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1. INTRODUCTION

Economic time series are typically analyzed in seasonally adjusted form. That
is, (estimated) seasonality is removed prior to undertaking substantive analysis of
economic questions. Seasonal adjustment is based on the unobserved component
(UC) approach, of which the key assumption is that the components (typically
trend, cycle, and seasonal) are mutually uncorrelated. However, a growing recent
literature strongly suggests that the trend and cycle can be correlated; see Mor-
ley et al. (2003), MNZ hereafter, Dungey et al. (2015), and others. While this
has important implications for economic analyses that employ detrended data,
the consequences of the uncorrelated assumption for seasonality are much more
pervasive. Building on MNZ and the literature that indicates, on both economic
and statistical and economic grounds, that cyclical and seasonal components may
be correlated [including Cecchetti and Kashyap (1996), Matas-Mir and Osborn
(2004)], this paper extends the trend–cycle decomposition literature for economic
time series to include the seasonal component.

The behavior of series in the immediate aftermath of the Great Recession has
provided an impetus for economists to examine seasonality and its treatment
through seasonal adjustment. The zero correlation assumption is fundamental to
seasonal adjustment because the resulting seasonally adjusted series can then be
analyzed without concern about the “noise’ of seasonality. However, Wright (2013)
concludes that official seasonal adjustment distorted US employment data during
the downturn of the Great Recession. Further, in commenting on Wright’s (2013)
paper, Stock (2013) questions the component independence assumption embedded
in seasonal adjustment and advocates more work on the “important but neglected
topic” of seasonality. In practice, experts in seasonal adjustment within the US
Bureau of the Census and other official statistical agencies recognize that extraction
of the seasonal component is particularly difficult during recessions [Evans and
Tiller (2013), Lytras and Bell (2013)] and that special treatment may be required.
More fundamentally, however, these considerations question the assumption that
seasonality evolves independently of the other characteristics of economic time
series.

Following the tradition that dates back to at least Grether and Nerlove (1970)
and Engle (1978), and also underlines the structural time series approach used
by Harvey (1990) and Durbin and Koopman (2012), our approach is to consider
an UC model in which the individual time series components are specified as
being both economically meaningful and often employed in empirical analyses.
However, rather than maintaining the uncorrelated components assumption, we
follow MNZ and allow nonzero correlation between the innovations to the com-
ponents in order to investigate the implications for quarterly time series. More
specifically, we investigate whether the underlying parameters are identified when
the zero correlation assumption is relaxed, and examine the practical implications
for the trend and cycle components of allowing nonzero correlations for the
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key macroeconomic time series of UK household consumption and US nonfarm
payroll employment.

Our analysis is based on the UC trend–cycle model employed by MNZ and
widely used by macroeconomists because it captures the key characteristics be-
lieved to be typical of important “real-world” series. To this we add a stochastic
seasonal component, also modeled in typical fashion, and then examine whether
the parameters are identified when a general cross-correlation structure is permit-
ted. In related work, McElroy and Maravall (2014) examine identification from
a more statistical perspective, but the model they consider does not include a
stationary cyclical component of the form often posited by macroeconomists.
Indeed, as shown by MNZ, such a cyclical component, represented by a model
with AR order p ≥ 2, is required for the two components of a trend–cycle model
to be identified in the presence of cross-correlated innovations. Our analysis can
be seen as an extension of MNZ that views seasonality as an integral part of the
dynamic evolution of the macroeconomy.

We show that adding this seasonal component to the standard trend–cycle
quarterly specification leads to hidden linear dependencies between the autoco-
variances of the model. Although the model apparently has sufficient nonzero
autocovariances for estimation of all parameters, it fails to satisfy the rank condi-
tion. Consequently, the model is under-identified, and additional restrictions are
required for identification. Nevertheless, it is emphasized that the usual uncorre-
lated innovation assumption is not the only solution to the identification problem:
only a single restriction is required and the over-identification assumptions of
the uncorrelated model can be tested. Simulations illustrate the implications of
estimation for both the unidentified and a correctly identified model.

The applications to UK household consumption and US nonfarm payroll em-
ployment reject the conventional uncorrelated innovation assumption. However,
echoing to some extent the findings of Wright (2013), we show that the correlation
assumption imposed has substantial implications for the estimated trend and cycle
components in the period after the Great Recession. For the case of US nonfarm
payroll employment, imposition of uncorrelated components implies a substan-
tially deeper recession (interpreted as negative cycle values) than assuming a zero
correlation for trend and seasonal innovations only or assuming perfect negative
correlation for the trend–cycle innovations, the latter being the implicit assumption
made in the Beveridge–Nelson trend–cycle decomposition [Beveridge and Nelson
(1981), Anderson et al. (2006)]. Indeed, the preferred statistical model for both
series is a form of the Single Source of Error (SSE) model, where a common
shock drives all components [Ord et al. (1997), De Livera et al. (2011)]. However,
the estimated trend and cycle properties for UK consumption are not plausible in
economic terms.

The remainder of this paper is structured as follows. Section 2 presents the
UC model we study with uncorrelated and correlated innovations. Sections 3 and
4 discuss identification and simulation results, respectively. Section 5 presents
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empirical results for real UK household consumption and US employment, while
Section 6 offers some concluding remarks.

2. THE MODEL

As noted in Section 1, a growing literature provides empirical evidence that
the trend (permanent) and cycle (transient) components of economic time series
are correlated. As discussed by Weber (2011), the economic rationale for such
correlation can include real business cycle theories, nominal rigidities, hysteresis,
policy responses to temporary shocks, and so on. Estimates of the correlation
between the innovations of the trend and cycle for output or related series (such as
employment) are negative and relatively close to −1; for example, MNZ, Sinclair
(2010), Weber (2011), Dungey et al. (2015).

Due to the prevalent use of seasonally adjusted data, there is not a large existing
literature concerning correlation of the seasonal with other components. Neverthe-
less, Barsky and Miron (1989) and Beaulieu et al. (1992) observe that seasonal and
business cycles have common characteristics, while other studies find that seasonal
patterns change with the stage of the business cycle [Canova and Ghysels (1994),
Cecchetti and Kashyap (1996), Krane and Wascher (1999), Matas-Mir and Osborn
(2004)] and/or the trend [Koopman and Lee (2009)]. In particular, Cecchetti and
Kashyap (1996) observe that seasonal cycles in production are less marked in
business cycle booms, implying negative correlation between these components.
As noted by Proietti (2006) negative correlations lead to higher weights on future
observations in the Kalman smoother, resulting in relatively large revisions to
filtered estimates; see also Dungey et al. (2015).

