brackets () in figure 7(b) refer to the horizontally averaged
velocity between both planes, comparing profiles of the different cases with the
smooth-wall. Substantial differences between the peak and valley profiles can be observed
from figure 7(a). Below the canopy layer, the velocity is shown to be higher at the valley
than at the peak as expected due to the blockage of the large obstacles. At y/§ ~ 0.15,
it is observed that Up.ar = Uvygiiey, With the subscripts ‘peak’ and ‘valley’ referring to
the velocity measured at z/S = £0.5 and z/S = 0, respectively. However, beyond this
point until almost two thirds of the boundary-layer thickness, the velocity above the peak
becomes higher than that at the valley. This indicates that the outer flow presents a degree
of spanwise heterogeneity, probably caused by the surface condition. It is also observed
that at the individual planes, the velocity profiles do not exhibit a clear wall-normal
logarithmic distribution. However, when both planes are averaged, a velocity range appears
to vary logarithmically, and occurs approximately between 0.2 and 0.34. It is further shown
from the profiles of the different surfaces plotted in figure 7(b), that all the cases deviate
from the smooth-wall behaviour. More specifically, the richer the roughness content is, the
higher the profile deficit becomes.

The mean streamwise velocity profile over the rough surfaces can also be expressed
using the modified law-of-the-wall,

Uty = <ll]]> = %m [(y—d)%} +B—AUT <hsTU’> : (3.2)
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Figure 7. (a) Wall-normal distribution of the mean streamwise velocity at both symmetry planes for Iter;.
(b) Comparison of the horizontally averaged mean streamwise velocity profiles between the different rough
surfaces.
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Figure 8. Inner scaling of the horizontally averaged streamwise velocity profile for the different multiscale
rough surfaces, compared with the DNS turbulent boundary-layer profile of Sillero et al. (2013). The value
of the log-law slope « and the smooth-wall intercept B used in the current investigation are 0.39 and 4.5,
respectively.

where « and B represent the slope and intercept of the logarithmic region, respectively,
similar to a smooth-wall. In contrast with a flat smooth wall, rough walls will give
rise to the quantities d and AU™ in the form of wall-normal and velocity shifts in the
logarithmic region, which are termed the zero-plane displacement and the roughness
function, respectively. The former is interpreted as the ‘virtual’ origin representative of
the height at which the mean drag acts (Jackson 1981). On the other hand, the latter
provides a quantification of the momentum loss (if positive) or gain (if negative) due to
surface roughness, and depends on the roughness Reynolds number /4. The wall-normal
distribution of the inner-normalised mean streamwise velocity profiles are presented in
figure 8, compared with the DNS turbulent boundary-layer profile of Sillero, Jiménez
& Moser (2013). As expected, the profiles are shown to be affected by the surface
condition as they exhibit both wall-normal as well as velocity shifts in comparison with
the smooth-wall. The rough-wall profiles appear to have relatively similar vertical shifts.
However, it is worth recalling that the free-stream speeds Uy, were not kept constant
among cases.

The zero-plane displacement d is estimated by making use of the modified
law-of-the-wall. This is achieved by taking the derivative of (3.2) with respect to y, to
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Figure 9. (a) Variation of the indicator function & and (b) the modified log-law function ¥ for different
multiscale surface roughness cases, compared with the smooth-wall profile (blue curve). A second-order
central-difference scheme was used in order to obtain &'.

obtain what is called the indicator function, expressed as:

ot L AUt 1

g =~ d™) o ok (3.3)
This equation is classically used to determine the extent of the inertial sublayer as well as
the logarithmic slope « for smooth-wall flows, once U, is known a priori (Osterlund et al.
2000). This consequently means that if « is assumed to be universal between smooth and
rough walls, d should be only a function of the velocity gradient and the friction velocity.
Therefore, to avoid solving a two-point fit equation in the present study, the value of « is
assumed constant.

Since the friction velocity U, was directly measured through the drag balance, the
zero-plane displacement is found as the value that minimises the difference between the
left-hand side (&) and the right-hand side (1/«) of (3.3). The results are illustrated in
figure 9(a) and show the appropriate values that minimise the difference yield a good
collapse of & for the different cases in the outer region (y/é > 0.2). In the inner region, &
is shown to depend on the surface condition with the occurrence of a peak in intensity
coinciding with y = (D). Unexpectedly, the current profiles are observed to result in
negative values of d for the cases Itery, Iter;> and Iterj>3, with the exception of Iter;3 which
reported a positive value. These are shown to range between —0.2 and 0.34). Although
the values observed appear to conflict with the interpretation provided by Jackson (1981),
namely the height where the mean momentum sink occurs (thus d cannot be negative),
these values are merely a solution of the logarithmic distribution fitting. In fact, given that
both the velocity and wall shear stress were directly measured, a potential reason for this
behaviour can arise from the assumed value of the logarithmic slope 1/k, hypothesised
herein to be universal between smooth and rough walls. However, the discussion on the
universality of x and B between smooth and rough walls is beyond the scope of the current
study. It is further reported that the indicator function exhibits a plateau Z ~ 1/x in
the range 0.2 < y/§ < 0.3, suggesting the inertial sublayer to have shifted farther away
from the wall, consistently for all the cases. This is in contrast with the smooth-wall
boundary layers which are shown to not exceed an ISL upper limit of 0.15§ (equivalent
to the 0.15Re; with Re; = §U; /v reported by Marusic et al. 2013). This reveals that the
roughness topography may have severely altered the mean and turbulence-flow structure
in the outer region.

