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ABSTRACT WITT RINGS WHEN CERTAIN BINARY FORMS 
REPRESENT EXACTLY FOUR ELEMENTS 

CRAIG M. CORDES 

ABSTRACT. An abstract Witt ring (R, G) of positive characteristic is known to be a 
group ring 5[A] with {1} ^ A Ç G if and only if it contains a form (1,JC), x ^ ± 1 , 
which represents only the two elements 1 and x. Carson and Marshall have character
ized all Witt rings of characteristic 2 which contain binary forms representing exactly 
four elements. Such results which show R is isomorphic to a product of smaller rings are 
helpful in settling the conjecture that every finitely generated Witt ring is of elemen
tary type. Here, some special situations are considered. In particular if char(7?) = 8, 
\D(l, 1)| = 4, and R contains no rigid elements, then R is isomorphic to the Witt ring 
of the 2-adic numbers. If char(#) = 4, \D(l,a)\ = 4 where a G D(\, 1), and/? contains 
no rigid elements, then R is either a ring of order 8 or is the specified product of two 
Witt rings at least one of which is a group ring. In several cases R is realized by a field. 

1. Introduction. The quadratic form structure of a field of characteristic not two 
is given by its Witt ring, and this concept has been generalized by M. Marshall [8] to 
abstract Witt rings. Various attempts have been made to characterize abstract Witt rings, 
but so far their deepest structural properties remain unknown. One attack that has been 
used successfully both for fields and in the abstract setting is an analysis of situations 
in which there exist binary forms whose value sets are small. For example in [1, 2, 8] 
are investigations of situations where there is such a value set containing exactly two 
elements. In [3] Carson and Marshall characterized Witt rings of characteristic 2 for 
which there is an associated binary form representing at most four elements, and Marshall 
extended this result in [9]. 

Here we consider the special cases when the Witt ring R has characteristic 4 or 8 and 
the binary form (1,1) (or close to it) represents exactly four elements. The main results 
are listed in Theorems 2.6, 3.1, and 4.1. When char(7?) = 8, R turns out to be a group 
ring of the Witt ring of the 2-adic numbers and a group of exponent 2. 

This is the content of Section 2. In Section 3 we assume (1,1) represents four elements 
and char(R) — 4. It is shown that the basic part of/? is either a ring of order 8 or a product 
of two special group rings. Finally in Section 4 the same situation as in Section 3 is 
considered except that the binary form is (I,a) where a G D(l, 1) — {±1}. Here the 
situation is more complex, but the results are similar to when a = 1. Much of the proofs 
in Sections 3 and 4 follow closely the proof of Theorem 3.10 in [3]. 

Suppose F and K are fields in which D(l, 1) = {1 , -1} and s(F) = s(K) = 2. 
The product of W(F) and W(K) in the category of Witt rings satisfies the hypothesis of 
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Theorem 3.1, and the main result in Section 3 is that every "non-degenerate" (in the sense 
of the radical being 1 and there existing no rigid elements) such R, i.e. also satisfying the 
hypothesis of Theorem 3.1, is isomorphic to one of these products. Similarly the non-
degenerate R in Theorem 4.1 are formed from a Witt ring T of characteristic 2 containing 
a rigid element x and by using the F above. Then R = Tx W(F) where a corresponds to 
( x , l ) i n G r x f * / F 2 . 

The hypotheses are rather restricted here, but the proofs do not seem to generalize 
readily. In fact the small change in hypothesis from Section 3 to 4 demands substantially 
more work even though the approaches were the same. What Carson's and Marshall's 
work [3] and the efforts in this paper seem to indicate is that studying binary forms 
representing exactly four elements is complicated. 

Throughout, the terminology and notation are as in [8]. In particular R is an ab
stract Witt ring with distinguished subgroup G (of exponent 2) of units. The associ
ated quaternionic pairing is given by q: G x G —> Q, and D(a\,. ..,an) denotes the 
subset of G corresponding to the value set of the form (a\,...,an). The radical of R is 
DR — {a G G I D(l,—a) = G}. The subgroup generated by ai G G for / G / is denoted 
by {{a,}), i G /. 

In Sections 3 and 4, the hypotheses of the main theorems specify there are no rigid ele
ments. This restriction does not affect the generality of the results since by Corollary 5.20 
[8], such elements can always be separated out via group rings. Moreover, since it is as
sumed here char(/?) > 0, we have at our disposal the well-known result that for x ^ ±1 , 
|£*(1>*)| > 4 if and only if \D{\,— x)\ > 4. That is, x is basic if and only if x is not rigid. 

In the following, repeated use is made of several elementary results. These appear 
below as lemmas. Sometimes they are referred to directly, but frequently they are tacitly 
assumed. Note that Lemma 1.1 is used in this paper only for n — 2 and 3. 

LEMMA 1.1. IfH\ , — -,Hn are subgroups of a group G and ifb G a\H\n- • -C\anHn 

for some b, at G G, then f] afti — b H ///, 1 < i < n. 

