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7.1 Introduction

Given the boom in demand, the decreasing returns of existing mining
sites and the sustainability requirements, it is not surprising that mining-
related commodities have seen a remarkable increase in price over the
past two decades. Equally predictable was the well-documented boom in
mining production and exports that followed. What has happened to the
rate of mining-related innovation during this period remains an under-
studied topic.

In this chapter, we study the effect of variation in commodity prices on
the innovation carried out within the mining industry. In particular, we
look at whether the existence of cycles in commodity prices, distinguish-
ing between short- and long-term cycles – the so-called super-cycles –
affects innovation levels.

Given that mining companies are increasingly sourcing innovation
from specialized suppliers, as noted in Chapter 1, we consider the mining
industry in a broader technological sense. In addition to companies
directly engaged in finding and developing mines, we include service
providers that support the everyday activities of mining firms by provid-
ing specialized equipment and technology, a sector commonly referred to
as the mining, equipment, technology and services (METS) sector.
Innovation is proxied by patent filing. Mining-related patents filed by
both mining firms and METS firms are part of the analysis.

This chapter relies on mining patent data consolidated by WIPO for
the period 1970–2015. We merge the patent data with a series of
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indicators related to the mining sector based on data from the World
Bank, namely a mineral commodity price index, an estimation of effect-
ive demand formining production and the country’s exposure to mining.
We identify price cycles of different lengths using the Christian and
Fitzgerald band-pass filter (Cuddington and Jerret, 2008). We conduct
the analysis first using time series and then using panel data.

We find empirical evidence of pro-cyclicality between innovation and
prices in the mining sector. We model innovation as a response to
changes in commodity prices and test for the effects of different cycle
lengths. Our results suggest that innovation reacts more to long cycle
changes rather than shorter ones. We also analyze the effect on mining
innovation, distinguishing between innovation generated by mining
companies and by METS firms. METS companies appear as the driving
force of mining innovation response to price changes. When we move to
the panel analysis, we find that mining specialized countries – as opposed
to countries having little mineral production – only react to changes in
the long cycle components of commodity price.

The rest of the chapter is structured as follows. Section 7.2 reviews the
literature and provides motivation for the chapter’s main research ques-
tions. Section 7.3 presents the data while providing a descriptive overview
of the mining industry innovation; it also discusses our estimation
method. Section 7.4 comments on the results and the main robustness
checks performed and Section 7.5 concludes.

7.2 Literature Review and Hypotheses

External macroeconomic and financial shocks certainly affect mining
production, but little is known on how they translate to the sector’s
technological change. Mining is considered a very cyclical sector. When
prices are high, new mines are opened and existing mines are exploited
more intensively. While when prices are low, production slows and
mines are closed (Batterham, 2004). The way innovation and technology
development react to these price cycles remains, to the best of our
knowledge, an unexplored topic.

As part of the commodity super-cycle, mining-related commodities
have seen an outstanding increase in price over the past 15 years,
accompanied by a well-documented boom in mining production and
exports. This period has not only been characterized by a high increase in
prices but also higher volatility (IMF, 2015). Recent work has shown that
mining innovation – proxied by patent applications –has followed this
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boom in general, but it has also trended down after the global financial
crisis (Daly et al., 2019b).

There have been many studies about trends and cycles in commodity
prices (Radetzki, 2006; Tilton, 2006). A few of these, such as Labys,
Achouch and Terraza (1999), have focused on mining commodities by
analyzing the relationship between metal prices and business cycles. But
in general, there has been less attention on the economic effects of the
longer cycles of these prices. Traditionally, economic scholars have been
very skeptical about the presence of these commodities “super-cycles”
(Cogley and Nason, 1995; Howrey, 1968). However, a number of rela-
tively recent studies have begun to shed some light on the topic (Comin
and Gertler, 2006; Cuddington and Jerret, 2008; Solow, 2000). They find
empirical evidence of substantially more volatile and persistent fluctu-
ations in the medium- and long-term of business cycles and commodity
prices, respectively.

What happened to the innovation rate of mining-related technolo-
gies during the recent period? Given the rigidity that characterizes
mining sector investment, it seems plausible that R&D decisions will
be based more on expectations about long-term variation of price
rather than short-term ones. The existing literature has focused on
how R&D expenditures vary over business cycles, although never
focusing on mining or other commodity sectors. The traditional view
is that recessions should promote various activities that contribute to
long-run productivity and thus to growth, such as technical change
(Canton and Uhlig, 1999), job turnover (Gomes et al. 2001) and human
capital accumulation (Barlevy and Tsiddon, 2006). Many studies have
found innovation to be pro-cyclical, measured by R&D activities
(Barlevy, 2007; Fatas, 2000; Rafferty and Funk, 2004) or patents
(Geroski and Walters, 1995). According to Geroski and Walters
(1995), the direction of the causality seems statistically stronger for
business cycles causing innovation than the opposite, although factors
other than demand largely explain innovation. In what concerns the
length of cycles, Barlevy (2007) argues that macroeconomic shocks are
likely to have overly persistent effects due to such pro-cyclicality of
R&D activities.