Once the zero-plane displacement is determined, the difference between the logarithmic
velocity distribution and the measured inner-normalised velocity profiles is examined to
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Case  Symbol Us (ms™!) 8/S  8/h  AUY hg/8§ I Rer x 1073 Cpx 1073 B (%)

Iter; { 18.68 .11 13.87 1193 0.05 0.16 7.95 7.07 82.8
Itero A 10.23 115 115 1223 0.09 0.25 4.84 8.15 93.4
Itery3 = 18.48 116 13.65 12.50 0.06 0.17 8.50 7.43 87.8
Iteryos <& 10.14 .14 10.85 1274 0.1 0.21 4.97 8.83 100

Table 2. Aerodynamic parameters of the turbulent boundary-layer flow over the different multiscale
rough surfaces. The boundary-layer thickness § was identified as the wall-normal distance at which the
horizontally-averaged streamwise velocity reached 99 % of the free-stream speed U, while S = S, The
quantities AU, hy and IT namely; roughness function, aerodynamic roughness length scale and wake strength
parameter respectively are discussed in § 3.1.3.

obtain
1
U =(U"Y— —In(yt —d") =B+ AU". (3.4)
K

In the highlighted grey region of figure 9(b), the profiles of ¥ reach a plateau at zero
for the appropriate values of AU™T. Similarly to the indicator function, the plateau of
Y is clearly identified between 0.2 and 0.3§, indicating that the inertial sublayer of the
multiscale rough surfaces occurs farther than that of a smooth wall. The values of ¥ are
reported to be relatively similar between cases; however, it is recalled that the free-stream
speeds were not kept constant. Their values are collated in table 2. It should be mentioned
that despite the unexpected negative results of the zero-plane displacement, the values of
d have only a marginal influence on the roughness function. In fact, by forcing d = 0,
the values of AU™ change by less than 2 %. Furthermore, the profiles exhibit a similar
logarithmic slope as the smooth-wall, albeit with a noticeably less intense wake in the
outer region. This observation suggests that the multiscale rough surfaces might have
substantially affected the wake strength parameter 77, thereby, the outer-flow dynamics.

Once AU is determined, the equivalent sandgrain roughness height can be deduced
using the fully rough asymptote relation of Nikuradse (1933),

ht = e (AUTHO), (3.5)

The constant C can be empirically determined by exposing the flow to fully rough
conditions, and is defined as the difference between the fully rough intercept B, and the
smooth-wall intercept B (C = B, — B). In the current study, velocity measurements are
only available at one free-stream speed (i.e. one Reynolds number). Hence, the value of
C is assumed to be 3.5 which means the flow should have met the fully rough conditions
(Schlichting 1979). Following the Cr results reported in figure 3, the fully rough condition
has been met for the three rough surfaces Iterys, Iterjo and Iterip3. At the same time, it is
evident from the same plots that Iter; is yet to reach an asymptotic value, hence should
not be ascribed a sandgrain roughness value. However, for the purpose of characterising
the multiscale rough surface, an i value will also be assumed for Iter; in order to allow a
comparison across all cases.

Equation (3.5) is shown to yield A" values that range between 400 and 560, which are
considerably beyond the i = 70 suggested to be the lower limit for a flow to reach the
fully rough regime (Jiménez 2004). Their values are tabulated in table 2 as a fraction of
8, and range between 5 and 10 % of the boundary-layer thickness. Figure 10(a) shows
the mean velocity profiles (U*) plotted against the normalised wall-normal distance
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Figure 10. (a) Variation of the inner-normalised velocity profiles with respect to the wall-normal distance
normalised by the roughness length scale A, for the different multiscale rough surfaces. The fully rough
intercept that best fits the logarithmic region is found to be B, ~ 8. (b) Variation of the roughness length
scale increment pj; with respect to the multiscale geometrical parameter «.

(y — d)/hs, and highlights a good degree of collapse with the blue-dashed line which
follows a logarithmic distribution. More specifically, the cases Iter;; and Iterip3 are seen
to adequately collapse within 2 < (y — d)/hy < 3, whereas Iter; and Iterj3 collapse better
within 3 < (y —d)/hs < 6.

Two reasons are believed to cause this behaviour: (i) the friction Reynolds numbers for
Iter; and Iter|s are nearly a factor of two higher than those of Iterj> and Iterj3, leading
to a larger scale separation manifested in a slightly wider log region; (ii) the equivalent
sandgrain roughness height for Iter; and Iter;3 is almost half that of Iter;, and Iteris,
causing the profiles to shift away from the wall. The profiles are further shown to have
a weaker departure from the logarithmic distribution in the outer region, confirming the
influence of the multiscale rough surface on the outer region. Interestingly, all profiles
are shown to have a fully rough intercept B, ~ 8. It should be noted that the latter is
classically reported to be 8.5 (Schlichting 1979). However, this difference is believed to
stem from the fact that the 8.5 value was originally derived from pipe-flow data, for which
a logarithmic slope is usually taken as x & 0.41. In contrast, boundary-layer flows have
a relatively smaller value of x ~ 0.39 which subsequently results in a smaller intercept
(Nagib, Chauhan & Monkewitz 2007).

