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Abstract

We obtain an atomic decomposition for weighted Triebel–Lizorkin spaces on spaces of homogeneous
type, using the area function, the discrete Calderón reproducing formula and discrete sequence spaces.
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1. Introduction and statement of main result

Spaces of homogeneous type were introduced by Coifman and Weiss [3] in the 1970s
in order to extend the Calderón–Zygmund theory of singular integrals to a more
general setting. These spaces have no translations or dilations, no analogues of the
Fourier transform or convolution, and no group structure. Examples of spaces of
homogeneous type include Euclidean space, the n-torus, smooth compact Riemannian
manifolds, the boundaries of Lipschitz domains, and d-sets in Rn .

Recently, based on the works of Christ [1] and David et al. [4], Deng and Han [5]
developed a version of harmonic analysis on spaces of homogeneous type, using
discrete Littlewood–Paley–Stein analysis. They first defined test function spaces and
the so-called distribution spaces on spaces of homogeneous type, and then proved a
new ‘T 1-theorem’, namely, the boundedness on a test function space of a certain class
of Calderón–Zygmund operators whose kernels satisfy an additional second-order
smoothness condition. Next, they established several discrete Calderón reproducing
formulas on spaces of homogeneous type. As an application of these results, they
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studied function spaces on spaces of homogeneous type, including L p, where 1<
p <∞, the generalized Sobolev spaces L̇ p,s , the Hardy spaces H p, the bounded mean
oscillation space and the Besov spaces. Theorems of T 1 type on these spaces are also
proved. Han [10, 11] studied Triebel–Lizorkin spaces on spaces of homogeneous type,
using discrete Littlewood–Paley–Stein analysis. See also [16, 18, 22].

We recall the definition of Muckenhoupt weights. A weightw belongs to Aq , where
1< q <∞, if there is a constant Cq such that

sup
B⊂X

(
1

µ(B)

∫
B
w(x) dµ(x)

)(
1

µ(B)

∫
B
w(x)−1/(q−1) dµ(x)

)q−1

≤ Cq . (1.1)

The class A1 is defined by letting q tend to 1, that is,

sup
B⊂X

(
1

µ(B)

∫
B
w(x) dµ(x)

)
‖w−1

‖L∞(B) ≤ C1,

where C1 depends only on w. These classes, in the Euclidean setting, were introduced
by Muckenhoupt [20] and developed by Coifman and Fefferman [2]; see also García-
Cuerva and Rubio de Francia [9]. For more information on Muckenhoupt weights, we
refer the reader to Stein [21].

In this paper, we consider weights that belong to the class A∞, which is the union
of the classes Aq when 1≤ q <∞; we define the critical index qw of w by

qw = inf{q > 1 : w ∈ Aq}.

García-Cuerva and Martell [8] found the wavelet characterization of the weighted
Hardy space H p

w(R). Deng et al. [6] gave an atomic characterization of the weighted
Triebel–Lizorkin spaces Ḟα,qp,w(Rn), using an idea of [8], namely, of combining wavelet
analysis and the theory of vector-valued Calderón–Zygmund operators. See [6,
Theorem 1].

The aim of this paper is to study weighted Triebel–Lizorkin spaces on spaces of
homogeneous type and present an atomic decomposition of functions in these spaces.
The main tools used are the area function and the discrete Calderón reproducing
formula. We also study the duality between these weighted Triebel–Lizorkin spaces by
considering weighted sequence spaces, and the lifting and projection operators on the
weighted Triebel–Lizorkin spaces. Sequence spaces originated in the work of Frazier
and Jawerth [7], and were developed by Deng and Han [5] in the single-parameter case
and by Han, Lu and the author [13, 14] in the multi-parameter cases.

We now begin by recalling the definitions necessary for introducing weighted
Triebel–Lizorkin spaces on spaces of homogeneous type. A quasi-metric d on a set X
is a function d : X × X −→ [0,∞) satisfying the conditions:

(i) d(x, y)= 0 if and only if x = y;
(ii) d(x, y)= d(y, x) for all x, y ∈ X ;
(iii) there exists a constant A ∈ [1,∞) such that d(x, y)≤ A[d(x, z)+ d(z, y)] for

all x, y, z ∈ X .
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Any quasi-metric defines a topology, whose balls B(x, r)= {y ∈ X : d(y, x) < r}
form a base. But the balls need not be open if A > 1.

We now state the definition of a space of homogeneous type.

DEFINITION 1.1 [3]. A space of homogeneous type (X, d, µ) is a set X with a quasi-
metric d and a nonnegative Borel regular measure µ on X such that 0< µ(B(x, r)) <
∞ (for all x ∈ X and all r > 0) and there exists a positive constant A′ such that

µ(B(x, 2r))≤ A′µ(B(x, r))

for all x ∈ X and r > 0. Hereµ is assumed to be defined on a σ -algebra which contains
all Borel sets and all balls B(x, r).

We suppose that µ(X)=∞ and µ({x})= 0 for all x ∈ X . It was shown by Macías
and Segovia [19, Theorems 2 and 3] that, in this case, ρ′(x, y), the infimum of the
measures µ(B) where B runs over the balls containing x and y, is a quasi-metric on
X yielding the same topology as d . Further, there is a quasi-metric ρ equivalent to ρ′

in the sense that there is a constant C such that C−1ρ′(x, y)≤ ρ(x, y)≤ Cρ(x, y) for
all x, y ∈ X , and there are constants C and 0< θ < 1 such that

C−1r ≤ µ(B(x, r))≤ Cr

for all x ∈ X and r > 0, and

|ρ(x, y)− ρ(x ′, y)| ≤ Cρ(x, x ′)θ [ρ(x, y)+ ρ(x ′, y)]1−θ

for all x, x ′, y ∈ X . For more on spaces of homogeneous type, see [5, Section 1.2].
We now recall the notion of an approximation to the identity on X .