LEMMA 1.2. IfH, K are subgroups of a group and if H UK is a subgroup also, then 
at least one of H and K contains the other. 

LEMMA 1.3. IfH, K, L are subgroups of a group, then HKHHL = H(K n HL). 

LEMMA 1.4. If R is an abstract Witt ring and if a,b G G, then D{l,a,b,ab) = 
\JD(l,a)D(hbe) where c runs through D(l,a). Also D(l , f l )f1D(U) CD(l,-ab). 

2. The case s = 4. Assume in this section that R is an abstract Witt ring with 
s = 4 and D(l, 1) = {l,a,b,ab} where a,b G G. If we denote (1,1,1,1) by ^, then 
W ) = U # ( l . 1)0(1,*), x G D(l, 1). That is 

DW0 = {l9a9b9ab}(D(l9a)UD(l,b)UD(l9ab)). 

Also 
D(l,l,l) = \jD(l,x), ; tGD( l , l ) ; 
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and so 
D ( l , l , l ) = D ( l , a ) U D ( U ) U D ( l , 4 

Since 5 = 4 , - 1 G W ) - D ( 1 , 1 , 1 ) Ç bD(l9 a)UaD(l9b)UaD(l9 ab). It is straight
forward to check that —1 is in any one of these 3 sets if and only if it is in all of them. 
Thus,-/? GD(l , f l ) , -û G D(l9b)9<md-a G D(l9ab). Note that b £ D(l, a) for other
wise — 1 G D ( U ) which implies — a G D(l, 1), and so —1 G D(l, 1). Contradiction to 
s = 4. Summarizing the above and similar results, we have 

PROPOSITION 2.1. With notation as above, the following hold: 

a9-b G D(l9a) ; -a9b G £>(1,£) ; - a , -b G D(l9ab) 

-l9b£D{\9a)\ -l9a$D{l9b)\ -\9a9b (jt D(l9ab). 

By Lemma 1 . 4 , D ( U ) n D ( l , - û ) Ç D( l , l ) = {l ,a ,Mfc}. Butfc £ D(l,a) then 
shows D(l,a)nD(l,—a) = {1, a}. In a like fashion, we obtain the other two equalities 
in 

PROPOSITION 2.2. With notation as above, the following hold: D(l9a)C)D(l9—a) = 
{l,a},D(l,b)nD(l,-b) = {l9b}, andD{l9ab)nD{l9-ab) = {l9ab}. 

Also from Proposition 2.1 we have that {l9a9b9ab}D(l9x) = ±D(l9x) for each of 
x = a,b, ab. Thus 

PROPOSITION 2.3. With notation as above, 

D(X/J) = ±(D(l9a)UD(l9b)UD(l9ab)) = ±D(19191). 

By Lemma 1.4 and Proposition 2.2, 

D(l,a)nD(l,b)nD(l,ab) Ç D{1, -ab) HD{l9ab) = {l9ab}. 

But also 

D(l9a)nD(l9b)nD(l9ab) C D(l9a)nD(l9-a) = {l9a}. 

Hence, we obtain 

PROPOSITION 2.4. With notation as above, 

D(l9a)nD(l9b)nD(l9ab) = {!}. 

THEOREM 2.5. IfR is a Witt ring as above, then D(l9a) = ({a9—b}), D(l9b) = 
({-a9b}), D(l9ab) = ({-a9~b}),D(l9-a) = ({-l9a}), D(l9-b) = ({-1,/?}), 
D(l9-ab) = {{-l9ab}),andD(l91,1,1) = ({-l9a9b}). 

PROOF. The proof will be given in four steps. 
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STEPI . Choose 

c 6 D ( l , a ) n D ( l , i ) - { l } , 

d e D(l,a) nD(l,ab) - {l}9 

e e D(l,b)nD(l,ab) - {1}. 

This can always be done as c = —ah, d = —b, and e — —a show. Clearly cde G Z^I/J), 

and also cde £ D(\,a) UD(l,b) UD(l,ab) = D(l, 1,1). Hence, cde G - D ( l , l , l ) b y 
Proposition 2,3. 

Supposée^ G —D(\,a). Then £ G — D(l,a), and so 

^GD(i,̂ >nD(i,fl̂ )n-D(i,a) = -a(D(u)nD(i,^)nz)(u)) = {-«}. 

Similarly cde lying in —D(\,b) or —D(\,ab) yields d = —b and c = — <?£ respectively. 
Thus, at least one of the following must hold: 

D{\,a)nD(l,b) = {l,-ab}, 

D(l,a)nD(l,ab) = {1,-/?}, 

D(l,b)nD(l,ab) = {1 , -a} . 