The roughness function (hence the equivalent sandgrain roughness height) is known
to depend on various parameters such as the surface texture, shape as well as the plan
distribution. There have been numerous proposed correlations between the roughness
function and the surface properties (see e.g. Flack & Schultz 2010, 2014). In the current
study, we also attempt to find a relation between the aerodynamic quantity hg; with an
appropriate geometrical parameter of the roughness, such that a link between the different
multiscale rough surfaces can be established. Similarly to the observations made from
figure 3(c), the variation of the relative roughness length scale increment pj, , with respect
to the geometrical parameter « is presented in figure 10(b). In line with the Cr results, oy,
also shows a reasonable linear behaviour observed for the range of surfaces tested herein.
This is expressed in a non-dimensional form as

A"

pr, = —5 — 1 =aa® +b, (3.6)
D

where hgi) and a® being the equivalent sandgrain roughness height and the geometrical
parameter for the ith surface (with i = 1, 4 for Iter; to Iterj»3), respectively. This means
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that for these regular multiscale rough surfaces, the aerodynamic roughness length scale
of the successive multiscale surfaces is linearly related to that of the previous iterations,
therefore to the first iteration. This suggests that knowledge of the geometrical properties
along with the aerodynamic properties of the parent rough surface are sufficient to predict
the drag of a given multiscale rough surface. However, it should be noted that in the
general context of multiscale roughness, this linear relation may allow the prediction
of hg only for a limited range of scales/iterations such as from Iter; to Iterjy34 (with a
fourth generation of smaller cuboids). In fact, if we keep adding small-scale iterations,
the expected drag (hence its associated roughness length scale) that can be generated by
the surface will only weakly increase (as if it reaches a certain asymptotic value of #y),
and can perhaps be more appropriately described by a power-law. In the current study, the
limitation in roughness manufacturing as well as the sensitivity of the drag balance to such
small magnitudes prevented the assessment of the limits of the observed linear behaviour.
It is important to stress that despite the apparent suitability of this relationship for the
discrete-like roughness, it currently lacks generalisation over the broader range of rough
surfaces (e.g. the highly irregular continuous-type roughness). Nonetheless, while more
testing is required to assess its applicability across a wider range, this relationship remains
a potential candidate for a subset of topographies such as the multiscale random/regular
urban-like rough surfaces.

3.2. Outer region

3.2.1. Secondary motions

Figures 11(a) and 11(b) show the cross-stream fields of the normalised mean streamwise
velocity for the cases Iter; and Iterjps, respectively. These maps have been obtained
by averaging two cross-planes at the streamwise locations x = 3.2 and x = 3.25 m
downstream of the contraction. Unlike the streamwise-wall-normal maps shown in
figure 4, the mean cross-plane flow exhibits significant spanwise heterogeneity above the
canopy forming alternating high- and low-momentum pathways (HMP and LMP) between
the peaks and valleys, respectively. This spanwise undulation in the mean flow is shown
to be accompanied by two streamwise rotating cells flanking the sides of the large cuboids
emphasised with the in-plane velocity vector plot superimposed on top of the maps. These
time-averaged structures were identified using the vorticity-signed swirling strength A;
as shown in figure 12 and indicate the presence of considerable streamwise circulation in
nearly half the boundary-layer thickness irrespective of the multiscale rough surface.

Figure 12 highlights the rotational sense of the vortical structures, with upwash motions
occurring at the valley, while a downwash motion is observed above the peaks. These
cross-plane motions are known to be a manifestation of Prandtl’s secondary flows of the
second kind since they arise from turbulence anisotropy, as opposed to the first kind which
stems from mean flow curvature (Prandtl 1952). These features have recently come to
scrutiny and are now well-documented for instance in boundary layers (Mejia-Alvarez &
Christensen 2013; Nugroho et al. 2013; Willingham et al. 2014; Anderson et al. 2015),
channels and open-channel flows (Wang & Cheng 2006; Yang & Anderson 2017; Chung,
Monty & Hutchins 2018; Zampiron, Cameron & Nikora 2020) as well as pipe flows (Chan
et al. 2018).

A common feature in all these studies is that when the surface spanwise characteristic
length scale is comparable to the dominant length scale of the flow (boundary-layer
thickness, channel half-height or pipe radius), large-scale secondary motions manifest with
generally upwash and downwash motions occurring above ‘low-" and ‘high-roughness’
respectively. In the present investigation, the largest surface length scale corresponds to the
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Figure 11. Contour maps of the (y, z)-plane of the normalised mean streamwise velocity averaged over the
two planes at x = 3.2 and 3.25 m for (a) Iter; and (b) Iterj»3, respectively. The cross-sections of the roughness
geometries are included at the bottom of the figures to scale for reference. The black-dashed line represents
the velocity contour level U = 0.8U. The mean in-plane velocity vector plot V and W are superimposed to
highlight the vortical structures.
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Figure 12. Effect of the multiscale rough surfaces on the normalised vorticity-signed swirling strength
distributions for (a) Iter; and (b) Iterjp3. The black-dashed line represents the velocity contour level U =
0.8Ux. The mean in-plane velocity vector plot V and W are superimposed to highlight the vortical structures
on top of the swirling motions.

largest phase in the multiscale roughness which is § in both the streamwise and spanwise
direction. This incidentally leads to §/S ~ 1.1 for all different multiscale rough surfaces,
which appears to line up with the previous studies, hence, the observed large-scale
secondary motions.