DEFINITION 1.2 [5]. A sequence {Sk}k∈Z of operators is said to be an approximation
to the identity of order ε ∈ (0, θ ] if there exists a constant C > 0 such that for all k ∈ Z
and all x, x ′, y, y′ ∈ X , the kernel Sk(·, ·) of the operator Sk is a function from X × X
to C satisfying

|Sk(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))1+ε
; (1.2)

|Sk(x, y)− Sk(x
′, y)| ≤ C

(
ρ(x, x ′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
(1.3)

when ρ(x, x ′)≤ (2A)−1(2−k
+ ρ(x, y));

|Sk(x, y)− Sk(x, y′)| ≤ C

(
ρ(y, y′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
(1.4)

when ρ(y, y′)≤ (2A)−1(2−k
+ ρ(x, y));

|Sk(x, y)− Sk(x, y′)− Sk(x ′, y)+ Sk(x ′, y′)|

≤ C

(
ρ(x, x ′)

2−k + ρ(x, y)

)ε(
ρ(y, y′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
(1.5)
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when ρ(x, x ′), ρ(y, y′)≤ (2A)−1(2−k
+ ρ(x, y));∫

X
Sk(x, y) dµ(y)=

∫
X

Sk(x, y) dµ(x)= 1. (1.6)

REMARK 1.3. An approximation to the identity was constructed by Coifman as
follows. Take a nonnegative smooth function h equal to 1 on [1, 9] and supported in
[0, 10]. Let Hk be the operator with kernel 2kh(2kρ(·, ·)). The doubling condition
on µ and the construction of h imply that there is a constant C ≥ 1 such that
C−1
≤ Hk(1)≤ C for all k ∈ Z. Let Mk and Wk be the operators of pointwise

multiplication by (Hk(1))−1 and wk = (Hk(Hk(1))−1)−1 respectively, and finally let
S̃k = Mk Hk Wk Hk Mk . It is easy to check that this S̃k satisfies conditions (i)–(iv) of
Definition 1.2. Examples of approximations to the identity on Euclidean space include
the Gaussian kernel and the Poisson kernel.

DEFINITION 1.4 [5]. Fix γ > 0 and 0< β ≤ ε. We say that a function f defined on
X belongs to M(x0, r, β, γ ) if it satisfies the following conditions:

(i) | f (x)| ≤ C
rγ

(r + ρ(x, x0))1+γ
;

(ii) | f (x)− f (y)| ≤ C

(
ρ(x, y)

r + ρ(x, x0)

)β rγ

(r + ρ(x, x0))1+γ

for all x, y ∈ X with ρ(x, y)≤ (2A)−1(r + ρ(x, x0)).

For a fixed x0 ∈ X , we write M(β, γ )=M(x0, 1, β, γ ), and define

‖ f ‖M(β,γ ) = inf{C > 0 : (i) and (ii) hold}.

Let M0(β, γ ) be the set of all f ∈M(β, γ ) such that
∫

X f (x) dµ(x)= 0. Its dual
space, denoted by (M0(β, γ ))

′, consists of all linear functionals L from M0(β, γ )

to C for which there exists a constant C such that |L( f )| ≤ C‖ f ‖M0(β,γ ) for all
f ∈M0(β, γ ).

Let {Sk}k be an approximation to the identity of order ε, and set Dk = Sk − Sk−1.
Then for every f ∈ (M0(β, γ ))

′, where 0< β, γ < ε, we define the Littlewood–Paley
G-function and the S-function by

Gα,q( f )(x)=

{∑
k

(2kα
|Dk( f )(x)|)q

}1/q

; (1.7)

Sα,q( f )(x)=

{∑
k

∫
ρ(x,y)≤C32−k

2k(2kα
|Dk( f )(y)|)q dµ(y)

}1/q

. (1.8)

We now introduce the weighted Triebel–Lizorkin spaces Ḟα,qp,w(X).

https://doi.org/10.1017/S144678871000159X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871000159X


[5] Atomic decomposition of weighted Triebel–Lizorkin spaces 259

DEFINITION 1.5. Suppose that −ε < α < ε while min(1+ α + ε, 1+ ε)−1 < p <
∞ and 1< q <∞. Given w ∈ A∞ with qw ≤ q , the weighted Triebel–Lizorkin space
Ḟα,qp,w(X), where 0< β, γ < ε, is the collection of all f ∈ (M0(β, γ ))

′ that satisfy

‖ f ‖Ḟα,qp,w(X)
= ‖Gα,q( f )‖L p

w(X)
<∞, (1.9)

where the L p
w(X) are weighted L p spaces.

In particular, when w = 1, we denote Ḟα,qp,w(X) by Ḟα,qp (X).

DEFINITION 1.6. Suppose that−ε < α < ε and min(1+ α + ε, 1+ ε)−1 < p ≤ 1<
q <∞. A function a ∈ (M0(β, γ ))

′, where 0< β, γ < ε, is said to be a (p, q, α)-
atom for Ḟα,qp,w(X) if

supp a ⊂ B = B(x0, r); (1.10)

‖a‖Ḟα,qq,w(X)
≤ w(B)1/q−1/p

; (1.11)∫
X

a(x) dµ(x)= 0. (1.12)

Here is the main result of this paper.

THEOREM 1.7. Suppose that −ε < α < ε and min(1+ α + ε, 1+ ε)−1 < p ≤ 1<
q <∞. Given w ∈ A∞ for which qw ≤ q, a function f defined on X belongs to
Ḟα,qp,w(X) if and only if f has a decomposition

f (x)=
∞∑

k=0

λkak(x),

where the series converges in the sense of (M0(β, γ ))
′ where 0< β, γ < ε, the ak are

(p, q, α)-atoms, and
∑

k |λk |
p <∞. Furthermore,

‖ f ‖Ḟα,qp,w(X)
≈ inf

( ∞∑
k=0

|λk |
p
)1/p

,

where the infimum is taken over all such decompositions.

This paper is organized as follows. In Section 2 we recall the continuous and
discrete Calderón reproducing formulas on spaces of homogeneous type, and obtain
the Plancherel–Pólya inequalities for Ḟα,qp,w(X) and an equivalence of Ḟα,qp,w(X) in terms
of the S-function. In Section 3, we use the sequence spaces of Frazier and Jawerth to
obtain the duality of Ḟα,qp,w(X) (see Theorem 3.5 below). The proof of our main result,
Theorem 1.7, is given in Section 4 by combining the results of Section 3, estimates of
the area function, and the continuous Calderón reproducing formula.

Throughout, C will denote (possibly different) constants that are independent of the
essential variables. Further, A ≈ B means that the ratio A/B is bounded and bounded
away from zero by constants that do not depend on the relevant variables in A and B.
And q ′ denotes the conjugate index of q ∈ (1,∞), that is, 1/q + 1/q ′ = 1.
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2. Some basic results

We first recall a result of Christ [1], which gives an analogue of the Euclidean dyadic
cubes.