To reflect these findings, the model employed in our analysis is designed to be
sufficiently general to capture potential correlations across component innovations,
while also being of a form recognized by economists as capturing the essential
features of macroeconomic time series.

2.1. Component Specification

The UC model we consider is designed to be of a form that a macroeconomist might
employ when taking account of seasonality alongside trend and cycle components
in a quarterly time series. Therefore, the observed seasonal series yt , t = 1, 2, . . .

consists of a trend τt , a cycle ct , and a seasonal st component, with

yt = τt + ct + st . (1)

Each of these components has a natural interpretation. Following many previous
studies, the trend and cycle components are given by

τt = τt−1 + β + ηt , (2)

φ(L)ct = εt , (3)
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where the pth order autoregressive (AR) polynomial φ(L) = 1−φ1L−. . .−φpLp

(L being the usual lag operator) has all roots strictly outside the unit circle. The
random walk with drift specification for the trend, as in (2), is widely adopted in
macroeconomics, while a pure AR, as in (3), is also typical for economic analysis.
The AR order is often specified as p = 2, as in Clark (1987), Sinclair (2010) and
the empirical application of MNZ; p ≥ 2 allows the process for ct to exhibit cyclic
properties in the sense of a spectral peak at a business cycle frequency. However,
p > 2 is rarely used in practice for quarterly seasonal macroeconomic time series,
in order to keep the lags of the seasonal specification distinct from those of the
cycle.

As widely applied in the UC literature, seasonality is represented in the so-called
“dummy variable” form,

S(L)st = ωt, (4)

where (for quarterly data) S(L) = 1 + L + L2 + L3 is the annual summation
operator for quarterly data; see Harvey (1989). The moving annual sum implied
by S(L) with stochastic ωt permits seasonality to evolve over time, with the
speed of this evolution dictated by the variance of the shock σ 2

s ; σ 2
s = 0 leads

to deterministic seasonality that is constant over time. Wright (2013) estimates a
special case of the model given by (1)–(4) with white noise cycle, φ(L) = 1, and
uncorrelated innovations for monthly US employment, using this to illustrate the
statistical uncertainty surrounding seasonally adjusted values.

It may be noted that the components ct and/or st are sometimes specified in
a trigonometric form in the UC literature, with each then driven by two innova-
tion processes that are assumed to be mutually uncorrelated. The use of such a
specification would further complicate matters once correlation is allowed across
components, and hence the simpler forms above are adopted in our analysis.

With τt , ct , and st as in (2)–(4), the innovation vector vt = (ηt , εt , ωt)
′ has

covariance matrix:

Q ≡ E[vtv′
t ] =

⎡
⎢⎣

σ 2
τ στc στs

στc σ 2
c σcs

στs σcs σ 2
s

⎤
⎥⎦ , (5)

which is positive semidefinite. The standard assumption in the UC approach is
uncorrelated innovations, namely the special case of diagonal Q. However, fol-
lowing MNZ, recent interest in macroeconomics has focused around nonseasonal
models that allow the trend–cycle correlation to be nonzero.

At the other extreme from diagonal Q, the SSE model assumes the innovations
that drive the components are perfectly correlated. Although the usual formulation
of the SSE model, as in Ord et al. (1997), specifies the measurement equation anal-
ogous to (1) with an idiosyncratic error and lagged rather than current component
contributions, Anderson et al. (2006) show that the perfectly correlated trend–cycle
model employed by Beveridge and Nelson (1981) can be written in conventional
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SSE form.1 For the model of (1), an SSE formulation has

vt =

⎡
⎢⎣

kτ

kc

ks

⎤
⎥⎦ vt , (6)

with vt ∼ independent and identically distributed (i.i.d.) (0,1) so that the distur-
bances of (2)–(4) are each written as a scalar multiple of a single shock. Hence,
the component disturbances are perfectly correlated with covariance matrix

Q =

⎡
⎢⎣

k2
τ kτ kc kτ ks

kτ kc k2
c kcks

kτ ks kcks k2
s

⎤
⎥⎦ =

⎡
⎢⎣

σ 2
τ στc στs

στc σ 2
c σcs

στs σcs σ 2
s

⎤
⎥⎦ . (7)

Employing the trend–cycle model of (2) and (3), with the latter sometimes
including a moving average, MNZ, and a number of subsequent studies (including
the ones cited in the introduction) discuss identification and empirically compare
the implications for gross domestic product (GDP) of the correlation assumptions
made in the traditional UC approach, the BN decomposition, and with an estimated
innovation correlation. However, these studies do not consider seasonality.

The properties of the model can be established through the univariate ARMA
representation. Due to the zero frequency unit root in (2) and the seasonal unit roots
in (4), the process of (1)–(4) is stationary and invertible after annual differencing
(	4 = 1 − L4). The reduced form of the model is therefore

φ(L)	4yt = φ(L)S(L)β + φ(L)S(L)ηt + 	4 εt + φ(L)	ωt . (8)

Analogously to MNZ, and using standard results on the sum of the moving average
terms on the right-hand side of (8), the reduced form ARMA(p, q) specification
for 	4yt is

φ(L)	4yt = δ + θ(L)ut , (9)

where δ = φ(L)S(L)β, θ(L) is a qth order polynomial in L with q ≤ max(p +
3, 4) and ut is a white noise disturbance with constant variance. Further details on
the derivation of (9) can be found in the Appendix, while the order q is discussed
in the next section for the cases of interest to us.

3. IDENTIFICATION

Before attempting to estimate the UC model of the preceding section allowing a
general correlation structure for the disturbances, it must first be established that
the model is identified. As for any ARMA(p, q) process, the autocovariances γk

of 	4yt at lag k satisfy

γk = φ1γk−1 + · · · + φpγk−p, k > q (10)
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which identifies the AR coefficients of (3). Hence, the autocovariances of the MA
component of (9) for k = 0, . . . , q must contain sufficient information to identify
the parameters of (5). More specifically, defining σ = [σ 2

τ , σ 2
c , σ 2

s , στc, στs, σcs]′

to contain the unique elements of the covariance matrix Q and also defining the
vector of autocovariances γ = [γ0, . . . , γq]′, yields the system

γ = Aσ (11)

where A is a (q + 1) × (q + 1) matrix of constants. Identification of the six
parameters of (5) requires A to be of rank 6.