As highlighted in Chapter 2, the mining industry is typically con-
sidered a slow innovator (Scherer, 1984). Nevertheless, Bartos (2007)
shows that its rate of innovation is comparable with general manufactur-
ing, even if it is still lower than so-called high-tech manufacturing
(Dunbara et al., 2016). The total amount of money spent on R&D by
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the sector is significant, particularly in mining-specialized countries such
as Australia (Balaguer et al., 2018).

Figure 7.1 shows the private R&D expenditure in EU countries
together with the Metals and Minerals Price Index from the World
Bank. We can see a positive correlation between the two indicators
with some delay of the R&D expenditure in reacting to price changes.

In addition to R&D expenditure, the discovery of new commercially
viable mining deposits through exploration is an important part of the
economics of the industry, as highlighted in Chapters 1 and 2. The
existing series of worldwide exploration expenditures show a high degree
of correlation with the evolution of the price index for nonferrous metals
(see Figure 7.2).

METS companies contribute a substantial share of the innovation in
the mining sector. These companies work very closely with mining
companies to understand their requirements and to develop innovative
solutions. METS firms invest, on average, more in R&D compared to
mining firms (see Chapter 2). They also have lower capital expenditures
than mining companies, which are required to have big initial

Figure 7.1 Private R&D expenditure in mining and quarrying in EU countries and
World Bank Metals and Minerals Price Index
Note: EU includes Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Lithuania,
Netherlands, Norway, Portugal, Romania, Slovakia, Spain, and the UK.
Source: Eurostat (2018), BERD by NACE Rev. 25 activity.
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investments both for the exploration phase and mining operations estab-
lishment. Mining firms often prefer to outsource services to specialized
METS firms rather than taking it on themselves in a less efficient way. For
instance, transport innovation in the mining sector is often produced by
METS companies (see Chapter 5). Therefore,METS firms are an essential
part of the mining innovation ecosystem.

Table 7.1 summarizes the differences betweenmining andMETS firms
along crucial dimensions of their activity. In general, mining firms are
large and they operate at different stages of themining value chain.METS
firms range from big multinationals (e.g. Caterpillar or Siemens), which
not only provide specialized services for the mining sector, but also serve
other industries; to SMEs, which are typically specialized in the produc-
tion of one product or service specially developed for the mining activity.

On average, mining firms have higher sunk costs compared to METS
firms. When opening a mine, the initial investment is very big and it can
only be recovered after many years of operation. Therefore, their activity
is not very flexible. METS firms are more flexible. They could also have
high fixed costs but this applies more to large multinationals, which

Figure 7.2 Mineral exploration expenditure by commodity and nonferrous metals
price index
Source: S&P Global Market Intelligence, World Exploration Trends; The Economist.
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spread them across the different industries they serve, reducing the risk
associated with their activity. Finally, mining firms produce mostly
process innovation, while METS firms produce both new processes and
new products that are then sold to themining companies that use them to
improve their performance.

Existing studies have shown several channels through which a price
change could affect the decision to invest in innovation for other indus-
tries. Barlevy and Tsiddon (2006), Canton and Uhlig (1999) and Gomes
et al. (2001) find evidence of pro-cyclicality channels between prices and
innovation in other industries. These studies suggest that the pro-
cyclicality can be direct or indirect, where the latter is typically through
the access to finance for the firm. Conversely, Barlevy (2007), Fatas
(2000), Rafferty and Funk (2004) and Geroski andWalters (1995) suggest
that a countercyclical effect can arise from the cost-reducing innovative
effort.

How would the pro-cyclical effect apply to the mining sector? An
increase in mineral prices could directly stimulate innovation for the
mining firms, which have more disposable income to invest in innov-
ation. A price increase also indirectly affects METS firms, as they experi-
ence a higher demand for their products/services from mining firms.

Table 7.1 Characteristics of mining and METS firms

Characteristic Mining firm
METS firms
(Large)

METS firms
(SMEs)

Size Large Large
(horizontally

diversified)

Micro, small &
medium

Diversification Vertical
(within the min-

ing supply
chain)

Horizontal
(across several

industries)

Horizontal
(if any)

Sunk costs Large
(within the supply

chain)

Large
(across different

industries)

Low

Innovation type Process Product & process Product & process

Source: Authors’ elaboration.
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Moreover, diversified METS firms may have stronger incentives to adapt
technologies developed for other business.