LEMMA 2.1 [1]. Let (X, ρ, µ) be a space of homogeneous type. Then there exist a
collection {Qk

α ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set, and
constants C1, C2 > 0, such that:

(i) µ(X \
⋃
α Qk

α)= 0 for each fixed k and Qk
α ∩ Qk

β = ∅ if α 6= β;

(ii) for all α, β, k, l where l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅;

(iii) for each (k, α) and each l < k, there is a unique β such that Qk
α ⊂ Ql

β ;

(iv) diam(Qk
α)≤ C12−k;

(v) each Qk
α contains a ball B(yk

α, C22−k), where yk
α ∈ X.

We think of Qk
α as a dyadic cube with diameter roughly 2−k and center

yk
α . We define CQk

α to be the dyadic cube with the same center as Qk
α and

diameter C diam(Qk
α). When k ∈ Z and τ ∈ Ik , we denote by Qk,v

τ , where v =
1, 2, . . . , N (k, τ ), the set of all cubes Qk+J

τ ⊂ Qk
τ , where J is a fixed large positive

integer, and by yk,v
τ a point in Qk,v

τ .
We now state the continuous and the discrete Calderón reproducing formulas on

spaces of homogeneous type, as developed in [5].

PROPOSITION 2.2 (Continuous Calderón reproducing formula). Suppose that {Sk}k
is an approximation to the identity of order ε. Set Dk = Sk − Sk−1 for all k ∈ Z. Then
there exists a family of operators {D̄k}k such that

f =
∑

k

Dk D̄k( f ), (2.1)

for all f ∈ (M0(β, γ ))
′, the dual of M0(β, γ ), and the series converges in the sense

that

lim
M→∞

〈 ∑
|k|≤M

Dk D̄k( f ), g

〉
= 0

for all g ∈M0(β
′, γ ′), where 0< β < β ′ and 0< γ < γ ′. Moreover, the kernel of D̄k

satisfies (1.2) and (1.4) with ε replaced by ε′, where 0< ε′ < ε, and∫
X

D̄k(x, y) dµ(x)=
∫

X
D̄k(x, y) dµ(y)= 0.

PROPOSITION 2.3 (Discrete Calderón reproducing formula). Suppose that {Sk}k is an
approximation to the identity of order ε, and set Dk = Sk − Sk−1 for all k ∈ Z. Then
there exists a family of operators {D̃k}k such that, for all f ∈M0(β, γ ),

f (x)=
∑
k∈Z

∑
τ∈Ik

N (k,τ )∑
v=1

µ(Qk,v
τ )D̃k(x, yk,v

τ )Dk( f )(yk,v
τ ), (2.2)
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where the series converges in the norm of M0(β
′, γ ′), where 0< β ′ < β and 0< γ ′ <

γ , and also in the space M0(β
′′, γ ′′) where 0< β < β ′′ and 0< γ < γ ′′. Moreover,

the kernel of D̃k satisfies (1.2) and (1.3) with ε replaced by ε′, where 0< ε′ < ε, and∫
X

D̃k(x, y) dµ(x)=
∫

X
D̃k(x, y) dµ(y)= 0.

In order to verify that the definition of Ḟα,qp,w(X) is independent of the choices of
approximations to the identity, we need the following Plancherel–Pólya inequalities.

LEMMA 2.4. Suppose that {Sk}k∈Z and {Pk}k∈Z are approximations to the identity of
order ε, Dk = Sk − Sk−1 and Ek = Pk − Pk−1. Then when f ∈ (M0(β, γ ))

′ where
0< β, γ < ε, −ε < α < ε and min(1+ α + ε, 1+ ε)−1 < p, q <∞,∥∥∥∥{∑

k∈Z

∑
τ∈Ik

N (k,τ )∑
v=1

[
µ(Qk,v

τ )−α sup
x∈Qk,v

τ

|Dk( f )(x)|χQk,v
τ
(·)

]q}1/q∥∥∥∥
L p
w

≈
∥∥∥∥{∑

k∈Z

∑
τ∈Ik

N (k,τ )∑
v=1

[
µ(Qk,v

τ )−α inf
x∈Qk,v

τ

|Ek( f )(x)|χQk,v
τ
(·)

]q}1/q∥∥∥∥
L p
w

.

(2.3)

The proof of Lemma 2.4 is similar to that of [5, Theorem 4.6] with only minor
modifications. We omit the details here.

Using the definition of Qk,v
τ and Lemma 2.4, we see that when f ∈ Ḟα,qp,w(X),∥∥∥∥{∑

k∈Z

∑
τ∈Ik

N (k,τ )∑
v=1

[
µ(Qk,v

τ )−α inf
x∈Qk,v

τ

|Dk( f )(x)|χQk,v
τ
(·)

]q}1/q∥∥∥∥
L p
w

≈

∥∥∥∥{∑
k∈Z

∑
τ∈Ik

N (k,τ )∑
v=1

[
µ(Qk,v

τ )−α sup
x∈Qk,v

τ

|Ek( f )(x)|χQk,v
τ
(·)

]q}1/q∥∥∥∥
L p
w

≈

∥∥∥∥{∑
k

(2kα
|Dk( f )(·)|)q

}1/q∥∥∥∥
L p
w

= ‖Gα,q( f )‖Ḟα,qp,w(X)

= ‖ f ‖Ḟα,qp,w(X)
.

This shows that the definition of Ḟα,qp,w(X) is independent of the choice of the
approximation to the identity.

To obtain an atomic decomposition for Ḟα,qp,w(X), we need an equivalent
characterization of Ḟα,qp,w(X) in terms of area function. More precisely, we have the
following result.

LEMMA 2.5. For all f ∈ Ḟα,qp,w(X),

‖ f ‖Ḟα,qp,w(X)
= ‖Gα,q( f )‖L p

w
≈ ‖Sα,q( f )‖L p

w
.
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PROOF. From (1.8) and Lemma 2.4, we obtain

‖Sα,q( f )‖L p
w

=

∥∥∥∥{∑
k

∫
ρ(x,y)≤C32−k

2k(2kα
|Dk( f )(y)|)q dµ(y)

}1/q∥∥∥∥
L p
w

=

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

∫
ρ(x,y)≤C32−k

2k(2kα
|Dk( f )(y)|)q dµ(y)χQk,v

τ
(x)

}1/q∥∥∥∥
L p
w

≤

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

∫
ρ(x,y)≤C32−k

2k

×

(
2kα sup

z∈CQk,v
τ

|Dk( f )(z)|

)q

dµ(y)χQk,v
τ
(x)

}1/q∥∥∥∥
L p
w

≤ C

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

(
2kα sup

z∈CQk,v
τ

|Dk( f )(z)|

)q

χQk,v
τ
(x)

}1/q∥∥∥∥
L p
w

≤ C‖Gα,q( f )‖L p
w
.