This section discusses this identification from a theoretical perspective, con-
sidering first the case where the cycle is white noise (p = 0), before turning to
p = 2; the implications of an AR(1) cycle are considered as a special case of the
latter.

3.1. White Noise Cycle

With ct in (1) white noise, the model considered is the quarterly analogue of the
basic structural model examined by McElroy and Maravall (2014) for monthly
data with, in their notation, d = 1. A simple “counting” check shows that the
model where the cycle is white noise (p = 0) cannot be identified, as q < 5
and the nonzero autocovariances are insufficient in number to identify the six
parameters of Q. Nevertheless, this case serves to illustrate some general features
of identification that apply also in the more general AR cycle examined below.

For p = 0, the stochastic component on the right-hand side of (9) is

zt = S(L)ηt + 	4 εt + 	ωt

= ηt + · · · + ηt−3 + εt − εt−4 + ωt − ωt−1.

As shown in the Appendix, except in the special case where σ 2
c = −(στc + σcs),

zt is MA(4) so that γk = 0 for k > 4 and the matrix A of (11) is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 2 2 2 0 2

3 0 −1 0 −1 −1

2 0 0 0 0 0

1 0 0 0 1 1

0 −1 0 −1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Although the model is not identified overall, nevertheless two variance parameters
of Q can be obtained irrespective of any covariance assumptions. Specifically, the
variances of the trend and seasonal innovations are given by

σ 2
τ = 0.5γ2,

σ 2
s = 2γ2 − γ1 − γ3.
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This extends the trend–cycle case examined by MNZ, who note that the variance
of the trend innovations can similarly be identified when the cycle is white noise,
although the individual terms in σ 2

c + στc cannot.2

Noting that σ 2
c and στc never separately enter A of (12), it could be presumed

that σ 2
c + στc and the four other distinct parameters of Q will be identified. This

is, however, not the case, since the rows of A are linearly dependent, with

γ0 = −2γ1 + 6γ2 − 2γ3 − 2γ4.

Hence, the system contains only four linearly independent equations, rather than
five. Consequently, it is not possible to identify either στs or σcs without further
information. However, a single linear restriction on στs and/or σcs allows identi-
fication of σ 2

τ , σ 2
s , (σ 2

c + στc), στs and σcs, with a further restriction required to
separate σ 2

c and στc.
This discussion underlines the importance for identification of the traditional

uncorrelated disturbance of the UC model. It also shows the crucial role played by
the uncorrelated innovation assumption in the illustrative model used by Wright
(2013). Nevertheless, because there are four linearly independent nonzero γk and
three unknown variances, uncorrelated innovations lead to the presence of an
over-identifying restriction; hence, some testing is possible. More explicitly, for
the case under consideration, the single over-identifying restriction embodied in
the uncorrelated innovation assumption could be interpreted as either στs = 0
or σcs = 0, depending on the a priori views of the researcher. Consequently,
although cycle parameters σ 2

c and στc cannot be separated, the assumption implicit
in seasonal adjustment that seasonality is uncorrelated with other components can
be tested even when the cycle is white noise only.

3.2. AR(2) Cycle

As noted in Section 2, and due to the stationary cycles it can imply, the case p = 2
is of great empirical interest to macroeconomists. However, it is not examined by
McElroy and Maravall (2014). Note first that p = 2 implies q ≤ 5 in (9) and,
again unless σ 2

c = −(στc + σcs), q is equal to its upper limit (see the Appendix).
Consequently, the “counting” requirement is fulfilled and the autocovariances of
the right-hand side of (9) may potentially provide sufficient information to just
identify the parameters of (5). Hence, we check the rank condition.

For this AR(2) case, the MA of the right-hand side of (8) is

zt = [1 + (1 − φ1)L + (1 − φ1 − φ2)L
2

+ (1 − φ1 − φ2)L
3 − (φ1 + φ2)L

4 − φ2L
5]ηt

+ [1 − L4]εt + [1 − (1 + φ1)L + (φ1 − φ2)L
2 + φ2L

3]ωt . (13)
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The matrix of interest, namely A of (11) is then given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(2B − 3D + φ2) 2 2(B + D − φ2) 2C 2φ1(1 − φ2) 2

3B − 6D + 2φ2 0 −B − 2D + 3φ2 2φ2 −B −C

2(B − 2D) 0 D − 3φ2 0 0 0

B − 2D − φ2 0 φ2 −φ2 B + φ2 C

−(D + φ2) −1 0 −C −φ1(1 − φ2) −1

−φ2 0 0 −φ2 −φ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

in which

B = 1 + φ2
1 + φ2

2

C = 1 + φ1 + φ2

D = φ1 + φ2 − φ1φ2.

Once again, further details on the derivation of (14) can be found in the Appendix.
Straightforward row operations applied to (14) show that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 + 2γ4

γ1 + γ3 + γ5

γ2

γ3 − γ5

γ4

γ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4(B − 2D) 0 2(B + D − φ2) 0 0 0

4(B − 2D) 0 −(B + 2D − 4φ2) 0 0 0

2(B − 2D) 0 D − 3φ2 0 0 0

B − 2D 0 φ2 0 B + 2φ2 C

−(D + φ2) −1 0 −C −φ1(1 − φ2) −1

−φ2 0 0 −φ2 −φ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
τ

σ 2
c

σ 2
s

στc

στs

σcs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

The system of (15) exhibits three characteristics that are important for identifica-
tion when φ2 �= 0. First, the first three equations show that the variance parameters
σ 2

τ and σ 2
s are over-identified, since there are three pieces of information (γ0 +2γ4,

γ1 + γ3 + γ5, and γ2) available for these two parameters. Second, since further
row operations can be used to reduce any one of these first three rows of A to
contain only zeros, the rank condition for all parameters in σ to be identified is not
satisfied; the matrix A has rank less than 6. In terms of the original parameters, it
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can be seen that the linear dependence is

[2γ2 − γ1 − γ3 − γ5] = [1 + φ2
1 + φ2

2 + 4φ1 − 6φ2 − 4φ1φ2]

2[1 + φ2
1 + φ2

2 + 2φ2]
[γ0 + 2γ4 − 2γ2].