At the same time, an increase in price also increases access to external
finance of both types of firms; since financial markets’ assessment of
discounted future income will also be related to the new price. Similarly,
increased access to finance could boost investment in innovation.
Therefore, both direct and indirect effects point toward the pro-
cyclicality of innovation with respect to price.

How would the countercyclical effect apply to the mining sector?
A price decrease imposes cost-reduction pressure on mining firms,
which already operate with tight operating margins in many mining
sites. Cost-reducing technologies could be an effective way to avoid the
closure of mines. Similarly, mining companies may invest in exploration,
aiming to discover new deposits with higher grades, hence more cost-
effective. Either the cost-reducing or exploration-related technologies
can be produced in-house or sourced from METS firms. This implies
a countercyclical effect, where innovation is boosted, for bothmining and
METS firms, in periods of low prices.

The effect of a price decrease on the access to finance for firms is
instead ambiguous. On the one hand, it definitely implies reduced
access to external private finance as the risk profile of these firms is
now higher. On the other hand, the bigger and more diversified firms
could still rely on internal resources (for the case of big vertically
integrated mining firms) or on revenues from other industries that
they supply (for the case of big horizontally integrated METS).
Moreover, in mining-specialized countries (e.g., Chile, Australia or
South Africa), the large mining companies and the sector as a whole
might be, arguably, too big to fail. Policy-makers may have strong
incentives to aid the sector troubled by decreasing prices and innov-
ation financing is one valid option.

We do not know which of these effects will prevail. Still, we can argue
that the countercyclical effect is more likely to occur for shorter-term
price variations. Typically, a mining company can cross-subsidize activ-
ities in the short term to iron out a price fluctuation expected to be
temporary. If the price variation is expected to be structural (i.e. of
a longer term), companies may be limited to the countercyclical innova-
tive actions they can undertake. A similar logic applies to public financial
support, although likely with a longer horizon. In any case, we can expect
the ambiguous effect is less likely in the longer cycles.
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Table 7.2 summarizes the channels through which a commodity price
change could affect the decision of both types of mining sector stake-
holders to invest in innovation.

We can formulate the main conclusions from the existing litera-
ture as four distinct hypotheses, which we are going to test in this
chapter:

H1a: Higher prices generate higher disposable income (direct or indirect)
that is invested to generate more (pro-cyclical) innovation;

H1b: Lower prices generate higher cost reduction and exploration pressure
generating (countercyclical) innovation;

H2: Price shocks do not affect innovation unless they are perceived as
structural (i.e. long lasting);

Table 7.2 Effect on innovation and access to finance of price change

Mining firms METS firms

Price increase + Innovation
(+) more disposable

income to invest in
innovation

(+) more access to exter-
nal finance

+ Innovation
(+) more demand from

mining industry
(+) more incentives to

adapt other technolo-
gies to mining

(+) more access to exter-
nal finance

Price decrease ? Innovation
(–) less disposable

income to invest in
innovation

(–) less access to external
private finance

(+) cost reduction and
exploration pressure

(+) more access to exter-
nal public finance

? Innovation
(?) depends on mining

industry demand
(–) less incentives to

adapt existing
technologies

Source: Authors’ elaboration.
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H3: As METS firms can adapt other sectors’ technologies to mining, they
are more likely to innovate more and faster due to price variation than
mining firms; and,

H4: Mining specialized countries have stronger incentives to have counter-
cyclical innovation policies.

7.3 Data and Methodology

In this section, we present and discuss the data used in our analysis. We
then give an overview of the estimation methods used to study the
relationship between commodity prices and innovation in the mining
sector.

We use theWorld BankMetals andMinerals Price Index as a proxy for
an average global commodity price. This index weights the price of six
commodities traded in the London Metals Exchange – aluminum, cop-
per, lead, nickel, tin and zinc – plus iron ore, based on their world
production shares. All the prices are reported in 2010 USD. The index
is available from 1960 to 2017.