On the other hand,

‖Sα,q( f )‖L p
w

≥

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

∫
ρ(x,y)≤C32−k

2k

×

(
2kα inf

z∈CQk,v
τ

|Dk( f )(z)|

)q

dµ(y)χQk,v
τ
(x)

}1/q∥∥∥∥
L p
w

≥ C

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

(
2kα inf

z∈CQk,v
τ

|Dk( f )(z)|

)q

χQk,v
τ
(x)

}1/q∥∥∥∥
L p
w

≥ C‖Gα,q( f )‖L p
w
,

which proves Lemma 2.5. 2

LEMMA 2.6. If w ∈ Aq , where 1< q <∞, then

µ(Q)≤ w(Q)1/q(w[(Q))(q−1)/q
≤ Cqµ(Q), (2.4)

wherew(Q)=
∫

Qw(x) dµ(x),w[=w−1/(q−1) andw[(Q)=
∫

Qw(x)
−1/(q−1) dµ(x).
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PROOF. From (1.1),

1
µ(Q)

∫
Q

dµ(x) = 1/µ(Q)
∫

Q
w(x)1/qw(x)−1/q dµ(x)

≤

(
1

µ(Q)

∫
Q
w(x) dµ(x)

)1/q

×

(
1

µ(Q)

∫
Q
w(x)−1/(q−1) dµ(x)

)(q−1)/q

≤ Cq .

This proves (2.4). 2

3. Duality of weighted Triebel–Lizorkin spaces

In recent years Han and Lu have developed an approach to the Hardy spaces H p

and Carleson measure spaces CMOp, where p ≤ 1 and near 1, and obtained the duality,
using discrete Littlewood–Paley–Stein analysis. More precisely, they defined a type of
sequence spaces s p and cp, and proved that H p can be lifted to s p and s p can be
projected to H p. Moreover, the composition of the lifting and projection operators is
equal to the identity operator on H p. Similar results hold for CMOp and cp. Then,
they showed the duality between s p and cp. Finally, by working on the level of
sequence spaces, they obtained the duality between H p and CMOp. Their methods
can be applied to the multi-parameter product case [13], the multi-parameter case
with implicit flag structures [14] and also the multi-parameter case with Zygmund
dilations [15].

In this section, we will show that the dual space of Ḟα,qq,w(X) is Ḟ−α,q
′

q ′,w′ (X) when

−ε < α < ε, 1< q <∞ and w ∈ A∞ where qw ≤ q and w′ = w−1/(q−1)
= w[ ∈ Aq ′ .

Following [5], we introduce sequence spaces.

DEFINITION 3.1. Let χ̃Q(x)= µ(Q)−1/2χ(x). When −ε < α < ε and 1< p,

q <∞, the sequence space ḟ α,qp,w is defined to be the set of all complex-valued
sequences

s = {sQk,v
τ
}k∈Z;τ∈Ik ;v=1,...,N (k,τ )

such that

‖s‖ ḟ α,qp,w
=

∥∥∥∥{∑
k

∑
τ∈Ik

N (k,τ )∑
v=1

(µ(Qk,v
τ )−α|sQk,v

τ
|χ̃Qk,v

τ
(·))q

}1/q∥∥∥∥
L p
w

<∞.

We now prove the following theorem.

THEOREM 3.2. When −ε < α < ε and 1< q <∞,

( ḟ α,qq,w)
′
= ḟ −α,q

′

q ′,w′ . (3.1)
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PROOF. Given a sequence t ∈ ḟ −α,q
′

q ′,w′ , set

L(s)=
∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

sQk,v
τ

t̄Qk,v
τ
,

for all sequences s ∈ ḟ α,qq,w . By Hölder’s inequality,

|L(s)| ≤
∫ ∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

µ(Qk,v
τ )−α|sQk,v

τ
|χ̃Qk,v

τ
(x)w1/q(x)

× µ(Qk,v
τ )α|tQk,v

τ
|χ̃Qk,v

τ
(x)w−1/q(x) dµ(x)

≤ ‖s‖ ḟ α,qq,w
‖t‖

ḟ −α,q
′

q′,w′
,

and hence ḟ −α,q
′

q ′,w′ ⊆ ( ḟ α,qq,w)
′.

Conversely, for every L ∈ ( ḟ α,qq,w)
′, we see that

L(s)=
∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

sQk,v
τ

t̄Qk,v
τ

for some sequence t = {tQk,v
τ
}k∈Z;τ∈Ik ;v=1,...,N (k,τ ). Define

Lq
w(l

q)=

{
f = { fk} : ‖ f ‖Lq

w(lq ) ≡

∥∥∥∥(∑
k∈Z
| fk |

q
)1/q∥∥∥∥

Lq
w

}
.

Then (Lq
w(lq))′ = Lq ′

w′
(lq ′) when 1< q <∞, with the obvious pairing, namely,

f 7→
∫

X

∑
k

fk(x)ḡk(x) dµ(x)

when g = {gk} ∈ Lq ′

w′
(lq ′), and the map In from ḟ α,qq,w to Lq

w(lq) defined by In(s)=
{ fk(s)}, where

fk(s)=
∑
τ∈Ik

N (k,τ )∑
v=1

µ(Qk,v
τ )−αsQk,v

τ
χ̃Qk,v

τ
,

is a linear isometry onto a subspace of Lq
w(lq). By the Hahn–Banach theorem, there

exists L̃ ∈ Lq ′

w′
(lq ′) with ‖L̃‖ = ‖L‖ such that L̃ ◦ In= L . In other words, there exists

g = {gk} ∈ Lq ′

w′
(lq ′) with ‖g‖

Lq′

w′
(lq′ )
≤ ‖L‖ such that

L̃ ◦ In(s)= L(s)=
∫

X

∑
k

fk(x)ḡk(x) dµ(x)
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for all s ∈ ḟ α,qq,w . Substituting the expression for fk into this formula, we obtain

L(s)=
∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

sQk,v
τ

t̄Qk,v
τ
,

where

tQk,v
τ
=

∫
Qk,v
τ

gk(y) dµ(y)�µ(Qk,v
τ )α+1/2.

Denote by M the Hardy–Littlewood maximal operator. Using the vector-valued
maximal inequality, we see that

‖t‖
ḟ −α,q

′

q′,w′
≤ ‖M(g)‖

Lq′

w′
(lq′ )
≤ C‖g‖

Lq′

w′
(lq′ )
≤ C‖L‖.

This completes the proof of Theorem 3.2. 2

We recall the lifting and projection operators defined in [5].