The third characteristic of (15) is that (when φ2 �= 0) its rank is five when any
one of the last three columns is deleted. Therefore, a priori specification of the
value of any one of the innovation correlations στc, στs , or σcs is sufficient for the
remaining elements of Q to be identified.

As an aside, the crucial role played by p > 1 is evident in (14), since φ2 = 0
yields an A in (14) whose final row contains only zeros, implying the rank is at
most 5 and the model as a whole is not identified. Indeed, combined with the
nature of the first three rows, it can be seen that the rank is 4; the situation is then
similar to the case of a white noise cycle, considered in the preceding subsection.

To summarize, some properties of the individual components in the general cor-
related trend–cycle–seasonal model of (1)–(5) can be obtained from observations
on yt , but a decomposition for quarterly data cannot be achieved without at least
one further restriction. To be more specific, with an AR(2) cycle, one covariance
restriction is required for estimates to be obtained for the remaining parameters;
should the AR cycle order have p < 2, then two restrictions are required. Although
the specification of such restrictions may appear to be problematic, it should be
recalled that the usual uncorrelated innovation model is more restrictive and al-
though the over-identifying restriction(s) of that model can be tested, such a test
is rarely conducted in practice.

4. SIMULATIONS

A simulation study is undertaken to examine the empirical implications of the
identification issues discussed in the preceding section. The data generating pro-
cess (DGP) is given by (1)–(5) with p = 2, in which case one covariance re-
striction is required for identification. We set φ1 = 1.35 and φ2 = −0.5 in the
AR process for the ct , implying stationary cyclical variation with a periodicity
of 21 quarters. For the covariance matrix, we set innovation standard deviations
as στ = 1.24, σc = 0.75, σs = 0.1 and, using an obvious notation for corre-
lations, ρτc = −0.85, ρτs = 0, and ρcs = −0.3; hence, the covariances are
στc = −0.85×στ ×σc = −0.7905, στs = 0, and σcs = −0.3×σc×σs = −0.0225.
The covariance parameter values for the trend and cycle components (including
correlation) are close to those estimated by MNZ for US GDP, while σs is chosen
to be smaller than for these other components as seasonality is usually observed
to evolve relatively slowly over time. A negative cycle–seasonal correlation is im-
plied by the economic arguments and empirical findings of Cecchetti and Kashyap
(1996). Finally, the trend–seasonal correlation is set to zero,3and hence (from the
discussion of Section 3.2) all parameters are (theoretically) identified when this
restriction is imposed in estimation.
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Maximum likelihood estimation uses GAUSS software4 with constraints on the
AR estimates of −1 < φ̂1 + φ̂2 < 1 for stationarity and the estimated covariance
matrix Q̂ positive definite. The sample size is 300 observations, corresponding to
75 years of quarterly data, and 1,000 replications are performed.

Figure 1 provides results for σc, ρτc, ρτs , and ρcs in the form of histograms,
both when estimating a general covariance matrix (left-hand column) and imposing
ρτs = 0 (right-hand column). Results are not shown for στ , σs, φ1, and φ2 as the
analysis of Section 3 shows that these are identified irrespective of the correlation
assumption and it may be noted that the general shapes of the histograms for these
parameters are similar across the two cases.

With no restriction, it is seen that the largest mass for ρ̂τc is concentrated around
−1, implying (spurious) perfect negative correlation between trend and cycle, with
ρ̂cs displaying a similar tendency to bunch at this lower bound. Although Wada
(2012) considers a misspecified nonstationary trend–cycle model for a stationary
DGP, he also finds spurious perfect negative estimated correlation for the innova-
tions. Perhaps surprisingly, the histogram for ρ̂τ s is, at least superficially, relatively
well behaved, while that for σ̂c is fairly flat across a range of possible values from
0.1 to 0.8.

Imposing the true restriction ρτs = 0 in estimation, the right-hand panel of
Figure 1 no longer shows a large mass of ρ̂τc or ρ̂cs values close to −1. In
particular, these histograms are now more bell-shaped. However, interestingly, σ̂c

largely retains its properties from the unidentified case.5

The results in this section show that identification requires careful consideration
in the correlated trend–cycle–seasonal model. Hidden dependence between the
autocovariances renders the correlations unidentified in the plausible model we
study, frequently resulting in spurious perfect negative correlations in estimation.
Consequently, a perfect estimated correlation needs to be interpreted with care.
However, when it is known that one correlation is zero (and hence the model
is identified), imposition of this restriction yields estimators with satisfactory
properties.

5. APPLICATIONS

In this section, the trend–cycle–seasonal UC model is applied to two important
quarterly macroeconomic time series, namely real UK household consumption
expenditure and US nonfarm employment.6 In order to make direct comparisons
with the results of MNZ and other studies that examine trend–cycle decompositions
in a UC framework for the US economy, we would have liked to examine US GDP.
Unfortunately, however, that series is not available in a seasonally unadjusted
form.7

The model applied is again given by (1)–(5) with p = 2. As discussed in
Section 3, the parameters of the specification with uncorrelated components is
over-identified, but at least one restriction is required for identification when a
more general covariance structure is permitted. In each case, we examine the
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FIGURE 1. Simulation results of the estimated parameters in the UC model. The panels
of the figure show histograms for selected parameters of a UC model, estimated with an
unrestricted covariance matrix (left-hand column) and imposing the true restriction ρτs = 0
(right-hand column). See the text for other parameter values of the DGP. The sample size
is 300, and 1,000 replications are performed.
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uncorrelated component model together with other specifications. However, for
ease of interpretation, the estimated model is parameterized in terms of correlations
(ρτc, ρτs , ρcs) and standard deviations rather than the corresponding covariances
and variances. Estimation is undertaken by constrained Maximum likelihood in
GAUSS using the CMLMT procedure, with any correlation parameters estimated
being initialized at zero.

5.1. UK Household Consumption Expenditure

The characteristics of seasonal UK consumption expenditure have provided an im-
portant impetus for understanding the long-run properties of economic time series
and stimulated some of the early literature on unit roots and cointegration; see, in
particular Davidson et al. (1978) and Hylleberg et al. (1990). In line with those
studies, we analyze real seasonally unadjusted UK household final consumption
expenditure imposing both zero frequency and seasonal unit roots, but adopt the
UC framework in order to examine the possibility that the component disturbances
may be correlated. The available quarterly data starts in 1955Q1 and our analysis
extends from that date to 2016Q4. As usual, the logarithmic transformation is
applied prior to further analysis, with the log values also multiplied by 100 to
facilitate interpretation of fluctuations in terms of percentage movements.