One limitation of such an index is that countries differ in their mining
activities. Countries producing other mineral commodities than the
seven minerals covered by the index or having a different weight of
them, may react to other price variations than those captured by the
index. In order to partially address this issue, we rely on an alternative
measure of metal commodities price as a robustness check. In particular,
we build a country-specific index using disaggregated commodity prices
from the World Bank database,1 weighting them based on export shares
for each country. We extract data on commodity trade by country of
origin from Feenstra et al. (2005). These data are classified by SITC codes.
We were able to match SITC codes of export flows with products’ prices
from the World Bank.2

Following Cuddington and Jerret (2008), we decompose the natural
logarithm of the de-trended commodity price in cycles of different
lengths: long cycle3 (from 20 to 70 years), medium cycle (from 10 to 20
years), short cycle (from 5 to 10 years) and a residual component (less
than 5 years). Figure 7.3 plots the de-trended price index across and the

1 We use prices of aluminum, copper, lead, nickel, tin, zinc, coal, iron ore and precious
metals.

2 To see, in detail, how we built the country-specific prices, read Daly et al. (2019a).
3 Often referred to in the literature as super-cycles.
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different component cycles of the price index. The long and medium
cycles show a relatively smooth variation over time. The short cycles
exhibit more sharp fluctuation around the mean value. The residual
component exhibits the sharpest fluctuations and captures the short-
term variation of the price. All these components sum to the value of
the de-trended price index (the dashed line).

Being mineral commodities, we can expect an excess of demand to be
transferred to prices only if there is no idle supply capacity. In the short
run, mineral supply will follow those demand fluctuations with the
installed capacity limiting the effect on prices. In the long run, mining
companies can also vary capacity by opening and closing mining sites
without necessarily changing technology. So, it is important to under-
stand how the volume of supply behaves to fully capture how prices may
affect the innovation decision. For this purpose, we also collect informa-
tion on mineral rents for each country from the World Bank
Development Indicators. Given that we want to include a general meas-
ure of mineral products volume in each specification, we deflate the

1960 1980 2000

Year

2020

Medium cycle

Cycle residuals

Long cycle

Short cycle
Commodity price index, detrended

–.
5

0
.5

Figure 7.3 De-trended Metals and Minerals Price Index and different cycles
components
Source: World Bank Metals and Minerals Price Index.
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mineral rents with the metals and mineral price index and create
a mining quantity index based on the 2010’s artificial volume.

In this chapter, we use patents as a proxy for innovation. A patent is
a legal right granted for any device, substance, method or process that is
new, inventive, and useful. Patents give the owner exclusive rights to
commercially exploit the invention for a limited period. In return for
exclusive rights, patent applications must be published and must fully
disclose the claimed invention. As a result of this requirement, the body
of patent literature reflects developments in science and technology.
Furthermore, patent data is rich in information adjacent to technology
information, such as temporal, geographic and bibliographic data.
Through the extraction and analysis of data associated with patent
applications, it is possible to measure aspects of invention and economic
researchers have long used patent applications as a measure of inventive
activity.

Chapters 2, 8 and 9 highlight the rising importance for mining enter-
prises to use IP instruments – particularly patents – when they pursue an
internationalization strategy (see also Francis, 2015). They are often
multinational companies operating in different countries and patents
may help them secure their intellectual property across states and appro-
priate the knowledge embedded in new discoveries. Outside the mining
sector, using patents as a proxy for innovation is an established practice
in the literature (Acs et al., 2002; Griliches, 1998; Jaffe and Trajtenberg,
1999). In doing so, we need to acknowledge all the limitations of this
approach that several studies in the existing literature have extensively
raised and addressed (Lerner and Seru, 2017). In particular, we acknow-
ledge that the innovation captured through patents is a fraction of the
wider range of innovative activity in the field.

Even if not all inventions are patented, it is largely agreed that a patent
embodies an original result of an R&D activity undertaken by an entity.
As a result, patent data are highly correlated with R&D expenditures in
the mining sector (Figure 7.4). In addition, patents offer full coverage of
both application countries and years. Therefore, they are more suitable
for a global study of mining innovation as this is intended to be. The rest
of the chapter uses patent data as a direct measure of innovation activity
in the mining sector.

Another challenge when using patent data is the lag between this
variable and R&D activities. The real lag between R&D expend-
itures and patents has been the subject of multiple studies (Gurmu
and Pérez-Sebastián, 2008; Hall et al., 1984). These studies find

182 g. valacchi, a. daly, d. humphreys and j. raffo

https://doi.org/10.1017/9781108904209.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108904209.008


relatively contemporaneous effects between the two variables,
which justifies the use of patents as a proxy for the R&D expend-
itures at the firm level. We follow this approach by using
a minimum lag between these two.

In the rest of the chapter, the basic unit of analysis will be the patent
family, the year will refer to the first filing year of the patent family and we
will use the country of origin for the country. A patent family refers to all
those patents applied in different jurisdictions for the same invention.4

We use mineral rents as a percentage of GDP as a measure of the
mining specialization in a given economy. Figure 7.5 shows the mining
specialization of selected countries displaying their percentage of mining
rents over GDP. Countries like Chile, Australia and South Africa have
mining rents representing a large share of the GDP, which is more than
nine percent for the case of Chile. These countries are considered to be
more specialized in the mining sector as their income relies considerably
onmining activity. On the other hand, countries like France, Japan or the
Republic of Korea derive only a very minimal portion, close to zero, of
their GDP from pure mining activities. By definition, countries more
specialized in the mining sector have a large portion of their economy

Figure 7.4 Number of patent families and R&D expenditure in the mining sector
Source: WIPOMining Database (2018) and OECD Business enterprise R&D expenditure
by industry Database.