Without loss of generality, assume D(l, a) r\D(l,b) — {\,—ab}. 
Now considers G D(l,a) — D(\,b) and _y G D(\,b) — D(\,a). This is possible 

as x = a and v = b illustrate. Again xy G Z>(V0> but xy ^ D(\,a) U D(\,b). Could 
xy G - D ( l , a)? If so, then y £ D(l , fc)n-D(l ,a) = - f l ( D ( U > n D ( U ) ) = {-a,fc}. 
Similarly xy G —D(\,b) implies x G {a, — b}. Consequently, if there are x G D(l,a) — 
({-a,fc}) and y G D(l,fc) - ({a,-6}), thenxy G ±D(l,afc). 

CLAIM. Suppose D(l,a) nD(\,b) = {l9-ab} and \D(l,a)\ and |D(1,Z?)| are at 
least 8. Then ±D(ha) Ç ±D(l,afc) if and only if ±D(l,b) Ç ±D(l9ab). 

lf±D(l9a) C ±Z)(l,a&), then£>(V0 = ±D(1,Z?) U ±£>(l,a£). Hence, ±D(l,fc) Ç 
±D(l, ab) or ±D(l,ab) Ç ±D(1,6). If the latter holds, then D(l, a) = D(l,a)nD(i/0 = 
D(l ,a)n±D(l , fc) = {l,-fc}(D(l,a)nD(l,fc)) = {l,a,-b,-ab}. Contradiction to 
|£>(l,a)| > 8. So ±D(l,b) Ç ±D(1,«/?) must be the case. The other direction follows 
in exactly the same way, and the Claim is established. 

STEP 2. Suppose that \D(l,b)\ > 8 and also that \D(l,a}\ > 16. Choose any z G 
D(l, a)-({a, -b}). Then letx G D(l, «) - ({« , -fe,z}) and set x ' = xz. If y G D(l,b)-
D(l,a), then by Step 1 we have xy,x'y G ±D(l,flfc). So z = (xy)(x'y) G ±D(l,ab). 
Since ({a,-/?}) Ç ±D(l,ab), the above then yields D(l,a) Ç ±D(l,ab). By the Claim, 
it follows that 

D(^) = ±D(l,a^). 

Now - a G D(l,&) Ç D(l, 1,1) shows D(l, - a ) Ç D(^). Similarly D(l, -/?), 
D(l,-ab) CD(V0. 
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Hence 

D(\,-a) =D(l9-a)n±D(hab) = {1, -1}(D(1, -a) DD(l,ab}) Ç ±D(\,b). 

Similarly D(l,-b) Ç ±D(l,a) <mdD(l,-ab) Ç ±D(1,1). The last inequality yields 
more though because D(l, 1) = {\,a,b, a/?}. In fact since — \,ab G D(\,—ab) and —a ^ 
D(l,—ab) (see Propositions 2.1 and 2.2), we must have D(l,— ab) = {1, —!,«/?, —a/?}. 

D(i/>) can be computed again but in a slightly different manner. Since (1,1,1,1) = 
(\,-ab,a,-b), D(jp) = UD(\,-ab)D(l,ax), x e D(\,-ab). So 

D W = ± { l , f l i } ( D ( l , f l > U D ( l , - a ) U D ( U ) U D ( l , - % 

But 
abD(l,a) = -D(l,a) mdabD{l,b) = -D(l,b), 

and by the last paragraph 

abD(l,-a) Ç ±abD{l,b) = ±D(l,b) mdabD{l,-b) Ç ±D(\,a). 

Consequently, Dty) = ±D(l,a) U ±D(\,b); and so ±D(l ,a) Ç ±D(1,/?) or 
±D(l,b) Ç ±D{ l,a). Both possibilities yield contradictions to | D(\,a) | and | D(\,b) \ > 
8 just as in the proof of the Claim. 

The above shows it is impossible for |D(l,a)| > 16 and \D(l,b)\ > 8. Similarly the 
situation |D{\,a) | > 8 and \D{l,b)\ > 16 cannot occur. 

STEP 3. Assume now that \D(\,a}\ = \D(\,b)\ = 8. Then there are c,d such 
thatD(l,a) = ({a,-b,c}) and D{l,b) = ({-a,b,d}). Note that c £ ({-\,a,b}) 
for otherwise, D(l,a) — ({—l,a,b}) which contradicts Proposition 2.1. Also d ^ 
({—1,<3, b, c,}) or else D(l,b) Ç ±D(l ,a) . As has been seen before, this yields 
\D(l,b)\ =4 which is a contradiction. Thus, — 1,a, b, c,d are independent in G. 

It follows that 
D($) = ({-l,a,Z?,c,J})Ud=D(l,aZ?). 

So 
({-l,a,Z?,c,d}) C±D(l,flè> 

or 
±D(l,afc) Ç ({-l,a,b,c,d}). 

lie e ±D(l,ab),thmD(\,a) Ç ±D(l,ab); and by the Claim, D(\,b) Ç ±D(l,a/?). 
A contradiction is reached as in Step 2. Hence, it must be the case that c ^ ±D( 1, aZ?); 
and so 

±D(l,ab) Ç ({-l,a,ft,c,d}> = D(i/;). 