DEFINITION 3.3. Let yk,v
τ be the center of Qk,v

τ as in Lemma 2.1.

(i) For a function f ∈ (M0(β, γ ))
′, we define

SD( f )= {µ(Qk,v
τ )1/2 Dk( f )(yk,v

τ )}k∈Z;τ∈Ik ;v=1,...,N (k,τ ). (3.2)

(ii) For a sequence s ∈ ḟ α,qq,w , we define

TD̃(s)(x)=
∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

sQk,v
τ
µ(Qk,v

τ )1/2 D̃k(x, yk,v
τ ). (3.3)

To obtain the duality of weighted Triebel–Lizorkin spaces, we need to work at the level
of sequence spaces.

PROPOSITION 3.4. Let SD and TD̃ be the operators in Definition 3.3. Then for all
f ∈ Ḟα,qq,w(X),

‖SD( f )‖ ḟ α,qq,w
≤ C‖ f ‖Ḟα,qq,w(X)

. (3.4)

Conversely, for all sequences s ∈ ḟ α,qq,w ,

‖TD̃(s)‖Ḟα,qq,w(X)
≤ C‖s‖ ḟ α,qq,w

. (3.5)

Moreover, TD̃ ◦ SD is equal to the identity on Ḟα,qq,w(X).

PROOF. Estimate (3.4) follows directly from Lemma 2.4 and Definition 3.3.
We now prove (3.5). To simplify our notation, we work with dyadic cubes of the

form {Qk
τ : k ∈ Z, τ ∈ Ik+J }. Set

mQk
τ
(x)= µ(Qk

τ )
1/2 D̃k(x, yk

τ ).
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From the size and cancellation conditions on D j and D̃k ,

D j (mQk
τ
)(x)≤ Cµ(Qk

τ )
1/22−( j−k)ε′ 1

(1+ 2kρ(x, yk
τ ))

1+ε . (3.6)

Write

‖TD̃(s)‖Ḟα,qq,w(X)
=

∥∥∥∥{∑
j

(2 jα
|D j (TD̃(s))|)

q
}1/q∥∥∥∥

Lq
w

≤

∥∥∥∥{∑
j

(
2 jα

∑
k> j

∑
τ∈Ik+J

|sQk
τ
||D j (mQk

τ
)(·)|

)q}1/q∥∥∥∥
Lq
w

+

∥∥∥∥{∑
j

(
2 jα

∑
k≤ j

∑
τ∈Ik+J

|sQk
τ
||D j (mQk

τ
)(·)|

)q}1/q∥∥∥∥
Lq
w

=: T1 + T2,

say. We first estimate the term T1. Denote

a = {ak}k =

{
M

(
µ(Qk

τ )
−α

∑
τ∈Ik+J

|sQk
τ
|χ̃Qk

τ

)}
k
;

b = {bk}k = {2k(ε′+α)χ{k∈Z:k<0}(k)}k .

Then Young’s inequality and the vector-valued maximal inequality, together with the
formula

(a ∗ b) j (x)=
∑

k

ak(x)b j−k,

give

T1 ≤ C‖‖a ∗ b(·)‖lq‖Lq
w
≤ C‖‖a(·)‖lq‖b‖l1‖Lq

w
≤ C‖‖a(·)‖lq‖Lq

w

≤ C

∥∥∥∥{∑
k

(
M

(
µ(Qk

τ )
−α

∑
τ∈Ik+J

|sQk
τ
|χ̃Qk

τ

)
(·)

)q}1/q∥∥∥∥
Lq
w

≤ C

∥∥∥∥{∑
k

(
µ(Qk

τ )
−α

∑
τ∈Ik+J

|sQk
τ
|χ̃Qk

τ
(·)

)q}1/q∥∥∥∥
Lq
w

≤ C‖s‖ ḟ α,qq,w
,

where the first inequality is because µ(Qk
τ )
−α ≈ 2kα and∑

k> j

∑
τ∈Ik+J

|sQk
τ
||D j (mQk

τ
)(x)| ≤ C

∑
k> j

2( j−k)ε′M

( ∑
τ∈Ik+J

|sQk
τ
|χ̃Qk

τ

)
(x).

A similar argument shows that T2 ≤ C‖s‖ ḟ α,qq,w
. This completes the proof of (3.5). 2
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Finally, we prove a duality result of weighted Triebel–Lizorkin spaces.

THEOREM 3.5. Suppose that 0< β, γ < ε, while −ε < α < ε and 1< q <∞. Then

(Ḟα,qq,w(X))
′
= Ḟ−α,q

′

q ′,w′ (X).

More precisely, if g ∈ Ḟ−α,q
′

q ′,w′ (X), then the map Lg , defined by Lg( f )= 〈 f, g〉, initially

for f ∈M0(β, γ ), extends to a continuous linear functional on Ḟα,qq,w(X) and

‖Lg‖≈ ‖g‖Ḟ−α,q
′

q′,w′
(X)
.

Conversely, every L ∈ (Ḟα,qq,w(X))′ is equal to Lg for some g ∈ Ḟ−α,q
′

q ′,w′ (X).

PROOF. If g ∈ Ḟ−α,q
′

q ′,w′ (X) and f ∈M0(β, γ ), then from Proposition 3.4,

〈 f, g〉 = 〈TD̃ ◦ SD( f ), g〉 ≡ 〈SD( f ), SD̃(g)〉,

where
SD̃(g)= {µ(Q

k,v
τ )1/2 D̃k(g)(y

k,v
τ )}k∈Z;τ∈Ik ;v=1,...,N (k,τ ).

By Lemma 2.4 and Definition 3.3,

‖SD̃(g)‖ ḟ −α,q
′

q′,w′
≤ C‖g‖

Ḟ−α,q
′

q′,w′
(X)
,

and then

|〈 f, g〉| ≤ ‖SD( f )‖ ḟ α,qq,w
‖SD̃(g)‖ ḟ −α,q

′

q′,w′
≤ ‖ f ‖Ḟα,qq,w(X)

‖g‖
Ḟ−α,q

′

q′,w′
(X)
.

This proves that
‖Lg‖ ≤ C‖g‖

Ḟ−α,q
′

q′,w′
(X)
.

Conversely, suppose that L ∈ (Ḟα,qq,w(X))′. Then

L1 ≡ L ◦ TD̃ ∈ ( ḟ α,qq,w)
′.