Table 1 provides results for a range of estimated models,8 while Figure 2
provides the data (top graph in each column) and estimated components for se-
lected cases. Consider first the conventional uncorrelated UC model. This yields a
relatively smooth estimated trend, which is seen in Figure 2 and also shown by in
the relatively small value of σ̂τ for this model in Table 1. However, the estimated
cyclical component exhibits relatively large fluctuations over the latter part of the
series, being more than 8% above trend in 2005 and declining to nearly 10% below
trend at the end of the sample. On the other hand, seasonal fluctuations decline in
magnitude over time. Since seasonality evolves only slowly over time, largely the
same quarterly pattern repeats each year, with consumption being highest in the
Christmas quarter and lowest in the first quarter.

As discussed in Section 3, if the cycle component is white noise or AR(1), then
the uncorrelated UC model has a single overidentifying restriction, whereas with
an AR(2) cycle the model imposes two more restrictions than required for (exact)
identification. In the former case, separation of στc and σ 2

c requires the value
of ρτc to be specified a priori, in addition to ρτs or ρcs . Although the estimated
AR(2) coefficient, φ̂2 is not significant (at the usual levels) for the uncorrelated
UC model in Table 1, it becomes highly significant when only one of the trend
correlations (ρτc or ρτs) is specified as zero. Also, both models that impose a
single trend correlation restriction yield increases in the log likelihood that are
significant at 0.5% (according to an asymptotic χ2 distribution with 2 degrees
of freedom) compared with the uncorrelated UC baseline model. Indeed, these
two models are similar in practice, since neither ρτc nor ρτs is significant when
one is specified as nonzero and the other estimated. Hence, these models yield
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TABLE 1. Estimation results for UK household consumption

Restriction(s) imposed

Parameter All ρij = 0 ρτc = 0 ρτs = 0 ρcs = 0 ρcs = −0.99

στ 0.0936
(0.4370)

0.5959
(0.2634)

0.7904
(0.1545)

1.5581
(0.3801)

1.0895
(0.2153)

σc 1.0634
(0.1167)

0.5112
(0.1880)

0.3221
(0.0994)

0.7690
(0.7306)

1.2524
(0.1471)

σs 0.4808
(0.0573)

0.5278
(0.0614)

0.5361
(0.0600)

0.5096
(0.0602)

0.5022
(0.0492)

ρτc 0
(NA)

0
(NA)

−0.0260
(0.0762)

−0.8035
(0.1558)

−1.0000
(0.0002)

ρτs 0
(NA)

0.4174
(0.3978)

0
(NA)

−0.1676
(0.1311)

0.9901
(0.0213)

ρcs 0
(NA)

−0.9087
(0.1827)

−0.9996
(0.0020)

0
(NA)

−0.99
(NA)

μ 0.6867
(0.0275)

0.6875
(0.0456)

0.6833
(0.0541)

0.6739
(0.0992)

0.7439
(0.0142)

φ1 1.0877
(0.1369)

1.6022
(0.1609)

1.7611
(0.1019)

1.1167
(0.4086)

1.4740
(0.0111)

φ2 −0.1026
(0.1379)

−0.6103
(0.1605)

−0.7684
(0.1017)

−0.2666
(0.4069)

−0.4850
(0.0113)

Log Lik. −473.110 −467.248 −467.620 −471.541 −459.917

2(LL − LL0) 11.724 10.998 3.138 15.528

p-value 0.0028 0.0041 0.2083 0.0004

Notes: Values in parentheses are standard errors; NA indicated not applicable, as the parameter value is specified
a priori; 2(LL−LL0) gives twice the difference between value of the log likelihood and that of the corresponding
restricted model (the uncorrelated UC model for all except the final model estimated) denoted LL0; for the final
model the corresponding restricted model the correlation ρcs is restricted to −0.99, ρτc and ρτs to zero; p-value
is computed by comparing 2(LL − LL0) to a χ2

2 distribution.

effectively the same log likelihood value and imply that the correlation between the
cycle and seasonal disturbances is very strong and negative. Due to their similarity
(including estimated component series) only the case with ρτs = 0 is included in
Figure 2 (second column). Also, note that the model specified with ρcs = 0 as
the single restriction in Table 1 is statistically dominated by others, since its log
likelihood improves only marginally on the uncorrelated UC model.

Compared with the uncorrelated UC model, the model with ρτs = 0 has a more
volatile trend (compare the estimates of στ in Table 1 and the extent to which
the trend series track the data in Figure 2), while the cycle is very substantially
less volatile. Overall, the implied dates of so-called growth cycle recessions (that
is, periods with negative estimated cycle values in relation to the trend) do not
generally change markedly in comparison with the uncorrelated UC case, although
the cycles are typically more marked for the uncorrelated UC model. Nevertheless,
the 1990s recession is barely discernible for the correlated component model, but
cycle values more than 2% below trend are estimated for the uncorrelated UC
model.

In the light of the ρ̂cs values obtained from other models, the final model
of Table 1 specifies ρcs = −0.99, rather than imposing any zero restriction. In
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statistical terms, the results are impressive, with the log likelihood showing an
increase that is significant at 0.001% compared with the corresponding restricted
model (namely with ρτc = ρτs = 0 and ρcs = −0.99). Further, the estimates imply
that a version of the SSE model, in which all component disturbance correlations
are ±1, is supported by the data. Despite this statistical support, Figure 2 shows that
the estimated trend and cycle components are not plausible in economic terms, with
consumption below trend and the cycle taking large negative values over much
of the period since the 1960s. This may imply that the individual trend, cycle,
and seasonal components are so inter-linked for this series that a decomposition
is economically meaningless for this series. Such a view is compatible with the
conclusion of Osborn et al. (1988) that UK consumption is periodically integrated,
implying an inherent connection between long-run unit root and intrayear seasonal
dynamics.

Despite the different estimated disturbance correlations seen in Table 1, it is
notable that both σ̂s and the extracted seasonal component time series change
relatively little across all models examined. In that sense, seasonality is robust to
the UC specification and seasonal adjustment might be considered appropriate.
However, the model in Table 1 where seasonality is largely uncorrelated with
the other components (as ρcs = 0 is imposed and ρ̂τ s is small) is statistically
dominated by other specifications. From a slightly different perspective, the pres-
ence of correlations across the components will imply that seasonality contains
information relevant for trend and cycle estimation.