4 For all details about how we built the patent data, including patent family unique identifier
and origin, refer to Daly (2019b).
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relying on these mining rents, making them more exposed to the price
fluctuations ofminerals andmetals. Therefore, we interpret this indicator
as a proxy of the country exposure to the mining industry.

This does not mean that those countries do not play any role for the
mining sector. As Figure 7.6 shows, the countries with less exposure to
the mining industry are oriented more towards METS firms’ activities
than mining firms’ activities.5 On the other hand, countries that are more
exposed to mining are also more specialized in mining firms’ innovation.
From the same figure we can discern that innovation in the “traditional”
mining fields such as exploration and blasting is more concentrated in
mining firms, while METS firms develop most of the services for the
sector (environment, transport and to some extent also metallurgy).

Figure 7.7 shows the evolution over time of the de-trended mining
commodity price, quantity index and patents. Overall, there seems to be

Figure 7.5 Country exposure to mining sector rents
Note: This graph has been constructed using the average mining rents over GDP for
each country in the period 1970–2015.
Source: World Bank Development Indicators.

5 To build Figure 7.6, we calculated the relative specialization index (RSI), by country and
technology for METS and mining firms’ innovation. A positive RSI means that the
country, within the pool of mining innovation, has relatively more innovation carried
out by mining firms rather than METS, compared to the world average. For the technol-
ogy, the interpretation is similar: it means that innovation in that technological field is, on
average, carried out more by mining firms rather than METS.
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a strong positive correlation among these three indices. To better under-
stand how expectations might be formed in the short and long run and

Figure 7.6 Mining andMETS firms innovation relative specialization, by country and
mining technology
Note: Indicator reflects the relative specialization index (RSI) based patent portfolios of
METS and mining firms broken down by country and technological field.
Source: WIPO Mining Database.

Figure 7.7 Mining price, quantity and innovation co-evolution (1960–2015)
Notes: All indicators are in logs and de-trended.
Source: World Bank Development Indicators and WIPO Mining Database.
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what drives the observed correlation, we decompose each of these vari-
ables in the three cycles mentioned (Figure 7.8). A strong positive
correlation is present for the long cycle for all three variables, although
innovation seems to lag slightly. In the medium cycle, innovation seems
to be correlated with price but much less than before. For the short cycle
components, changes in prices seem to affect innovation in the early
years of our panel but not so much inmore recent ones where innovation
remains relatively flat. Moreover, both innovation and quantity short
cycles are in sync.

We test the hypotheses discussed in the previous section in two main
frameworks. First, we use a time-series estimation for the global mining
activity and then move to a panel estimation. To see the exact model
specifications, please refer to Daly et al. (2019a)

7.4 Results

Table 7.3 reports the test for H1 (first column) and H2 and H3 (second
column). It finds a positive and significant effect of both commodity
prices and quantity on mining innovation, validating H1a. This implies
that high commodity prices, as well as high demand for mining products,
boost innovation in the sector.

Figure 7.8 Mining price, quantity and innovation cycle decomposition (1960–2015)
Notes: All indicators are in logs and de-trended.
Source: World Bank Development Indicators and WIPO Mining Database.
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If we look more specifically at different price cycles (second column),
we realize that the price effect is mainly driven by variations in the long
cycle components, which confirms H2. Shorter-term components are
found not to have any effect on mining innovation.6

Table 7.3 Time series estimation

Dependent Variable: Log. of mining patents applications worldwide

(1) (2)

Log. of Price Index 0.357*** –

(1st Lag) (0.109)

Long cycle component of − 1.107***

Log. of Price Index (1st Lag) (0.105)

Medium cycle component of − 0.557

Log. of Price Index (1st Lag) (0.150)

Short cycle component of − 0.167

Log. of Price Index (1st Lag) (0.188)

Residual cycle component of − −0.218

Log. of Price Index (1st Lag) (0.237)

Log. of mining quantity 0.523*** 0.202***

(2nd Lag) (0.073) (0.053)

Observations 44 44

Years 1970–2016 1970–2016

R-squared 0.72 0.85

Notes: The model is estimated with the OLS estimator. The dependent variable is
included in logarithmic terms. All variables included in the model are de-trended.
A constant is included in each specification. Robust standard errors in parentheses.
*, ** and *** respectively denote significance at 10%, 5% and 1% levels.
Source: Authors’ calculations.