By Theorem 3.2, there exists t ∈ ḟ −α,q
′

q ′,w′ such that L1(s)= 〈t, s〉 for all s ∈ ḟ α,qq,w , and

‖t‖
ḟ −α,q

′

q′,w′
≈ ‖L1‖ ≤ C‖L‖

since TD̃ is bounded. Now L1 ◦ SD = L ◦ TD̃ ◦ SD = L by Proposition 3.4. Hence,

L( f )= L ◦ TD̃(SD( f ))= 〈SD( f ), t〉 = 〈 f, TD(t)〉

for all f ∈ Ḟα,qq,w(X), where

TD(t)=
∑

k

∑
τ∈Ik

N (k,τ )∑
v=1

tQk,v
τ
µ(Qk,v

τ )1/2 Dk(x, yk,v
τ ).
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By Lemma 2.4 and Definition 3.3, we obtain

‖TD(t)‖ ḟ −α,q
′

q′,w′
≤ C‖t‖

ḟ −α,q
′

q′,w′
≤ C‖L‖.

Let g = TD(t) ∈ ḟ −α,q
′

q ′,w′ . This completes the proof of the theorem. 2

4. Proof of Theorem 1.7

To prove the ‘if’ part of Theorem 1.7, we need the following lemma.

LEMMA 4.1. Let Sα,q be the area function defined in (1.8). Then there exists a positive
constant C such that for all (p, q, α)-atoms a,

‖Sα,q(a)‖
p
L p
w
≤ C. (4.1)

Let us take this lemma for granted for the moment.

PROOF OF THEOREM 1.7. Let f (x)=
∑

k λkak(x), where each ak is a (p, q, α)-
atom, as in Definition 1.6. From Lemma 4.1,

‖ f ‖p
Ḟα,qp,w(X)

= ‖Sα,q( f )‖p
L p
w
≤

∑
k

|λk |
p
‖Sα,q(ak)‖

p
L p
w
≤ C

∑
k

|λk |
p.

Conversely, we use the construction of an approximation to the identity by Coifman,
as in Remark 1.3, to obtain {Sk}k on X for which there exists a constant C4 such that,
for all k ∈ Z and x, x ′, y ∈ X :

(i) Sk(x, y)= 0 if ρ(x, y) > C42−k and ‖Sk‖∞ ≤ C42k ;
(ii) |Sk(x, y)− Sk(x ′, y)| ≤ C42k(1+ε)ρ(x, x ′)ε ;
(iii)

∫
X Sk(x, y) dµ(y)= 1;

(iv) Sk(x, y)= Sk(y, x);

We can check that such {Sk}k satisfies all the conditions in Definition 1.2. Moreover,
we can see that for each fixed y, when Sk(x, y) is considered as a function of x , it is
supported on {x ∈ X : ρ(x, y)≤ C42−k

}. Set Dk = Sk − Sk−1. Then we can see that
similar results hold for Dk but with (iii) replaced by:

(iii)′
∫

X Dk(x, y) dµ(y)= 0.

Substituting this {Dk}k into (1.8), Definition 1.2 and Proposition 2.2, for a function
f ∈ Ḟα,qp,w(X), we let

�k = {x ∈ X : Sα,q( f )(x) > 2k
},

Bk = {Q : w(Q ∩�k) > w(Q)/2, w(Q ∩�k+1)≤ w(Q)/2},

�̃k = {x ∈ X : M(χ�)(x) > 1/2}.

From Lemma 2.1, we know that for each dyadic cube Q in X , there is a unique k ∈ Z
such that Q = Qk

α for some α ∈ Ik . We denote such k by kQ . Also, for each dyadic
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cube Q, there is a unique k ∈ Z such that Q ∈ Bk . For each dyadic cube Q ∈ Bk , there
is a unique maximal dyadic cube Q′ ∈ Bk such that Q ⊆ Q′. Denote the collection of
all maximal dyadic cubes in Bk by Qk

i , i ∈ Jk , an index set which depends on k (it may
be finite). We then have for all dyadic cubes Q,⋃

Q

Q =
⋃

k

⋃
i∈Jk

⋃
Q⊆Qk

i ,Q∈Bk

Q.

Applying the Calderón reproducing formula (Proposition 2.2), we see that

f (x) =
∑

k

Dk D̄k( f )(x)

=

∑
k

∑
i∈Jk

∑
Q⊆Qk

i ,Q∈Bk

∫
Q

DkQ (x, y)D̄kQ ( f )(y) dµ(y).

To obtain an atomic decomposition, we first claim that∑
Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)qw(Q) dµ(y)≤ C2kqw(�k), (4.2)

where C is a constant independent of k and i .
Indeed, by (1.8) and the definition of Bk ,∫

�̃k\�k+1

Sα,q( f )(x)qw(x) dµ(x)

≥ C
∫
�̃k\�k+1

∑
j

∫
ρ(x,y)≤C32− j

× 2 j (2 jα
|D̄ j ( f )(y)|)q dµ(y)w(x) dµ(x)

≥ C
∑

j

∫
X

2 j (2 jα
|D̄ j ( f )(y)|)q

× w({x ∈ �̃k \�k+1 : ρ(x, y)≤ C32− j
}) dµ(y)

≥ C
∑

Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)q

× w({x ∈ �̃k \�k+1 : ρ(x, y)≤ C32−kQ }) dµ(y)

≥ C
∑

Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)qw(Q) dµ(y).

(4.3)

On the other hand, it follows from the definition of �k that∫
�̃k\�k+1

Sα,q( f )(x)qw(x) dµ(x)≤ 2(k+1)qw(�̃k \�k+1)≤ C2kqw(�k). (4.4)

Estimate (4.3), together with (4.4), yields (4.2).
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Define

λk,i = w(Q
k
i )

1/p−1/q
{ ∑

Q⊂Qk
i ,Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)qw(Q) dµ(y)

}1/q

,

(4.5)

ak,i (x)=


C̃

λk,i

∑
Q⊂Qk

i ,Q∈Bk

∫
Q

DkQ (x, y)D̄kQ ( f )(y) dµ(y) if λk,i 6= 0,

0 if λk,i = 0.

(4.6)

Here C̃ is a fixed constant to be chosen later, which is independent of k and i .
Let us verify that each ak,i is a (p, q, α)-atom. By (iii)′, we can see that each ak,i

satisfies (1.12). And by the construction of Dk ,

supp ak,i ⊂
⋃

y∈Q∈Qk
i ∩Bk

{x ∈ X : ρ(x, y)≤ C32−kQ } ⊂ C̄ Qk
i ,

where C̄ is a constant independent of x, y and Qk
i . This gives (1.10).