The location of the HMP and LMP has recently been questioned since there has been
apparent disagreement between some studies that reported opposite trends, where upwash
and downwash motions can occur above low- and high-roughness, respectively. In a recent
study by Medjnoun, Vanderwel & Ganapathisubramani (2020), it has been highlighted
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that these conflicting trends are likely to arise from two different driving mechanisms
representing non-equivalent types of surface heterogeneity conditions, which can result in
opposite observations. It is argued that turbulent secondary flows of the second kind can
be generated over two main types of heterogeneous surfaces, namely, topography-driven
and skin-friction-driven heterogeneity.

For surfaces purely driven by skin friction heterogeneity (spanwise-uniform height
distribution), Willingham et al. (2014) and Chung et al. (2018) have demonstrated that
HMP and LMP (hence downwash and upwash) systematically occur above regions
of high and low skin friction, respectively. For topographically driven heterogeneity
(alternating peaks and valleys), both scenarios have been observed. Several numerical
and experimental studies showed upwash and downwash to occur above low- and
high-roughness (Mejia-Alvarez & Christensen 2013; Barros & Christensen 2014; Yang &
Anderson 2017; Awasthi & Anderson 2018), which is in line with the current observations.
Other studies on the other hand highlighted the opposite behaviour (Nezu & Nakagawa
1984; Wang & Cheng 2006; Vanderwel & Ganapathisubramani 2015; Hwang & Lee
2018). However, one of the key differences between these two sets of studies is the
presence/absence of streamwise heterogeneity in the topography. For surfaces where HMP
and LMP have been reported above peaks and valleys, respectively, the roughness clearly
exhibited wake producing protrusions which lead to form-drag contributions, similar to the
present study. In contrast, studies that showed upwash and downwash occurring above the
elevated and recessed regions, mainly used streamwise homogeneous surfaces. It is worth
recalling that the location of the HMP (downwash) and LMP (upwash) is a consequence of
the averaging procedure. The instantaneous structures on the other hand have been shown
to be able to reverse this behaviour as both scenarios can occur in a non-periodic (chaotic)
fashion, as recently highlighted by Anderson (2019).

Hence, despite the current surfaces being topographically spanwise-heterogeneous,
the presence of the streamwise heterogeneity leads the surfaces to act more like the
skin-friction-type heterogeneous surfaces due to the additional pressure drag, unlike the
other set of studies which used surfaces that are predominantly viscous drag producing
surfaces. Therefore, care should be taken when designing numerical simulations or
laboratory experiments, by accounting for both the roughness height spectral content
as well as the phase information, which under certain conditions can dynamically
interact with the §-scale flow structures, leading large modifications in the boundary-layer
characteristics.

3.2.2. Turbulent and dispersive stresses

The effect of the multiscale rough surfaces on the turbulence organisation is examined
using the triple decomposition performed on the flow field in the cross-plane. This method
is usually employed in flows where spatial heterogeneity is prevalent, in order to quantify
the magnitude of the stresses originating from the mean flow inhomogeneity. In this
scenario, the dispersive stresses can have substantial contributions to the total stresses and
play a major role in the transport of momentum fluxes (Meyers, Ganapathisubramani &
Cal 2019; Nikora et al. 2019). In this scheme, the streamwise velocity field can be written
as

Time-averaged velocity

ui(y,z,0) = (UW)s + uly,2) +uly,z 1), (3.7
S—— S—— S~—— S——
Instantaneous  Spatial-time-  Dispersive Random
velocity averaged velocity velocity
velocity component ~ component
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where u; is the instantaneous velocity field measured at a fixed streamwise location.
Here, (U(y))s is the time and horizontally averaged velocity profile over the spanwise
wavelength S, u(y, z) is the time-invariant spatial deviation field and u(y, z, ) is the time-
and space-dependant fluctuating part from the Reynolds double decomposition. Using this
method, the different turbulent and dispersive stress tensor terms can be evaluated and
compared. More specifically, the total shear stress term can then be computed as

U ==
Ty = va— — uv — uv (3.8)
—— ~— ~——
total — ,—/y turbulent  dispersive
shear  viscous shear shear
stress shear stress stress

stress

which typically accounts for viscous, turbulent and dispersive shear stress contributions.
The viscous contribution is only present very near the wall, and very negligible away from
the wall. On the other hand, Nikora et al. (2019) have shown that the dispersive stresses
can be decomposed into roughness-induced and large-scale secondary motion-induced
contributions. They have highlighted that the former can have a notable part in the total
dispersive stress within the canopy region, whereas the secondary motion-induced part
is predominant above the canopy layer. In the present study, we have noticed that these
roughness-induced stresses are very negligible throughout the entirety of the resolved flow,
as the heterogeneity is mainly driven by the secondary motion-induced stresses.