6 For further details and robustness checks see Daly et al. (2019a).
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Tables 7.4 and 7.5 replicate the analysis in Table 7.3, using a mining
subcategory as a dependent variable instead of the full sample of mining
patents.We still find an overall pro-cyclical effect of price changes onmining
innovation (see Table 7.4) as predicted by H1a. H2 is also confirmed in this
subcategory scenario in Table 7.5. The effect of long cycle price shocks on
mining innovation is positive and significant for almost all subcategories.
Only environmental mining patents seem less responsive, suggesting that
other factors may play a bigger role in explaining them, for example,
environmental regulation, as is discussed in Chapter 6. We find mixed
evidence for H3 as the core mining technologies, namely blasting and
exploration (see Table 7.4), are among the slower and faster subcategories
to react to price shocks, respectively.

We also explore how mining and METS firms react to commodity
price changes. In this exercise, our sample shrinks because we are only
able to categorize firms appearing in Bureau Van Dijk’s Orbis database
under specific NACE Rev.2 codes.7 We consider their mining patents as
dependent variables and we run a similar analysis to the one carried out
before. In Table 7.6, we report the same set of estimations run on two
different samples: only mining firms’ innovation (first and third col-
umns) and only METS firms’ innovation (second and fourth columns).
Only the innovations from METS firms seem to react to price changes,
while we do not find any significant effect of prices on innovation from
mining firms. This points toward the validation of H3.

Nevertheless, this could also be explained by the high rate of technology
outsourcing we observe in the mining industry. Given that most of the time
mining firms prefer to acquire technology from specialized suppliers rather
than producing it in-house, METS firms will be the ones absorbing the price
variations and adapting their innovation accordingly. This may also explain
why we do not observe any effect of price on patents in the shorter periods.
Mining firms are the ones directly exposed to price variations. Therefore, it
will take some time for this effect to be transferred toMETS firms, whichwill
then adapt their innovation decisions accordingly.

Tables 7.7 and 7.8 show the results for the panel specifications reported
in the third (columns 1a and 1b) and fourth (columns 2a and 2b)
equations, respectively, with the aggregate price index and with country-
specific prices. The two specifications evolve quite similarly, showing that

7 We classify mining firms as those companies operating in NACE sectors 0500, 0510, 0520,
0700, 0710, 0720, 0729, 0721, 0811, 0812, 0891, 0892 and 0899; and we categorize METS
firms as those companies operating in sectors 2892, 2822, 0990 and 0910.
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Table 7.6 Time series estimation, mining vs METS firms

Dependent Variable: Log. of mining patents applications worldwide

Mining firms METS Mining firms METS

(1) (2) (3) (4)

Log. of Price
Index

−0.032 0.708*** − −

(1st Lag) (0.143) (0.229)

Long cycle
component of

− − −0.139 1.260***

Log. of Price
Index (1st Lag)

(0.259) (0.391)

Medium cycle
component of

− − 0.124 1.047***

Log. of Price
Index (1st Lag)

(0.263) (0.398)

Short cycle
component of

− − 0.120 −0.199

Log. of Price
Index (1st Lag)

(0.277) (0.419)

Residual cycle
component of

− − −0.368 0.518

Log. of Price
Index (1st Lag)

(0.360) (0.544)

Log. of mining
quantity

0.766*** 0.290** 0.744*** 0.046

(2nd Lag) (0.089) (0.143) (0.132) (0.200)

Observations 44 44 44 44

Years 1970–2016 1970–2016 1970–2016 1970–2016

R-squared 0.67 0.36 0.69 0.45

Notes: The model is estimated with the seemingly unrelated estimator (SUR). The
dependent variable is included in logarithmic terms. All variables included in the
model are de-trended. A constant is included in each specification. Robust
standard errors in parentheses. *, ** and *** respectively denote significance at 10%,
5% and 1% levels.
Source: Authors’ calculations.
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Table 7.7 Panel estimation

Dependent Variable: Log. of mining patents by applicant country

(1a) (1b) (2a) (2b)

Log. of Price Index 0.177*** 0.191** − −

(1st Lag) (0.064) (0.076)

Mining rent as % − 0.045* − 0.014

of GDP (0.024) (0.026)

Price Index x Mining − −0.065*** − −

rent as % of GDP (0.017)

Long cycle of log. of − − 0.396*** 0.278**

Price Index (1st Lag) (0.126) (0.139)

LC # Mining rent − − − 0.196***

As % of GDP (0.065)

Medium cycle of log. of − − 0.069 0.247*

Price Index (1st Lag) (0.139) (0.126)