5.2. US Nonfarm Payroll Employment

US employment data are available seasonally unadjusted from 1948, and we
analyze quarterly data over 1948Q1–2016Q1. Results are reported in Table 2
for models embodying differing correlation assumptions, with the conventional
uncorrelated UC model again providing a baseline. Since the AR(2) coefficient is
significant, the uncorrelated UC specification imposes two overidentifying restric-
tions. Only a single correlation restriction is required for identification, and we
choose ρτs = 0 in view of previous literature that provides evidence of trend–cycle
and cycle–seasonal correlations for output and related series (discussed above).
In common with UK consumption examined in the preceding subsection, the
additional restrictions imposed by the conventional model are strongly rejected by
an asymptotic log likelihood test.

It is interesting that, as for UK consumption in the preceding subsection, the
imposition of ρτs = 0 leads to an estimated correlation lying at the −1 boundary
and the other being numerically small and statistically insignificant. However, for
employment it is the trend–cycle correlation that is estimated at the −1 boundary,
rather than the cycle–seasonal correlation. This difference could be associated
with the strength and nature of the seasonality in the two series, which is relatively
less marked for the employment series (see Figure 3). The final model in Table 2
then imposes a trend–cycle innovation correlation of −0.99, with the results again
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TABLE 2. Quarterly US nonfarm payroll employment: Estimation results

Restriction(s) imposed

Parameter All ρij = 0 ρτs = 0 ρτc = −0.99

στ 0.0156
(0.0297)

1.1896
(0.6015)

0.7531
(0.1399)

σc 0.5440
(0.0396)

1.5076
(0.7538)

0.9751
(0.1863)

σs 0.1557
(0.0169)

0.1465
(0.0260)

0.1113
(0.0141)

ρτc 0
(NA)

−1.0000
(0.0001)

−0.99
(NA)

ρτs 0
(NA)

0
(NA)

0.9995
(0.0180)

ρsc 0
(NA)

−0.0065
(0.0168)

−0.9914
(0.1755)

μ 0.4611
(0.0264)

0.4817
(0.0078)

0.4830
(0.0100)

φ1 1.6292
(0.0596)

1.3823
(0.1999)

1.5351
(0.0916)

φ2 −0.6360
(0.0600)

−0.3926
(0.2022)

−0.5449
(0.0924)

Log Lik. −321.420 −313.582 −301.796
2(LL − LL0) 15.676 26.588
p-value 0.0004 < 0.00001

Notes: Values in parentheses are standard errors; NA indicated not applicable, as the parameter value
is specified a priori; 2(LL − LL0) gives twice the difference between value of the log likelihood and
that of the corresponding restricted model (the uncorrelated UC model for all except the final model
estimated) denoted LL0; for the final model the corresponding restricted model the correlation ρτc is
restricted to −0.99, ρτs and ρcs to zero; the p-value is computed by comparing 2(LL − LL0) to a χ2

2
distribution.

pointing to an SSE specification being preferred from the statistical perspective
over the other specifications. Also, as for UK consumption in Table 1, the estimate
of σs is fairly robust across estimated models, but those for στ and σc (especially
the former) are not.

Figure 3 displays the estimated components for the three models of Table 2. It is
notable that the uncorrelated UC model implies that employment is predominately
above trend over an extended period until the Great Recession, with the level
subsequently below trend. However, imposing ρτs = 0 indicates that the estimated
trend largely coincides with observed levels since 2010. The model based on
ρτc = −0.99 is intermediate between these two cases, with the recent employment
gap being smaller than implied by the uncorrelated UC model. In other words,
the restrictions imposed on the disturbance correlations in the UC model has
substantive implications for trend estimates and consequently for estimates of the
employment gap, echoing the findings of MNZ, Morley and Piger (2012), and
others.

This is seen more clearly in Figure 4, which shows the time series of estimated
cycles for the models of Table 2. In general, the timing of employment gap
recessions (that is, negative estimated cycle values) differ relatively little across
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FIGURE 4. Estimated cycles in US employment. Solid line: estimated cycle from the zero
correlations model; dashed line: estimated cycle from the model with ρτs = 0; dotted line:
estimated cycle from the model with ρτc = −0.99.

the three specifications, although it is notable that the model with the single
restriction ρτs = 0 is the only one that detects a recession in the mid-1970s and
this specification also differs from the others in dating the Great Recession to
start in 2009Q4, one year later than the other specifications. Assumptions made
about the disturbance correlations, however, have more striking implications for
the amplitude of cyclical movements. In particular, the uncorrelated UC model
estimates employment to have been stuck at 8% below trend over an extended
period from around 2010, whereas the assumption that trend and seasonal distur-
bances are uncorrelated (but with ρ̂τc = −1) puts the gap at little more than 1%
and the SSE model finds this to be 5–6%. The extent of these differences imply
that employment gaps extracted from UC models should be used with great care
in policy making.

It should be noted that these nontrivially different implications are not only a
consequence of the trend–cycle correlation (examined by MNZ and others), but
also depend on the assumption made about whether seasonality is uncorrelated
with the other components. Hence, even though the estimated seasonal compo-
nents for US employment are very similar across specifications (and hence all
models would result in very similar seasonally adjusted values), correlations of
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the seasonal component with the trend and cycle components can substantially
alter the apparent characteristics of these other components. For example, policy
prescriptions adopted for the US economy could be very different for employment
believed to be 8% below trend compared with 1%.

Finally, the model that is central in the paper consists of a random walk with
drift specification for the trend, a stationary AR(2) process for the cycle and
seasonality in dummy variable form. Although the specification has been used
frequently in empirical UC models of, e.g., US output, extensions covering the
great recession should consider smoother definitions of the trend components, like
an I(2) process, the Hodrick–Prescott filter or the alternative recently suggested
by Hamilton (2017), which affects all components. We hope to explore this line
of research in future work.

6. CONCLUSION

This paper argues that seasonality is an inherent feature of the dynamic evolution
of macroeconomic time series and, as such, should be considered by economists
alongside trend and cycle characteristics As discussed by Wright (2013), the sharp
downturn associated with the Great Recession has highlighted the importance of
the treatment of seasonality and its mistreatment can have important economic
implications for analysis of the trend–cycle components.