Contour maps of the turbulent, dispersive and total normal stress terms of Iter; are
presented in columns of figure 13, while the shear stress terms are shown in figure 14,
respectively. The different normal turbulent stress maps illustrated in figure 13 clearly
exhibit spanwise heterogeneity due to the surface condition. In fact, two behaviours can
be distinguished, in the near canopy region (at y/é = 0.15), the turbulence intensities are
shown to be much higher above the roughness elements while weaker magnitudes are
seen between the ridges. In the outer region (at y/§ &~ 0.4), the opposite behaviour occurs
with higher intensities occurring between the ridges while weaker magnitudes are located
above the roughness elements. These heterogeneous cross-plane turbulence intensity
distributions are seen to be related to the rotational sense of the secondary motion, which
itself is imposed by the surface condition. The high-turbulence fluctuations observed near
the ridges (at y/§ ~ 0.15) are advected laterally towards the mid canopy, and upwards
resulting in the LMP. This is further accompanied by the low-turbulence fluctuations being
advected from the free stream towards the ridges, inducing the observed HMP above the
ridges (clearly emphasised when examining the activity of vv distribution). This spanwise
turbulence inhomogeneity has previously been shown to be associated with an imbalance
between turbulence production and viscous dissipation, causing these amplified lateral
motions and sustaining the streamwise vorticity observed in the form of secondary flows
(Hinze 1973; Anderson et al. 2015; Hwang & Lee 2018).

Furthermore, the normal dispersive stresses shown in panels (d—f) of figure 13 are shown
to be relatively small with respect to the turbulent ones, however, not negligible. They are
shown to extend for nearly half of the boundary-layer thickness although with a varying
intensity along the spanwise direction. Their magnitude is shown to be relatively weak in
comparison with the turbulent fluctuations (shown with a smaller colourmap scale), while
their spatial distribution also exhibits spanwise variation different to that observed for the
turbulent components. They are in fact shown to be more localised with upwash regions
accompanied with intense activity whereas HMP are associated with smaller magnitudes.

The streamwise and wall-normal dispersive stresses are shown to vanish at spanwise
locations between HMP and LMP which coincide with weak upwash/downwash motions.
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Figure 13. Contour maps of the normalised normal components of the streamwise (a,d,g), wall-normal (b,e,h)
and spanwise (c,f,i) stresses respectively for the Iter; case. Panels (a—c) represent the turbulent, (d—f) the
dispersive and (g—i) the total stresses respectively. The colour scales have been adjusted to highlight the features
for the dispersive stresses.

On the other hand, the spanwise dispersive stress is shown to be negligible at the LMP
and HMP except in between. This region is seen to coincide with enhanced spanwise
fluctuations, albeit with a relatively weaker magnitude in comparison with the normal
and streamwise dispersive stresses. The total normal stresses expressed as the sum of the
turbulent and dispersive stress (with the viscous stress contributions above the canopy
being negligible) is illustrated in panels (g—i) of figure 13. The results show that globally,
the total stresses remain relatively similar to the turbulent ones except with an increased
activity between the large roughness elements corresponding to the upwash regions, which
are amplified because of the dispersive stress contributions.

917 A1-22


https://doi.org/10.1017/jfm.2021.228

https://doi.org/10.1017/jfm.2021.228 Published online by Cambridge University Press

Turbulent boundary layer over regular multiscale roughness

(@ 4 0o 4 wuzxiod) @) -1 o @UZ (<107 (@) -4 0 4 T U2 (x107)
1.0 1.0
/8§ 0.6 0.6
+
02 02
-0.5 0
() 4 0 4 @wwul 103 (e) -1 0 1 ZwuU2(x10%) (h) -4 0 4 TJUZ(x107)
. 22 | o -m. 222000000000
1.0 1.0 1.0
yis 08 . 0.6 0
0.2 ’ 02 02 f
| — — J— o M i— it
| I | | I | | R |
0.5 0 0.5 0.5 0 0.5 0.5 0 0.5

(© -1 0 1 mwu2 (x109) (f) -05 0 05 FWUZ(x10%) () -1 0 1 7 /U2 (x107)
| | | .

1.0 1.0 1.0
0.6 0.6 0.6
I8 . -
0.2 % 0.2 0.2 "; a
o -~ — - — — — J—
| . | | R | | I |
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
zIS z/S zIS

Figure 14. Contour maps of the normalised shear components of the streamwise-wall-normal (a.d.g),
streamwise-spanwise (b,e,h) and spanwise-wall-normal (c, f,i) stresses, respectively, for the Iter; case. Panels
(a—c) represent the turbulent, panels (d—f) the dispersive and panels (g—i) the total stresses, respectively. The
colour scales have been adjusted to highlight the features for the dispersive stresses.