To show the size condition of each ak,i , we claim that

sup
‖h‖

Ḟ
−α,q′

q′,w′
(X)
≤1
|〈ak,i , h〉| ≤ w(Qk

i )
1/q−1/p. (4.7)

Let us assume (4.7) first; then (1.11) follows directly from Theorem 3.5. Indeed, for
all h satisfying ‖h‖

Ḟ−α,q
′

q′,w′
(X)
≤ 1, by combining (1.8), (4.5), Lemma 2.6 and Hölder’s

inequality, we see that

|〈ak,i , h〉| =
C̃

λk,i

∣∣∣∣〈 ∑
Q⊂Qk

i ,Q∈Bk

∫
Q

DkQ (x, y)D̄kQ ( f )(y) dµ(y), h(x)

〉∣∣∣∣
≤

C̃

λk,i

∑
Q⊂Qk

i ,Q∈Bk

∫
Q
|DkQ (h)(y)||D̄kQ ( f )(y)| dµ(y)

≤
C̃

λk,i

{ ∑
Q⊂Qk

i ,Q∈Bk

∫
Q

2kQ [2kQα|D̄kQ ( f )(y)|]qw(Q) dµ(y)

}1/q

×

{ ∑
Q⊂Qk

i ,Q∈Bk

∫
Q

2kQ [2−kQα|DkQ (h)(y)|]
q ′w[(Q) dµ(y)

}1/q ′

≤ C̃w(Qk
i )

1/q−1/p
‖Sα,q(h)‖Lq′

w′

≤ C̃Cw(Qk
i )

1/q−1/p
‖h‖

Ḟ−α,q
′

q′,w′
(X)

≤ w(Qk
i )

1/q−1/p,

(4.8)

where C is a constant independent of k and i , and we choose C̃ such that C̃C ≤ 1.
This gives (4.7).
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Finally, from (4.2), we obtain that∑
k

∑
i∈Ik

|λk,i |
p

≤ C
∑

k

∑
i∈Ik

w(Qk
i )

1−p/q

×

{ ∑
Q⊂Qk

i ,Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)qw(Q) dµ(y)

}p/q

≤ C
∑

k

(∑
i∈Ik

w(Qk
i )

)1−p/q

×

{∑
i∈Ik

∑
Q⊂Qk

i ,Q∈Bk

∫
Q

2kQ (2kQα|D̄kQ ( f )(y)|)qw(Q) dµ(y)

}p/q

≤ C
∑

k

2kpw(�k)

≤ C‖ f ‖p
Ḟα,qp,w(X)

.

This concludes the proof of Theorem 1.7, modulo the proof of Lemma 4.1, which we
will give now. 2

PROOF OF LEMMA 4.1. Suppose that supp a ⊆ B = B(z0, r). Let

‖Sα,q(a)‖
p
L p
w
=

∫
X
|Sα,q(a)|

pw(x) dµ(x)

=

(∫
2B
+

∫
(2B)c

)
|Sα,q(a)|

pw(x) dµ(x)=: T1 + T2,

say. For the term T1, by Hölder’s inequality and (1.11),

T1 ≤

(∫
2B
|Sα,q(a)|

qw(x) dµ(x)

)p/q(∫
2B
w(x) dµ(x)

)1−p/q

≤ C‖a‖p
Ḟα,qq,w(X)

w(B)1−p/q

≤ Cw(B)p/q−1w(B)1−p/q

≤ C,

where C depends only on p and C̃ in (4.8).
Now let us turn to the term T2. By Definition 1.8, one can write

T2 =

∫
(2B)c

{∑
j

∫
ρ(x,y)≤C32− j

2 j (2 jα
|D j (a)(y)|)

q dµ(y)

}p/q

w(x) dµ(x). (4.9)
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By (1.10) and the construction of D j in the proof of Theorem 1.7, we deduce that
for each j , the function y 7→ D j (a)(y) is supported in {y : ρ(y, z)≤ C62− j

}, where
z ∈ B and C6 is a constant independent of j and B. In the integral in (4.9), moreover, y
should be in {y : ρ(x, y)≤ C32− j

}. Hence there exists a constant C7, which depends
only on C3 and C6, such that D j (a)(y)= 0 when 2− j

≤ C7|x − z0|. So

T2 =

∫
(2B)c

{ ∑
2 j<C7/ρ(x−z0)

∫
ρ(x,y)≤C32− j

2 j (2 jα
|D j (a)(y)|)

qdµ(y)

}p/q

w(x) dµ(x).

(4.10)
To estimate the right-hand side of (4.10), we first consider D j (a). By (1.10) and (1.12),

D j (a)(y)=
∫

X
D j (y, z)a(z) dµ(z)=

∫
X
[D j (y, z)− ψ j (y)]η(z)a(z) dµ(z),

where η(z)= χB(z) and

ψ j (y)=

∫
D j (y, z)η(z) dµ(z)∫

η(z) dµ(z)
.

Set h(z)= [D j (y, z)− ψ j (y)]η(z). Then, for all z, z′ ∈ B,

|h(z)| ≤ C2 j (1+ε)µ(B)ε; (4.11)

|h(z)− h(z′)| ≤ C2 j (1+ε)ρ(z, z′)ε; (4.12)∫
X

h(z) dµ(z)= 0. (4.13)

Now h(z)=
∑

k D̃k Dk(h)(z), from Lemma 2.2. Together with Hölder’s inequality,
this shows that

|D j (a)(y)| =

∣∣∣∣∫X h(z)a(z) dµ(z)

∣∣∣∣
≤ C‖a‖Ḟα,qq,w(X)

{∫
X

∑
k(2
−kα
|Dk(h)(z′)|)q

′

w[(z′) dµ(z′)

}1/q ′

.