Moreover, cd ^ ±D(l ,a) U ±D(l,b) implies cd G ±D(l,ab). So —a,—b,ëcd e 
D(l,ab) where 6 is either 1 or-1, and also {—\,c, — c} P\D(l,ab) — <j>. Therefore, 

D{l,ab) = ({-a,-b,6cd}). 
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As was shown in Step 2, D(l,-a) Q D(i[)). AlsoZ)(l, -a) nD(l,a) = {1, a} from 
Proposition 2.2. But since D(l9a) = ({a, —b,c})9 this means D(l, —a) D ({—b,c}) = 

{1}. 
In addition D(l,b) nD(l,ab) = ({-a,b,d}) H ({a,-b,6cd}) = {1,-ab}. From 

Lemma lA,D(l,b)nD(l,ab) = D(l,-a)nD(l,b) = D(l,-a)nD(l,ab). 
Consequently, 

D(l,-a)n{{b,d}) = {l} 

and 

D(U-a)n{{-b,8cd}) = {1}. 

Since {{-l,a}) Ç D{1, - a ) , the above shows D(l, - 0 ) H ({b,c,d}) = {1}; and so 
D(l,—a) = ({—I,a}). Using the same technique, we can show D{l,—b) — ({—l,b}) 
mdD(l,-ab) = ({-l,ab}). 

Since c G D(l,a), —ac G D(—a, — 1). So —ac G D(—a,—ab,l) because —1 G 
D(-ab, 1) (see 2.10 in [8]). However, 

D(-a,-ab,l) = D(-ab,-a,l) = {jD(-ab,x), 

xeD(-a,l) = { 1 , - 1 , 0 , - a } . 

So 

D(-ab, -a,l)= D(-ab, 1 ) U D(-ab, -1 ) UD(-ab,a) UD(-aft, - a ) 

= D(l, -«/?) U -D(l,afc) UaD(l, -/?) U -aD(l,fc) 

= {±1, ±ab} U - ( { - a , -b,6cd}) Ua{±l , ±/?} U ({-a,ft,t/}). 

Clearly — 0c ^ D(—ab, —a, 1). Contradiction. Thus, it is false to assume |D(l,a)| = 
|D(l,ft)| = 8. 

STEP 4. We know now that at least one of |D(l,a)| andD|(l,Z?)| must be 4. Without 
loss of generality assume \D(l,a)\ = 4, i.e. D(l,a) = {I, a, —b, —ab}. From Proposi
tion 2.3, it then follows that 

D(il;) = ±D(l,b)U±D(l,ab). 

So 
±D(l,b) Ç ±D(l,ab) or ± D ( 1 , ^ ) Ç ±D(l,b). 

Suppose that the former is true. Then 

D(\l>) = ±D(\,ab), 

and 
D(l,-b) = D(l,-b)n±D(l,ab) = {l,b}(D{l, -b) nD(l,ab)) 

Q{l,b}D(l,a) = ({-l,a,b}). 
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B u t - l , b G D(l,-b)<md-a £D(l,-b) (or else/? G D(l,a)) then yield D( 1,-/?) = 
{1,-1,/?,-/?}. Similarly beginning with D(l,-ab) = D(l,-ab) H ±D(\,ab) gives 
D(l,-ab) = {l,-l,ab,-ab}. 

D(l,—b) and D(l,—ab) turn out to be the same subgroups calculated basically the 
same way, if instead we assume ±D( \,ab) Ç ±D( 1, b). To complete the proof, we must 
compute D ( l , - a ) , D(l,fc),andD(l,afc). 

Since ^ = (1,0, l,a), D(V>) = U ^ K M ) ^ ! ^ - * ) , * £ D(l,a). Thus, 

D(i/;) = { l , a , - è , - a f t } ( D ( l , a ) U D ( l , l ) U D ( l , - a è ) U D ( l , - è ) ) = ({ - l , a , è} ) . 

From Proposition2.1 and from the fact that D( 1, —a), D(l,b) and D{ 1, a/?) all lie in 

£>(V0> w e obtain 

D ( l , - a ) = { 1 , - 1 , « , - « } , 

D(l,fc) = {l,-a,b,-ab}, 

and 
D(\,ab) = {l,-a,-fe,afc}. • 

After successfully calculating the value sets, D(l,x), for je G D(l, 1,1,1), we are 
in a position to characterize all Witt rings satisfying |D(1,1)| = 4 and 4 < s < oo. 
It is known that every abstract Witt ring is a quadratic form scheme (see [7]). From 
Theorem 3.5 [10], it is seen that \D(l, 1)| > s. So the above conditions imply s — 4. It 
is interesting to note that all these rings are realized as Witt rings of fields. 

THEOREM 2.6. Let R be an abstract Witt ring satisfying s — 4 and |D(1, 1)| = 4. 
Then R is isomorphic in the category of Witt rings to a group ring S[A] where S is the 
Witt ring of the 2-adic numbers and A is a group of exponent 2. 