For the shear stress terms presented in figure 14, their spatial distributions are also seen
to undergo a spanwise modulation due to the wall condition. The spatial distribution of
uv presents enhanced shear stress activity above the ridges (in the near canopy) while
a weaker activity is shown in the outer region. Between the ridges, the opposite trend
happens, with weak activity near the canopy and increased shear stress in the outer layer.
At the same time, the dispersive shear stress distribution shows a similar behaviour to that
reported for the normal dispersive stress term i, with localised patches above the ridges
and in valleys, while its magnitude weakens in between. Interestingly, a positive dispersive
shear stress activity is reported near the canopy, more specifically above the ridges and
slightly less at the valley.
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The reason for this behaviour comes from the sign of the product of both quantities u
and v. These quantities (# and v) are shown to have opposite signs at the HMP and LMP,
with z > 0 and v < 0 at the HMP while with # < 0 and v > 0 at the LMP. However, the
latter is true except near the canopy where # exhibits a sign reversal such that # < 0 right
above the ridge (flow experiences increased local friction) and, at a similar height at the
valley & > 0 (flow experiences weaker local friction), resulting in the observed uv > 0.
This leads to a relative increase of the total shear stress T, in the outer region and a
reduction near the canopy. The turbulent, dispersive and total shear stress distributions
of the streamwise-spanwise and the wall-normal-spanwise shear components are shown
in figures 14(b,e,h) and 14(c, i), respectively. Similarly to the previous stress terms, their
spatial distributions are shown to experience spanwise heterogeneity with varying intensity
along the span. The sign of the stress maps is shown to be switching at the symmetry planes
(z/S =0 and +£0.5) which coincide with locations of zero spanwise fluctuations. The
extent of the dispersive shear stress terms is seen to reach at least half of the boundary-layer
thickness but with a weaker contribution to the total stresses.

3.2.3. Outer-layer similarity

Following the observations made above, outer-layer similarity is also examined. The
similarity between the rough- and smooth-wall structural paradigms stems from an
established concept of flow universality known as Townsend’s wall-similarity, which states
that the influence of viscosity is limited to the near-wall region (Townsend 1976). In this
analogy, outer-layer similarity extends this concept to include surface roughness with its
validity relying on two main conditions: (i) a large scale separation (Re; >> 1) and (ii)
a small relative roughness height to the depth of the flow (2/6 < 1), as emphasised by
Jiménez (2004). This is generally expressed in the form of the streamwise velocity deficit
and the turbulence quantities which are hypothesised to have a universal form of

Uso — (U) =f<z), {wity) . (X) (3.9a,b)

This implies that apart from affecting the near-wall region, the main role of roughness is
to set the wall drag (U;) and adjust the boundary-layer thickness (&), while the mean and
turbulence structure remain unaffected by the surface condition. To examine the impact of
the multiscale rough surfaces on the outer-layer similarity hypothesis, the horizontally
averaged mean streamwise velocity profiles are plotted in defect form and shown in
figure 15(a), while the streamwise turbulence intensity profiles are depicted in figure 15(b).
The mean velocity profiles indicate a clear lack of collapse in the outer region, showing
a weaker deficit than that of the smooth-wall. However, it is interesting to point out that
between the cases, a reasonable degree of self-similarity is maintained. The absence of
similarity is also shown in the inner-normalised turbulence intensity profiles, both with
respect to the smooth-wall profile as well as among cases. The profiles are shown to recover
similarity only near the edge of the boundary-layer thickness.

In order to quantify the changes in the outer flow due to the multiscale rough surfaces,
the wake strength parameter I is examined. To this end, it is common to assume the
flow in the outer region to be fully described by the composite log-wake profile. This is
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Figure 15. Wall-normal distribution of (a) the streamwise velocity deficit and () the streamwise variance
profiles for the different multiscale rough surfaces, compared with the DNS turbulent boundary-layer profile.

expressed as

11 y
+ +
(Umposite) = Urpgta) + [2-w (5)] : (3.10)
where U;;g_law represents (3.2) and w an analytical expression known as Cole’s wake

function (Coles 1956). There are numerous expressions that have been proposed in the
literature, and each one yields a value specific to that function (see e.g. Jones, Marusic
& Perry 2001; Junke, Julien & Meroney 2005; Nagib et al. 2007). The wake strength
parameter is then determined through fitting the measured velocity profiles to the assumed
‘universal’ expression. In order to circumvent the use of a particular expression for the
outer region, the wake strength parameter is instead determined using (3.4), and varies
proportionally with the maximum of ¥. This is expressed as

7= %max(llf) = %max |:(U+) - (l Inyt —dt)+B— AU+)} ) (3.11)
K

Their values are summarised in table 2 and are shown to be considerably weaker than
that of a smooth-wall (0.57), with IT = 0.18, 0.27, 0.20 and 0.23 for the cases Itery,
Iterpo, Iter;3 and Iterjos, respectively. These values of IT seem to agree with the defect
velocity profiles which were shown to have a relatively similar deficit across cases, while
being smaller than that of a smooth-wall. The results suggest that universal outer-layer
similarity cannot hold for flows developing over this type of surface. In other words,
flows that harbour large-scale secondary motions, yielding a highly three-dimensional
flow are unlikely to satisfy similarity, as they could have substantially altered the wake
intermittency and the uniform momentum zones which together result in the wake strength
parameter (Krug, Philip & Marusic 2017).