(4.14)

To estimate the right-hand side of (4.14), note that{∫
X

∑
k

(2−kα
|Dk(h)(z

′)|)q
′

w[(z′) dµ(z′)

}1/q ′

≤

{∫
4B

∑
2−k≤µ(B)

(2−kα
|Dk(h)(z

′)|)q
′

w[(z′) dµ(z′)

}1/q ′

+

{∫
4B

∑
2−k>µ(B)

(2−kα
|Dk(h)(z

′)|)q
′

w[(z′) dµ(z′)

}1/q ′

+

{∫
(4B)c

∑
2−k≤µ(B)

(2−kα
|Dk(h)(z

′)|)q
′

w[(z′) dµ(z′)

}1/q ′
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+

{∫
(4B)c

∑
2−k>µ(B)

(2−kα
|Dk(h)(z

′)|)q
′

w[(z′) dµ(z′)

}1/q ′

=: V1 + V2 + V3 + V4,

say. For the term V1, by (4.12),

|Dk(h)(z
′)| =

∣∣∣∣∫
X

Dk(z
′, x)[h(x)− h(z′)] dµ(x)

∣∣∣∣≤ C2−kε2 j (1+ε),

which gives V1 ≤ C(w[(B))1/q
′

µ(B)α+ε2 j (1+ε).
Now consider term V2. By (4.11),

|Dk(h)(z
′)| ≤

∫
X
|Dk(z

′, x)||h(x)| dµ(x)≤ C2k2 j (1+ε)µ(B)1+ε,

which proves that V2 ≤ C(w[(B))1/q
′

µ(B)α+ε2 j (1+ε).
For the term V3, note that supp h ⊆ B and 2−k

≤ Cµ(B), so V3 = 0.
Finally, let us estimate the term V4. By (4.13),

|Dk(h)(z
′)| ≤

∫
X
|Dk(z

′, x)− Dk(z
′, z0)||h(x)| dµ(x)

≤ C
∫

B

(
ρ(x, z0)

2−k + ρ(z′, z0)

)ε 2−kε

(2−k + ρ(z′, z0))1+ε
2 j (1+ε)µ(B)ε dµ(x)

≤ C2 j (1+ε)µ(B)1+2ε 2−kε

(2−k + ρ(z′, z0))1+2ε .

This shows that V4 is at most{ ∑
2−k>µ(B)

2 j (1+ε)q ′

2kαq ′
µ(B)(1+2ε)q ′

∫
(4B)c

[
2−kε

(2−k + ρ(z′, z0))1+2ε

]q ′

w[(z′) dµ(z′)

}1/q ′

.

Noting that µ(B)≤ ρ(z′, z0)≤ c2−k and ρ(z′, z0)≥ c2−k , we see that

V4 ≤ C(w[(B))1/q
′

µ(B)α+ε2 j (1+ε).

Combining (4.14) and the estimates of V1, V2, V3 and V4, we obtain

|D j (a)(y)| ≤ Cw(B)1/q−1/p(w[(B))1/q
′

µ(B)α+ε2 j (1+ε). (4.15)

Substituting (4.15) back into (4.10), and using Lemma 2.6, we see that

T2 ≤ w(B)
p/q−1(w[(B))p/q ′µ(B)(α+ε)p

×

∫
(2B)c

{ ∑
2 j<C7/ρ(x,z0)

2 j (1+ε+α)q
}p/q

w(x) dµ(x)
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≤ Cµ(B)(1+α+ε)pw(B)−1
∫
(2B)c

w(x)

ρ(x, z0)(1+ε+α)p
dµ(x)

≤ C.

Our estimates of T1 and T2 yield (4.1), and the proof of Lemma 4.1 is complete. 2
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homogènes, Lecture Notes in Mathematics, 242 (Springer, Berlin, 1971).

[4] G. David, J. L. Journé and S. Semmes, ‘Opérateurs de Calderón–Zygmund, fonctions para-
accrétives et interpolation’, Rev. Mat. Iberoam. 1 (1985), 1–56.

[5] D. G. Deng and Y. S. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in
Mathematics, 1966 (Springer, Berlin, 2009).

[6] D. G. Deng, M. Xu and L. X. Yan, ‘Wavelet characterization of weighted Triebel–Lizorkin spaces’,
Approx. Theory Appl. 18 (2002), 76–92.

[7] M. Frazier and B. Jawerth, ‘A discrete transform and decomposition of distribution spaces’,
J. Funct. Anal. 93 (1990), 34–170.

[8] J. García-Cuerva and J. M. Martell, ‘Wavelet characterization of weighted spaces’, J. Geom. Anal.
11 (2001), 241–264.

[9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,
North-Holland Mathematics Studies, 116 (North-Holland, Amsterdam, 1985).

[10] Y. S. Han, ‘A note on T (b) theorem of David–Journé–Semmes’, Approx. Theory Appl. 9 (1993),
1–8.

[11] Y. S. Han, ‘Triebel–Lizorkin spaces on spaces of homogeneous type’, Studia Math. 108 (1994),
247–273.

[12] Y. S. Han, ‘Calderón-type reproducing formula and the T b theorem’, Rev. Mat. Iberoam. 10
(1994), 51–91.

[13] Y. S. Han, J. Li and G. Lu, ‘Duality of multiparameter Hardy space H p on product spaces of
homogeneous type’, Ann. Sc. Norm. Super. Pisa IX (2010), 645–685.

[14] Y. S. Han and G. Z. Lu, ‘Discrete Littlewood–Paley–Stein theory and multiparameter
Hardy spaces associated with the flag singular integrals’, Preprint, 2008, available at:
http://arxiv.org/abs/0801.1701.

[15] Y. S. Han and G. Z. Lu, ‘Endpoint estimates for singular integral operators and multiparameter
Hardy spaces associated with Zygmund dilation’, Preprint, 2008.

[16] Y. S. Han, D. Müller and D. Yang, ‘A theory of Besov and Triebel–Lizorkin spaces on metric
measure spaces modeled on Carnot–Carathéodory spaces’, Abstr. Appl. Anal. (2008), Article ID
893409.

https://doi.org/10.1017/S144678871000159X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871000159X


[21] Atomic decomposition of weighted Triebel–Lizorkin spaces 275

[17] Y. S. Han and E. T. Sawyer, ‘Littlewood–Paley theory on spaces of homogeneous type and classical
function spaces’, Mem. Amer. Math. Soc. 110(530) (1994).

[18] Y. S. Han and D. Yang, ‘Some new spaces of Besov and Triebel–Lizorkin type on homogeneous
spaces’, Studia Math. 156 (2003), 67–97.

[19] R. A. Macías and C. Segovia, ‘Lipschitz functions on spaces of homogeneous type’, Adv. Math.
33 (1979), 257–270.

[20] B. Muckenhoupt, ‘Weighted norm inequalities for the Hardy maximal functions’, Trans. Amer.
Math. Soc. 165 (1972), 207–226.

[21] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals
(Princeton University Press, Princeton, NJ, 1993).

[22] D. Yang, ‘Some new Triebel–Lizorkin spaces on spaces of homogeneous type and their frame
characterizations’, Sci. China Ser. A 48 (2005), 12–39.

JI LI, Department of Mathematics, Sun Yat-sen University, Guangzhou, PR China
e-mail: liji6@mail.sysu.edu.cn

https://doi.org/10.1017/S144678871000159X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871000159X