PROOF. SupposeD(l, 1) = {1, a, b,ab}. By Corollary 2.6 of [3], the basic part B of 
R is given by B = ±^1X3 U X\Xl where we can choose X\ — D( 1,1 ); and 

Xi = \J{D(h-x)\xeXi-l-{\}} 

fo r /= 2,3. 
Thus X2 = D(l,-a) U D(l9-b) U D(l,-ab) which is equal to ({-\,a,b}) by 

Theorem 2.5. It also follows from Theorem 2.5 that X3 = ({—l,a,b}), and so B = 
({—l,a,b}) = D(l, 1,1,1). It is straightforward to see that the Witt ring associated with 
B is isomorphic to the Witt ring of the 2-adic numbers. The result now follows from 
Theorem 5.19 and Corollary 5.20 of [8]. • 

Note that Theorem 2.6 gives a new characterization of fields which are quadratically 
equivalent (see [4]) to the 2-adic numbers. 

COROLLARY 2.7. Afield F is equivalent with respect to quadratic forms to the 2-adic 
numbers if and only if F contains no rigid elements, \ (Dl, 1 )| = 4 and 4 < s < 00. 
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3. The first case for s = 2. In this section the Witt ring R satisfies the properties 
that s — 2 and |Z)(1,1)| = 4. Assume throughout that D'(1,1) = {1, — I, a, —a). 

Let us consider first the situation where the radical DR ofR is not 1, i.e. R is degenerate. 
\ÏDR^\, then there are two possibilities: (1) DR — G and (2) DR ^ G. In case (1) —1 G 
DR implies \G\ = 4 = |£>(1,1)|; and it is easy to see R is isomorphic to Z/4Z x Z/4Z 
in the category of Witt rings, i.e. the Witt ring of a field with s = 2 = u and g = 4. 
In case (2) we must have —1 ^ DR. For otherwise R would satisfy the properties that 
\GR\ = 4 and also D* = {1,-1} Ç G = { 1 , - 1 , a , - a } . Thus - 1 G D(l,a) implies 
D(l,a) = G which contradicts DR ^ G. 

Since we are assuming DR ^ G, it follows that \D(l,x}\ > 2\DR\ for all x G G in 
exactly the same way the corresponding result for fields was proved [5, Theorem 1]. 
Applying this result to x = 1 shows \DR\ = 2. So in case (2) we have that 

D ( 1 , 1 ) = D * U - D * . 

Let H be any subgroup of G containing — 1 such that G = DR X H. Then by Theo
rem 5.8 [8], there are Witt rings S and T in R with G s and Gj corresponding to DR and H 
respectively such that R = SxT. Moreover, it is clear that S = Z/2Z[JC]. Also it must be 
true that D r ( l , 1) = {1 , -1} . By Corollary 2.8 [3], T ^ Z/4Z[G r /{±l}], Le Tis iso
morphic to the Witt ring of an iterated power series field over a finite field of 3 elements. 
Note that S x T is the same up to isomorphism regardless of whether S = Z/2Z[JC] or 
S ^ Z/4Z (see Lemma 5.11 [8]). 

Now we are in a position to characterize Witt rings R satisfying char(R) = 4 and 
D(l,l) = {l,—l,a,—a}. Much of the argument follows Carson's and Marshall's proof 
of Theorem 3.10 [3] where they consider the case char(7?) = 2. We assume G contains 
no rigid elements because such R can always be "shrunk" to this case (see Corollary 5.20 
[8]). In the theorem below, cases (1) and (2) occur when DR ^ 1 ; and their proof is above. 
Case (3) reflects what happens when the radical is 1, and it is this situation that demands 
the most work to prove. 

THEOREM 3.1. Suppose char(/?) = 4 and GR contains no rigid elements. Then 
\D(1,1)| =4 if and only ifR is isomorphic to one of the following Witt rings: 

(1) the Witt ring of a field F satisfying s(F) = u{F) = 2 and q(F) = |F*/F*2| = 4, 
(2) the product in the category of Witt rings of either Z/2Z[x] or Z/4Z and Z/4Z[A] 

where A is a group of exponent 2, or 
(3) the product of Z/4Z[A\] and Z/4Z[A2] where A\ and A2 are groups of expo

nent 2. 

PROOF. From the above we may assume DR = 1. D(l, 1) = {±1, ±.a} implies that 
D ( l , a ) n D ( l , - a ) = D(l , l ) . SinceDR = {l},Lemma 1.2 showsD(l,a)UD(l,-a> ^ 
G. The bulk of Carson's and Marshall's proof of Theorem 3.10 [3] consists of 5 major 
claims. The first 4 of those apply to the proof here with slightly amended statements, but 
their verifications are identical to those in [3] after the adjustments. Consequently, only 
the statements themselves along with some useful clarifications will be provided. 
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CLAIM 1. Ift G G,thenD(l ,f)nD(l , l)D(l ,af) = { U } ( D ( U ) n D ( l , - a ) ) . 

We will want to consider henceforth only t EG — (D( l , a )UD(l , —«))• Note these f 
are precisely those for which D(l, 1) H D(l,—r) = {1}. 