MC # Mining rent − − − −0.313***

As % of GDP (0.061)

Short cycle of log. of − − 0.006 0.029

Price Index (1st Lag) (0.096) (0.108)

SC # Mining rent − − − −0.069***

as % of GDP (0.020)

Residual cycle of log. of − − −0.157 −0.141

Price Index (1st Lag) (0.143) (0.149)

RC # Mining rent − − − 0.022

As % of GDP (0.028)

Log. of mining 0.026 0.020 −0.002 0.001

quantity (2nd Lag) (0.018) (0.017) (0.017) (0.017)

Observations 1505 1505 1505 1505

No. Countries 54 54 54 54

Years 1970–2016 1970–2016 1970–2016 1970–2016

Notes: The model is estimated with the Fixed-effects estimator. The dependent
variable is included in logarithmic terms. All variables included in the model are
de-trended. Country fixed-effects and a constant are included in each specification.
Robust standard errors in parentheses. *, ** and *** respectively denote significance
at 10%, 5% and 1% levels.
Source: Authors’ calculations.

https://doi.org/10.1017/9781108904209.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108904209.008


Table 7.8 Panel estimation, using country-specific price index

Dependent Variable: Log. of mining patents by applicant country

(1a) (1b) (2a) (2b)

Log. of Price
Index

0.083** 0.086** − −

(1st Lag) (0.034) (0.034)

Mining rent as % − 0.044 − 0.049

of GDP (0.039) (0.047)

Price Index #
Mining rent

− −0.025 − −

as % of GDP (0.022)

Long cycle
component of

− − 0.318*** 0.302**

log. of Price Index
(1st Lag)

(0.113) (0.121)

LC # Mining rent − − − 0.013

As % of GDP (0.033)

Medium cycle
component of

− − 0.016 0.102

log. of Price Index
(1st Lag)

(0.055) (0.063)

MC # Mining rent − − − −0.142**

As % of GDP (0.068)

Short cycle
component of

− − 0.018 0.038

log. of Price Index
(1st Lag)

(0.040) (0.043)

SC # Mining rent − − − −0.041

As % of GDP (0.029)

Residual cycle
component of

− − 0.022 −0.016

log. of Price Index
(1st Lag)

(0.080) (0.085)
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the use of a World Price Index does not distort findings compared to
a country-specific one. We tried the simple regression (columns a) and
we then added the country exposure to the mining sector and the
interaction term between the price and the country exposure (columns
1b and 2b).

Mining prices maintain a positive effect on mining innovation (as
predicted by H1a), mostly capturing the long cycle component. The
only main difference with the time-series specification is that the mining
demand loses its significance, which is probably due to the country-fixed
effects. The country exposure to the mining sector (measured by mining
rents as a percentage of GDP) is found to have a positive effect on
innovation only for the case of the country-invariant price index (Table
7.7), although only statistically significant at 10 percent. It is found
nonsignificant for the country-specific price index (Table 7.8).
Therefore, more exposed countries will, on average, innovate more in
mining technologies than non-mining ones. The interaction between the
price effect and exposure to the mining sector is found to be negative and

Table 7.8 (cont.)

Dependent Variable: Log. of mining patents by applicant country

(1a) (1b) (2a) (2b)

RC # Mining rent − − − 0.045

As % of GDP (0.041)

Log. of mining 0.020 0.012 0.009 −0.001

quantity (2nd Lag) (0.019) (0.019) (0.020) (0.020)

Observations 1063 1063 1063 1063

No. Countries 39 39 39 39

Years 1970–2016 1970–2016 1970–2016 1970–2016

Notes: The model is estimated with the fixed-effects estimator. The dependent
variable is included in logarithmic terms. All variables included in the model are
de-trended. Country fixed-effects and a constant are included in each specification.
Robust standard errors in parentheses. *, ** and *** respectively denote significance
at 10%, 5% and 1% levels.
Source: Authors’ calculations.
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significant in Table 7.7, while it loses its significance in Table 7.8. This
means that less-exposed countries will be the ones that react more to
price changes. An explanation for this could be found in the fact that
METS companies, which are among the top innovators, are not neces-
sarily located in mining countries. They can develop their technology in
their home country and then sell it to mining firms operating in other
countries.