Using the dispersive stress components, the inner-normalised profiles of the total
stress terms (7)™ and (t.;)" are examined in figure 16(a), while (ty,)* and (ty)"
are shown in figure 16(b). The spanwise-averaged shear stresses (ty;)™ and (7);)" are
null because of the spanwise antisymmetry at the symmetry plane z/S = 0, as illustrated
in figures 14(b) and 14(c). Despite the contributions of the dispersive stresses, overall,
the normal and the shear stress profiles show a smaller magnitude when compared
with their equivalent smooth-wall. This indicates that the increase in the stresses due
to the turbulent and dispersive fluctuations caused by the roughness is not necessarily
accompanied with a proportional increase in skin friction, since the profiles do not collapse
with the smooth-wall (i.e. lack of outer-layer similarity). A degree of collapse seems to be
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Figure 16. Wall-normal distribution of (a,b) the inner-normalised total normal and shear stresses for the
different multiscale rough surfaces compared with the smooth-wall in blue-solid line. Wall-normal distribution
of the (c¢) inner- and (d) outer-normalised dispersive shear stress, highlighting the extent of the roughness
sublayer.

recovered only beyond y/§ > 0.6, which coincides with the wall-normal distance at which
the dispersive stresses are mitigated as reported in figures 13 and 14.

Figure 16(c) illustrates the inner-normalised dispersive shear stress profiles with respect
to the wall-normal distance normalised by the roughness length scale hg. It shows that
the maximum magnitude of the dispersive shear stresses rises up to nearly 0.16 % of
the friction velocity, whereas its location changes across cases. It is observed that the
wall-normal location of this maximum reduces as the roughness content (/) increases,
with (L"tf))f,;ax occurring at y & 2h; for Iterjp3 while its occurrence is seen at y & 5hy for
Iter;. The reason for the latter behaviour rises from the increase in A, when increasing
the roughness content. This leads to a lack of similarity between cases suggesting that
the increment in the aerodynamic roughness length scale does not necessarily induce a
proportional change in the secondary motions. However, it is worth noting that (i)} .
remains nearly constant across cases. Beyond their maximum value, the dispersive shear
stresses appear to have reasonably similar decay rates in the outer region, despite the offset
in the wall-normal direction.

The quantification of flow heterogeneity for the different surfaces is also examined
in outer-scaling as presented in figure 16(d), illustrating the relative contribution of the
dispersive to the total shear stress. The profiles are shown to have a weak magnitude near
the canopy, exhibiting even negative values right above the large cuboid for Itery, in line
with the observations reported in figure 14. Farther away, the dispersive shear stresses
reach their maximum between 0.2 and 0.256, corresponding to the wall-normal location at
which the secondary motions are most significant. In this scaling, the dispersive stresses
are shown to amount to a substantial fraction of the total shear stresses with roughly
22 % at their maximum, while they seem to have a relatively better collapse in the outer
region as opposed to the scaling presented in figure 16(c). Their contributions rise up to
approximately 0.6, corresponding to the turbulent stresses collapsing with the total shear
stress profiles. This means that the inertial sublayer is completely submerged within the
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Figure 17. Effect of the different multiscale rough surfaces on (@) the total normalised streamwise rms profiles
in the diagnostic-plot form as proposed by Alfredsson et al. (2011). (b) The same data with the modified scaling
U =U+ AU" and U, = U + AU proposed by Castro et al. (2013).

roughness sublayer (indicated in figure 16(d) as the RSL). This behaviour is in contrast
with homogeneous rough-wall flows, which generally exhibit a RSL as a small portion
of the flow depth, and does not exceed the upper edge of the ISL. The current results also
indicate that the dispersive stresses are mostly a function of the largest length scale features
of the surface (S), while they only weakly vary with addition of small-scale roughness. The
multiscale rough surfaces have therefore impacted not only the wall-normal location of the
inertial sublayer as seen in figure 9, but also the overall structure organisation in the outer
region.

Castro, Segalini & Alfredsson (2013) surveyed a wide range of rough-wall data
published in the literature to examine the outer-flow behaviour using the diagnostic-plot
method. This method has first been introduced by Alfredsson, Segalini & Orlii (2011) for
smooth-wall flows, and consists of examining the dependence of the streamwise turbulence
intensity profile with respect to the mean flow. Their assessment revealed the existence
of a region spanning from the inertial sublayer up to almost the entire wake which varies
linearly, whose extent increases with increasing scale separation. Accordingly, Castro et al.
(2013) examined the applicability of this method over a comprehensive range of rough-wall
data to reveal whether smooth and rough walls also exhibit outer-layer similarity in this
form.

Their results showed that just like the smooth-wall flow, rough-wall flows also presented
a linear variation except with a higher slope, shown to be independent of the roughness
morphology. This rise in the turbulence intensity level was shown to be primarily due
to the roughness function AU™, with marginal effect from the wake strength parameter.
Using a similar approach, we try to assess whether a self-similar region still exists for the
current multiscale rough surfaces using this scaling.

The total normalised streamwise r.m.s. profiles (/7y/U) = /(uu + uu)/(U) are
plotted against the normalised streamwise velocity (U)/Us,, as shown in figure 17(a).
The dispersive stress component has been included to account for the presence of
spanwise mean flow heterogeneity, which would have been non-existent in the case of
a two-dimensional boundary-layer flow. The profiles of the different cases have been
plotted along with a smooth-wall profile and two asymptotes: the smooth-wall asymptote
of Alfredsson et al. (2011) and the fully rough asymptote of Castro et al. (2013). The
results show a good collapse both between the different cases as well as with the fully
rough line, indicating that all the cases exhibit similar attributes as a fully rough flow,
including Iter;. This suggests that despite the lack of collapse observed in the profiles in
figure 15, the surface condition influences both the turbulence intensity and the mean-flow
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proportionally, regardless of the presence of smaller or intermediate roughness length
scales. As demonstrated by Castro et al. (2013), the increase in the streamwise stress
level (slope) for rough-wall flows stems from the roughness function AU™T. As such, they
showed that by rescaling the turbulence-intensity profiles with the modified quantities
U =U+ AU and U, = Ux + AU, all profiles collapsed on to the smooth-wall
asymptote.