CLAIM 2. If t £ D(l,a) UD(1, - a ) , then 

D ( U ) n D ( l , l ) Z ) ( W ) = {U}or{U,M,/w} 

where u G D{l,a) and ta G D(l,—a). 
The proof of this claim is broken down into two cases, one where v = — 1 and one 

where v ^ —1. Following [3], the v comes from D(l, 1). 
If T = D(l, l)D(l,t) HD(1,1)D(1, - f ) , then by Lemma 1.3, T = D(l, 1)(D(U) H 

£>(1,1)D(1,-/)). So by Claim 2, r = D( l , l ){ l , /} or D(l,l){l,r,n,fti}. Continuing as 
in [3], we see that 

T = D(l, l )D(U) f lD( l , 1)D(1, -t) = D(l, l)D(l,af) HD(1, l)D(l,-at). 

Consider/? = (1,1} <g> (l,f). Then 

D(p) = \JD(1, l)D(l,xt), x G D(l, 1). 

CLAIM 3. One of the groups D{1, l)D(l,xt), for JC G D(l, 1), is equal to 7. 
Again paralleling Carson and Marshall, we may assume 7/f H) Hat ^ 1 where //*, is 

defined to be D(l, l)D(l,xt)/T. There arise two cases in the proof to consider: e — 1 or 
a and e = — 1 or — a (see [3]). 

CLAIM 4. There exists x G D(l, 1) such that |D(l,jtf)| = 4; and for any such x, 
D(l,xt) = {l,xt,u,xtu} where u G D(\,a) andxta G D(l,—a). Moreover, 

D( l , a )D( l , -a ) = G. 

It is shown in [3] that for the x in Claim 3, |D(l,jtf)| < 4. Equality holds since by 
assumption G contain no rigid elements. The remainder of this claim follows by noting 
that D(l, xt) Ç T Ç D(l, 1)D(1, —xt) and by applying Claim 2 with f replaced by xt. 

Let {w/ | / G /} and {v& | & G # } be bases of D{l,a) and D(l, —a) modulo D{l,l) 
respectively. Then uivk ^ D ( l , a ) U D ( l , —a) for all i E I,k E K. Multiplyingutvk by a 
suitable element of D(l, 1) and applying Claim 4 shows there exist uik G D(l,a), vik G 
D ( l , - a ) such that D(l,uikvik) = {l,uik, vik,uikvik} with utvk = uikvik (mod D(l, 1)). 
From this it follows that vik = vk (mod D(l, 1)) and uik = U[ (mod D{1,1)). 

Although the amended Claim 5 of [3] is true (it will be our Claim 6), the proof does 
not work. First we need an intermediate step. 

CLAIM 5. Suppose D(l,xy) = {l,x,y,xy} where x G D(l,a) — D( l , l ) and y G 
D ( l , - a ) - D ( l , l ) . T h e n D ( l , j t ) = {1,JC, - a , -ax} andD(l,y) = {l,y,a,ay}. 

Since —1 G D(l,a) nD(l,—a), the assumptions imply 

(3.2) -a G D(1,JC) and a G D(l9y). 
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Consider <p = (l,xy, l,xy). D(ip) = \JD(l,xy)D(l,z), z G D(l,xy). Thus D(tp) = 
D(l9xy)(D(l9 l ) U D ( U ) UD(l,y)UD(l,xy)). 

By (3.2) 
±aD(l,xy) ÇD(l9xy)(D(l9x)UD(l9y))9 

and so 
D(<p) = -D(l9xy) UD(\9xy)(D(l9x) UD(l,y)). 

Note that — y fi D(l,x) for otherwise —xy G D(l,x), and then — je G Z)(l,xy) which 
implies —1 E D(l,xy). Contradiction. Also then —xfiD{l,y). 

Letz G D(l,x)r\D(l,y). Then - l , z G D(<p) yields 

- z G D(<p) = -D(l,xy) U {l,y}D(l,jc> U {l,x}£>(l,y). 

B u t - z £ £>(l,x) U D ( l j ) or else - 1 G Z)(1,JC) UD(l,y) implies x or y G D(l , l ) . 
Also — z fi yD(l9x) for otherwise z G Z)(l,x) P) —yD(l,x) which is empty by the last 
paragraph. Similarly — z £ xD(l,y). Thus it must be the case that z G D(l,xy), and so 

z G D(l,x) f l D ( l j ) n/)(l,xy) Ç D(l, 1). 

ButD(l,l)nD(l,jcy) = {1} then shows D(l9x) DD(\9y} = {1}. It now follows that 

{l,y}D(l,x)n{l,x}D(l,y) = {l9x9y9xy}(D(l9x) nD(l,y)) = D(l,xy). 