We therefore extend the UCs specification widely used by macroeconomists for
quarterly data to also take account of stochastic seasonality. Since distinct streams
of previous literature argue on economic and statistical grounds that, on the one
hand, innovations to trend and cycle components may be correlated and, on the
other, that seasonal and cycle components are related, our general model permits
possible nonzero correlations across the innovations for all three components.
However, our analysis shows that identification is not a straightforward extension
of the trend–cycle case, due to the presence of linear dependencies between
the autocovariances in the companion reduced-form ARIMA model. Simulations
show estimation of the resulting under-identified model often leads to spurious
perfect negative innovation correlations, but imposing the true zero correlation of
the DGP improves estimation.

Although the general correlated UCs model is under-identified, nevertheless the
conventional uncorrelated UC model is over-identified. Therefore, the commonly-
made assumption of uncorrelated innovations is testable. As a minimum, the
sensitivity of extracted trend and cycle components to the correlation assumption
can be established.

In our applications, we examine the role of the correlation assumption for UK
quarterly household consumption since 1955 and US quarterly nonfarm payroll
employment since 1948, finding that the correlation assumption is, indeed, strongly
rejected by the data. Imposition of a zero correlation assumption between trend
and seasonal innovations leads to an estimated cycle–seasonal correlation of −1
for UK household consumption and an estimated trend–cycle correlation of −1 for
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the US employment series. The latter outcome is largely in line with (albeit a little
stronger than) that found by researchers considering correlated trend–cycle models
for seasonally adjusted output data. Interestingly, imposition of the restrictions
then effectively yields a SSE model for both series, in which all three components
are driven by a single shock. Put differently, with a perfect negative correlation
between cycle and seasonal for UK household consumption or trend and cycle
innovations for US employment, the seasonal innovations are also found to be
perfectly correlated with the trend and cycle innovations in quarterly employment.
Although such perfect correlation may be partly a consequence of estimates “piling
up” at boundary values, the improvements in fit over the uncorrelated UC model
are very substantial.

An important aspects of our analysis of employment concerns the sensitivity of
the trend and cycle estimates to the effective assumption made about seasonality.
Although the estimates of the (filtered) seasonal components are very similar
across the three models examined, the trend and cycle estimates are somewhat
different in the period following the Great Recession. In particular, the uncorre-
lated UC model implies a much deeper recession (the cycle values being −8%
or more from mid-2010) compared with the model whose perfectly correlated
trend–cycle innovations are uncorrelated with seasonal innovations (cycle values
around −1%). The (effective) SSE model implies that the seasonal component
has information about the trend–cycle components, with a postrecession trend
intermediate between these other models and a recession with of depth 5–6%.

One underlying message of our analysis is that if seasonality is correlated with
other components of economic time series, then component extraction is statisti-
cally difficult. Nevertheless, imposing the conventional uncorrelated component
assumption will not only be invalid when such correlation is present, but ignoring
seasonality through the use of seasonally adjusted data will throw away impor-
tant information about the trend and cycle characteristics of primary interest to
macroeconomists. An alternative might be to use the seasonal adjustment method
without revisions of Abeln and Jacobs (2016).

NOTES

1. More fundamentally, Anderson and Moore (1979, pp. 230–234) show that any UC model has
a SSE representation. However, the components of such an implied SSE representation may not
have forms that are plausible to economists. In contrast, we begin from widely used component
specifications.

2. Although not explicitly drawn out, McElroy and Maravall (2014) effectively also come to this
conclusion for the same model as we examine here.

3. Note, we could also specify a DGP with zero ρτc or ρcs , but ρτs = 0 appears the most plausible
in that previous analyses have found evidence of nonzero trend–cycle and cycle–seasonal correlations.

4. Parameter estimates are retained only if the estimation ends as “normal convergence” and the
number of iterations does not exceed 1,000.

5. More detailed simulation analysis than possible here would be required to establish how the
distribution of this estimator is affected by the imposition of covariance restrictions for other realistic
sets of parameter values.
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6. UK household final consumption expenditure is a chained volume measure, reference year
2013, published by the Office for National Statistics (series ABPB, seasonally unadjusted) in the UK
Economic Accounts time series data set. US nonfarm payroll employment is obtained from the Bureau
of Labor Statistics (series ID CEU0000000001 on their webpage) with the monthly series converted
to quarterly by taking the final month of each quarter.

7. To quote Wright (2013, p. 79) “amazingly, the Bureau of Economic Analysis stopped releasing
seasonally unadjusted GDP data some years ago, as a cost-cutting measure.”

8. Although standard errors are included for all estimated parameters, these may be unreliable
when the estimated values lie close to a boundary of the permissible range, including for correlation
estimates close to ±1.
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APPENDIX A: REDUCED FORM SPECIFICATION

As explained in the main text, the model examined for quarterly time series data consists
of a trend τt , a cycle ct , and a seasonal st component, with

yt = τt + ct + st (A.1)
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and

τt = τt−1 + β + ηt (A.2)

φ(L)ct = εt (A.3)

S(L)st = ωt (A.4)

where the pth order autoregressive (AR) polynomial φ(L) = 1−φ1L−· · ·−φpLp (L being
the usual lag operator) has all roots strictly outside the unit circle and S(L) = 1+L+L2+L3

is the annual summation operator for quarterly data. In practice, we consider p = 0, 1,
or 2.

The paper analyzes the implications for identification of relaxing the usual assumption
that the innovations in (A.2)–(A.4) are uncorrelated. Therefore, the paper considers a
general positive semidefinite covariance matrix for the innovation vector vt = (ηt , εt , ωt)

′,
namely where

Q ≡ E[vtv′
t ] =

⎡
⎢⎢⎣

σ 2
τ στc στs

στc σ 2
c σcs

στs σcs σ 2
s

⎤
⎥⎥⎦ . (A.5)

The assumption for the trend in (A.2) is that this process has a single zero frequency unit
root, while S(L) implies that the seasonal component (4) has unit roots at the annual and
semiannual frequencies. Using the usual notation for differences together with the identity
	4 = (1 − L)(1 + L + L2 + L3) = 	S(L), the process for yt in (A.1) is seen to require
annual differencing (	4 = 1 − L4) to render it stationary. Applying that transformation
throughout (A.1) leads to