After applying the modified scaling approach as seen in figure 16(b), we notice in
fact that the slopes of the different profiles line up relatively well with the smooth-wall
asymptote, as reported by Castro et al. (2013). It should be noted that if the dispersive
stress component ({uiz)) is omitted, the profiles will result in shallower slopes. Figure 17(b)
also suggests that the roughness function embodies both stress contributions, namely,
the turbulence which stems from the temporal fluctuations and dispersive stresses which
arise from spatial heterogeneities. This means that despite the large ramifications they
cause to the base flow, the secondary motions are capable of reorganising the flow such
that the mean and turbulence structures maintain a degree of local similarity between
smooth and rough walls. However, it is worth recalling that despite this apparent collapse
in the diagnostic plot, Townsend’s similarity hypothesis remains clearly violated as a
consequence of the large-scale secondary motions. Hence, the validity and application
of outer-layer similarity hypothesis should be carefully considered when examining flows
developing over such surfaces.

4. Conclusions

In this experimental study, the characteristics of a turbulent boundary-layer flow
developing over regular multiscale rough surfaces have been examined. Four surfaces
representing a multiscale distribution of roughness elements, based on a Sierpinski
fractal-like pattern, made of superimposing size-decreasing self-similar cuboids are
considered. A floating-element drag balance along with PIV measurements allowed us
to assess the impact of these multiscale rough surfaces on the skin friction as well as the
mean and turbulent flow properties.

Drag-balance measurements revealed that the skin-friction coefficients reached their
asymptote with Reynolds number (i.e. fully rough regime) for surfaces containing at
least the intermediate or smaller scales (Iteri, or Iter3), in contrast with the surfaces
containing only the largest roughness element (Iter;) that was shown to be Reynolds
number dependent (despite the high value of AU™). The results showed that the magnitude
of the skin friction is dependant of the scale hierarchy of the surface roughness, and
increases with frontal solidity of the added roughness («).

The impact of the multiscale roughness on the turbulent boundary layer is also examined
using velocity field measurements. In the canopy region, a strong shear layer formed above
the largest cuboid separates at its trailing edge leading to the formation of a separation
bubble past the obstacle. The streamwise extent of this bubble (reattachment length) was
seen to be insensitive to the roughness content while its intensity decreases with the
presence of smaller roughness length scales. This behaviour is caused by the increased
turbulent mixing and wall drag at the top of the largest cuboid, owing to the increased
interactions of the shear layer with a broader range of roughness scales. Additionally,
the PIV-based pressure fields showed the canopy to be dominated by alternating high-
and low-pressure zones associated with the flow accelerating and decelerating upstream
and downstream of the first roughness iteration, respectively. This allowed the assessment
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of the cross-sectional drag, and revealed that these large-scale roughness elements are
responsible for nearly 60 % of the surface drag.

The aerodynamic parameters are examined using the horizontally averaged mean
velocity profiles. The virtual origin as well as the roughness function have been determined
by means of the indicator function. The latter highlighted an inertial sublayer occurring
between 0.2 and 0.38, which is farther in comparison with the classical smooth and
rough walls. The roughness function estimates were then used to determine the equivalent
sandgrain roughness height i, whose values indicated that all the cases can be considered
in the fully rough regime, including Iter; (A} > 400). A ratio of the aerodynamic
roughness length scale between successive iterations (op,,) was defined and shown to vary
linearly with a suitable geometrical parameter of the rough surface («). This relationship
together with the aerodynamic properties of the first iteration can be sufficient to describe
the roughness length scale of the subsequent multiscale surfaces (and hence the surface
drag).

The cross-plane velocity fields revealed a significant spanwise heterogeneity in the outer
layer for all surfaces examined. This spanwise flow modulation is shown to be caused by
the presence of Prandtl’s secondary flows of the second kind, which created HMP and
LMP alternating above the ridges and the valleys, respectively. As shown from previous
studies, this feature occurs as a consequence of the dominant length scale of the flow
interacting with §-scale roughness features. In this study, the largest characteristic length
scale of the roughness is the spacing S between the largest cuboid which results in /S ~
o).

Triple decomposition of the velocity fields allowed the qualitative and quantitative
assessment of the spanwise heterogeneity in the form of dispersive stresses. The results
showed that, at their maximum, these form-induced stresses amount to more than 20 %
of the total stresses and can extend up to 0.65. Additionally, the validity of Townsend’s
similarity hypothesis was assessed by examining the velocity deficit as well as the
turbulence intensity profiles. Lack of outer-layer similarity in both the mean and turbulence
statistics is reported despite the required conditions being satisfied (4600 < Re; < 9700
and 0.05 < hy/8 < 0.1), while a good degree of collapse between cases is observed in the
mean flow.

Supplementary material and movies. All data presented herein as well as the supporting data of this
study are openly available on the roughness database http://roughnessdatabase.org/ and the University of
Southampton repository at https://doi.org/10.5258/SOTON/D1765.
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