Clearly both {\9y}D(l9x) and {l,x}D(l,y) contain at least eight elements. Let c G 
{l,y}D(l9x) - D(l9xy) and d G {hx}D(l9y) - D{\9xy). Then cd G D(^) and cd £ 
{l,;y}Z)(l,x) U (l,jc)D(l,y) show cd G —D(l,xy). Thus for a fixed c, there exist at 
most four such d, i.e. \{l,x}D(l9y) - D(l,xy)\ < 4. Hence, |D(l,.y)| < 4, and by (3.2) 
D(l,y) = {l9y9a9ay}. Similarly D(1,JC) = {\,x,—a,—ax}, and Claim5 is established. 

CLAIM 6. Let ij G /; k9t G K where / and K are defined above. Then uik = ua 
(mod {l,a}) and vik = v^ (mod {l9—a}). 

Set u = Uik,u' — uih v — vik> v1 — vu. Then 

(3.3) D{\9uv) = {l9u9v9uv}mdD(l9uv) = {\9u 9v'9uv'}. 

By Claim 5, we also have 

(3.4) D{\9u) = {l9u9—a9—au} andD(l,v) = {\9v9a9av} 

D(l,u') = {\9u9-a9-au'}<màD(\9v') = {\9v'9a9av'}. 

We know already that u = u' (mod D(l, 1}). Suppose u' — —u. Then 

D{\9uv') = D(l9-uv) = {\,-u,v'9-uv'} 

by (3.3). From (3.4), v' G D{\9 v')C\D{\9 — uv') Ç D(l,u) gives a contradiction. Suppose 
u' — —au. Then 

v ED{\9-auv')C\D(\9v')C\D(\9-a) CD(l,w), 
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again a contradiction. Consequently, u' G {1, a}u, and the first half of Claim 6 is proved. 
The second half is done in an analogous manner. 

Now set H\ = ({uik},a) and H2 = ({v,*},— a) for all i e I,k e K. Clearly 
q(uik,-a) = q(yik,d) = 0. By Claim 6, q(uik,vjt) = q(uik,vu) = q{uihvi() = 0 since 
(wl£, vu) — (1» UitVit). Thus q(x,y) = 0 for all x e H\ and y G //2, and using Claim 4 we 
obtain G = H\ _L //2. 

Since — 1 = a(—a),a is the distinguished element of//i and —a is the distinguished 
element for//2. Moreover, Z)( l , l )n / / i - {l ,a}andD(l , l ) n / / 2 = {l ,-a}.If /?i and 
7?2 are the Witt rings in /? associated with H\ and //2, then it follows from Theorems 5.8 
and 5.13 [8] that R ^ R{ x R2 in the category of Witt rings. By Corollary 2.8 [3], 
Rt = Z/4Z[A/] for / = 1,2; and the proof of Theorem 3.1 is complete. • 

It is interesting to observe that by using the results in Kula [6], we see that every Witt 
ring satisfying s = 2 and \D(l, 1)| = 4 is realized by a field. 

4. The second case for s = 2. In this section the Witt ring R satisfies the properties 
that s = 2 and that |D(l,a)| = 4 for some a G D(l, 1) - {1 , -1} . Consequently, 

D(ha) = { l , - l , a , - a } a n d D ( l , l ) n D ( l , - a ) = D(\,a). 

As in Section 3, we first consider the situation where DR ^ l.IfD# = G, then virtually 
the same argument for this previous case works again to show R = Z/4Z x Z/4Z. If 
DR ^ G, then also as before —a ̂  DR, \DR\ — 2, and D(\,a) = DR U —aDR. In fact we 
must have DR = {1, — 1} or {1, a}. If the latter is true, then 

D( l , l ) = D ( l , l ) n D ( l , - f l ) = D(l,a). 

Thus Section 3 applies, and R ^ S x T where S ^ Z/4Z or Z/2ZW and T = 
Z/4Z[G r /{±l}] . 

If the former is true, then let H be any subgroup containing a such that G = DR X H. 
By Theorem 5.8 [8], there are Witt rings S, T in R with Gs, G7 corresponding to DR, H 
respectively such that/? ^ S x T. Clearly S ^ Z/4Z. D(l,a) n / / = {l,fl}, and so 
a is rigid in H. Moreover, — 1 G DR implies s(T) = 1. Thus, T is a group ring with 
char(r) = 2. 

In the theorem below, the first 3 cases correspond to the above situations when DR ^ 
1. Case (4) occurs when DR = 1, and the remainder of the proof is dedicated to showing 
this. 

THEOREM 4.1. Suppose char(7?) = 4 and G contains no rigid elements. Then there 
is an a £ D(l, I) — {1} satisfying |D(1, a)\ — 4 if and only ifR is isomorphic to one of 
the following Witt rings: 

(1) the Witt ring of afield F satisfying s(F) = u(F) — 2 and q(F) — 4, 
(2) the product in the category of Witt rings of either Z/2Z[JC] or Z/4Z and Z/4Z[A] 

where A is a group of exponent 2, 
( 3) the product of"Z/4Z and any group ring of characteristic 2, or 
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(4) the product of a group ring of characteristic 2 and Z/4Z[A] where A is a group 
of exponent 2. 

Note: There is some overlap in these possibilities. 