	4yt = S(L)β + S(L)ηt + 	4φ
−1(L)εt + 	ωt,

and hence

φ(L)	4yt = φ(L)S(L)β + φ(L)S(L)ηt + 	4 εt + φ(L)	ωt . (A.6)

To obtain the reduced form ARIMA specification implied by (A.6), the left-hand side is
clearly an AR(p) in 	4yt , while the right-hand side has constant δ = φ(L)S(L)β and a
moving average (MA) disturbance that arises from the sum:

zt = φ(L)S(L)ηt + 	4 εt + φ(L)	ωt

= (1 − φ1L − · · · − φpLp)(1 + L + L2 + L3)ηt + (1 − L4)εt

+(1 − φ1L − · · · − φpLp)(1 − L)ωt . (A.7)

Note that the maximum lags on the trend, cycle, and seasonal disturbances in (A.7) are
p + 3, 4, and p + 1, respectively. Therefore, the maximum lag for which zt can have a
nonzero autocovariance is max(p + 3, 4), which implies that zt has a representation as
an MA process. This is discussed by Lütkepohl (1984) in the context of aggregating the
components of a vector MA process, and hence zt = θ(L)ut is MA(q) where

q ≤ max(p + 3, 4), (A.8)
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and ut is a white noise process. The variance of ut and the individual MA coefficients in
θ(L) depend in a nontrivial way on the properties of the individual component processes;
see Hamilton (1994, pp. 102–107), for examples, in the context of two uncorrelated MA
processes.

To summarize, the reduced form representation of the UC model consisting of (A.1)–
(A.4) in which the covariance matrix of the component disturbances has the general form
of (A.5) is

φ(L)	4yt = δ + θ(L)ut , (A.9)

which is equation (9) of the main text. Hence, 	4yt is ARMA(p, q), with AR polynomial
φ(L) from the cycle component and MA order q satisfying (A.8).

APPENDIX B: IDENTIFICATION

In the text, we write the autocovariances of zt of (A.7) as

γ = Aσ , (B.1)

where γ = [γ0, . . . , γq ]′, σ = [σ 2
τ , σ 2

c , σ 2
s , στc, στs, σcs]′, and A is a (q + 1) × (q + 1)

matrix.

B.1. White Noise Cycle

For p = 0, (A.7) and (A.8) become

zt = S(L)ηt + 	4 εt + 	ωt

= ηt + · · · + ηt−3 + εt − εt−4 + ωt − ωt−1,

and

q ≤ 4.

The nonzero autocovariances of zt are then given by

γ0 = 4σ 2
τ + 2σ 2

c + 2σ 2
s + 2στc + 2σcs,

γ1 = 3σ 2
τ − σ 2

s − στs − σcs,

γ2 = 2σ 2
τ , (B.2)

γ3 = σ 2
τ + στs + σcs,

γ4 = −σ 2
c − στc − σcs .

Note that q = 4 except for the special case σ 2
c = −(στc +σcs). Expression (12) of the main

text provides A of (11) for the matrix representation of the system (B.2).
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B.2. AR(2) Cycle

For p = 2, (A.7) and (A.8) become

zt = [1 + (1 − φ1)L + (1 − φ1 − φ2)L
2 + (1 − φ1 − φ2)L

3 − (φ1 + φ2)L
4 − φ2L

5]ηt

+[1 − L4]εt + [1 − (1 + φ1)L + (φ1 − φ2)L
2 + φ2L

3]ωt . (B.3)

and
q ≤ 5.

It is straightforward but somewhat tedious to show for this case that zt has autocovariances

γ0 = 2[2 + 2φ2
1 + 2φ2

2 − 3φ1 − 2φ2 + 3φ1φ2]σ 2
τ + 2σ 2

c + 2[1 + φ2
1 + φ2

2 + φ1

−φ1φ2]σ 2
s + 2[1 + φ1 + φ2]στc + 2φ1(1 − φ2)στs + 2σcs,

γ1 = [3 + 3φ2
1 + 3φ2

2 − 6φ1 − 4φ2 + 6φ1φ2]σ 2
τ − [1 + φ2

1 + φ2
2 + 2φ1 − φ2 − 2φ1φ2]σ 2

s

+2φ2στc − [1 + φ2
1 + φ2

2 ]στs − [1 + φ1 + φ2]σcs,

γ2 = 2[1 + φ2
1 + φ2

2 − 2φ1 − 2φ2 + 2φ1φ2]σ 2
τ + [φ1 − 2φ2 − φ1φ2]σ 2

s , (B.4)

γ3 = [1 + φ2
1 + φ2

2 − 2φ1 − 3φ2 + 2φ1φ2]σ 2
τ + φ2σ

2
s − φ2στc

+[1 + φ2
1 + φ2

2 + φ2]στs + [1 + φ1 + φ2]σcs,

γ4 = −[φ1 + 2φ2 − φ1φ2]σ 2
τ − σ 2

c − [1 + φ1 + φ2]στc − φ1[1 − φ2]στs − σcs,

γ5 = −φ2σ
2
τ − φ2στc − φ2στs .

Analogously to p = 0 above, q ≤ max(p + 3, 4) takes its maximum value (now 5) except
for the special case σ 2

c = −(στc + σcs). Thus, in general, zt is MA(5).
To simplify the expressions in (B.4) a little, in the text, we define

B = 1 + φ2
1 + φ2

2 ,

C = 1 + φ1 + φ2,

D = φ1 + φ2 − φ1φ2.

Hence, the system of autocovariances can be written as

γ0 = 2[2B − 3D + φ2]σ 2
τ +2σ 2

c + 2[B + D − φ2]σ 2
s + 2Cστc + 2φ1(1 − φ2)στs + 2σcs,

γ1 = [3B − 6D + 2φ2]σ 2
τ − [B + 2D − 3φ2]σ 2

s + 2φ2στc − Bστs − Cσcs,

γ2 = 2[B − 2D]σ 2
τ + [D − 3φ2]σ 2

s , (B.5)

γ3 = [B − 2D − φ2]σ 2
τ + φ2σ

2
s − φ2στc + [B + φ2]στs + Cσcs,

γ4 = −[D + φ2]σ 2
τ − σ 2

c − Cστc − φ1[1 − φ2]στs − σcs,

γ5 = −φ2σ
2
τ − φ2στc − φ2στs .

Expression (14) of the main text provides the matrix A of (11) for this system of equations.
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