If we have a closer look at this phenomenon introducing the distinction
across price cycles (second columns), we confirm what has been found
before: the long cycle component of the price is found to positively
influence the innovation rate, again confirming H2. In addition, through
the introduction of the interaction term, we find that mining countries
react more to price changes in the long cycles (see Figure 7.9: the higher
the exposure of a country to the mining sector, the bigger will be the
reaction of innovation to price changes), while non-mining ones react
more in the medium and short term (see Figures 7.10 and 7.11: the lower
the exposure of a country to the mining sector the bigger will be the
reaction of its innovation to price changes; for countries which are very
exposed to the mining activity, an increase in commodity price in the

Figure 7.9 Average marginal effect of long cycle component of price index on
innovation with 95% confidence intervals
Source: Authors’ calculations.
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Figure 7.10 Average marginal effect of medium cycle component of price index on
innovation with 95% confidence intervals
Source: Authors’ calculations.

Figure 7.11 Average marginal effect of short cycle component of price index on
innovation with 95% confidence intervals
Source: Authors’ calculations.
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medium and short term will have countercyclical effects on innovation).
Mining countries are slower to absorb the price effect, compared to METS
countries, which mostly affects them in the long run. This confirms our
idea that mining firms are, on average, less flexible than METS firms in
adapting to price changes. Therefore, there is a need for highly dependent
mining countries to implement countercyclical policies able to defeat the
negative effects of commodities down cycles, as anticipated in hypothesis
H4. The fact that these countries rely extensively on mining rents makes
them particularly vulnerable to commodity price depression, jeopardizing
their ability to remain competitive in the market. This condition affects
METS countries that rely only marginally on mining activity less. Their
diversification becomes a strong attribute in periods of low prices.

7.5 Concluding remarks

In this chapter, we studied the relationship between economic cycles and
innovation in the mining sector. In particular, we explored how the
business cycle of this sector is tied in with mining commodity price
fluctuation. In doing so, we focused on the impact of mineral and
metal price changes on the sector’s innovation.

We discussed the transmissionmechanisms based on the adaptation of
the existing literature on the cyclicality of innovation to the singularities
of the mining sector. We hypothesized a pro-cyclical impact if the
transmission is based on higher prices generating higher direct or indir-
ect disposable income that is, in turn, invested in innovation; and,
a countercyclical impact if lower prices increase the pressure to reduce
cost and increase efficiency through new technologies. We also conjec-
tured that price variation is more likely to affect innovation if perceived
as long-lasting shocks, if innovators are more technologically diversified
and if countries are more specialized in mining.

To test these hypotheses, we relied on novel mining innovation data
for the period 1970–2015, based on patent information and a series of
economic indicators related to the mining sector based on data from the
World Bank. We conducted the econometric analyses using both time
series and panel data. Our main contribution was to disentangle the
effects of price cycles of different lengths, namely long-term, medium-
term, short-term and residual. To identify them, we used the Christian
and Fitzgerald’s band-pass filter and isolated four components of the
price.
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Our setting attempted to circumvent several identification issues. We
accounted for the time lag between changes in demand, commodity
prices and innovation. To establish the optimal lag between these vari-
ables, we ran a series of correlation tests. We identified the price cycles
using the Christian and Fitzgerald band-pass filter, as in Cuddington and
Jerret (2008).

Overall, we found that mining innovation is pro-cyclical, increasing
in periods of commodity price boom and slowing down during reces-
sions. We found little evidence of countercyclical innovation. It is
worth noting that these two mechanisms may coexist. Hence,
a stronger pro-cyclical effect may be hiding a weaker countercyclical
one. Our model cannot resolve this question, but it does indicate that if
a countercyclical effect exists, it is weaker than the pro-cyclical one in
most of our estimations.

We found consistent empirical evidence on long price cycles affecting
mining innovation more than shorter ones. Indeed, most of the pro-
cyclical effect is related to the long cycle component of the price variation.
This is coherent with the long decision-making timeline associated with
the mining sector, where the bulk of the technological changes happen
when mines are opened or closed.

We also found evidence that the transmission of the pro-cyclical effect
happens indirectly through METS firms. When comparing mining and
METS firms, we found that onlyMETS firms were responsive to adapting
their innovation to price changes. Moreover, the estimations indicate
that METS are more responsive and faster to adapt their innovation to
price changes than the industry average.

According to our estimations, economies specializing in mining pro-
duce more mining innovation, but they are also less reactive to price
changes. Nevertheless, this behavior varies substantially across the length
of price cycles. More specialized economies react even more pro-
cyclically to changes of the long cycle component of price than more
diversified ones. Conversely, highly specialized economies may observe
countercyclical responses to medium and short cycle components, while
diversified economies may observe pro-cyclical responses also for the
medium cycle component.

These results indicate that mining-dependent economies put coun-
tercyclical measures in place based on innovation to cope with shorter-
term downturns of the business cycle. It also means that, in the upturn,
they are less reactive than more diversified economies. The latter are
likely to have more technologically diversified innovation systems
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composed by innovative METS firms able to adapt new technologies to
the mining sector.
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