PROOF. From the above we may assume DR = 1. D(l,a) = {±1, ±a} implies that 
D(l, l)PlD(l, —a) — D(l,a). We follow the same pattern as in the proof of Theorem 3.1, 
but some of the steps will require slightly more in this case. 

CLAIM 1. D(l9t)nD(l9a)D(l9-t) = { U } ( / ) ( U ) n / ) ( l , 1)). 

CLAIM la. If t£ D(l, l),then 

D{\9t)C\D{\9a)D(\9at) = { U } ( D ( U ) n D ( l , - a ) ) . 

Claim 1 is proved as in [3], but Claim la (which will be needed in addition to Claim 1 
to verify Claim 3 below) requires a new proof. 

It follows from Lemma 1.1 and 1.4 that 

D(l9t}n{l9a}D(l9at) = {l9t}(D(l9t) nD(l9at)) 

= {ht}(D(ht)nD{h-a)). 

So Claim la will be established if D{\9t) H {-1, -a}D(l,at) = </>. 
Let u G D(l9t) H -D(\9at). Then q(u,-t) = q(-u9-at) = 0. Thus q(-l9-at) = 

q(u9 —at) which yields q(—l9t) = q(u9a). By the linkage property of q9 there exists x 
satisfying g(—1,0 = q(—l9x) mdq(u9a) = q(x9a). Hence q(x9—a) = 0 = q{— \9tx)9 

and x G D(l,a) and tx G D(l, 1). It follows that t = x(tx) G D(l,a>D(l, 1) = D(l, 1). 
Contradiction and we must have D(l9t)n —D(\9at) — </>. 

Now suppose u G D(l,t)n —aD(l,at). Then q(u, —t) = 0 = q(—au9 —at), and so 
q(—a, —at) = q(u9 —at). Thus q(—a9t) = q(u9a). By linkage there exists x satisfying 
q(—a9t) = q(—a9x) and q(u,a) = q(x9a). It follows that x G D{l9l) and ta G D(\,a), 
and these imply once again the contradiction of t G D(l, 1). So D(l9t)n—aD(l9 at) = (f>. 

REMARK. Actually Claim la holds for all t G G, but we will not need this generality. 

CLAIM 2. lft£D(l,l)UD{l,-a),ihenD{l,t)nD(l,a)D{l9--at) = {ht} or 

{l9t9u9tu} where u G D(l, 1) and m G D(l9—a). 
As for Theorem 3.1, the proof of this claim is broken down into two cases, one where 

v G D(l, a) is equal to —a and one where v ^ —a. 
Using Claim 2, we can establish that T = D(ha)D{l,t) H D(l9a)D(h-at) = 

D( l , â )D( l , - r )nD( l , ^ )D( l , ^ ) . I fp = (l,«)(g)(l,f),thenD(p) = U ^ ( l ^ > ^ ( l , ^ ) ' 
JC G D(l,a). Also r Ç D(l,a)D(l,jtf) by the above for each x G D(l9a). 

CLAIM 3. T = D(l9a)D(l9xt) for some x G D(l,a). 
To prove this claim, as in [3], consider// = D(p)/Tand setHxt = D{l,a)D(l,xt)/T 

for x G D( 1, a). Following [3] exactly, we may assume there exist JC ^ y such that //*, Pi 
Hyt T̂  1. By the above we further can assume x G {1, —a} and y G {—1, «}. Replacing 
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t with — at if necessary, we can set x = 1. However, as opposed to both Carson's and 
Marshall's theorem and Theorem 3.1, it is not possible to reduce y to just one case. If 
y = —I, then the proof proceeds as in [3] using Claim 1 above. lfy = a, then everything 
is exactly the same; but Claim la is required in place of Claim 1. 

CLAIM 4. If t £ D(l, 1) U D(l,-a), then there exists x G D(l,a) such that 
|D(l,jtf)| = 4; and for any such x,D(l,xt) = {l,xt,u,xtu} where u G D(\, 1) and 
xtu G D(U-a). Moreover, D(l, l )D( l , - a ) = G. 

This claim can be used just as in Section 3 to find bases {«; | / G / } , {v̂  | k G K} 
for D{\, 1) and D(\,—a)modD(l,a) respectively as well as the associated {uik} and 
{vik} which satisfy U[ = uik (mod D(l,a)) and v̂  — vik (mod D(\,a)). Again before 
verifying Carson's and Marshall's next claim, we need an intermediate step. 

CLAIM 5. Suppose D(l,xy) = {l,x,y,xy} where x G Z>(1,1) — D(l,a) and y G 
D(l,-a) - D(l,a). Then £>(l,x) = {1, - l ,x , -x} ,D(l ,ay) = {l,a,y,ay} and 
D(l,— ay) — {l,a,—y,—ay}. 

Note that x G D(l, 1) H D(l,xy) Ç D(l ,-xy), and so xy G £>(l,-x). B u t - 1 G 
D(\,—x) then implies ±y G £>(1, —x) (or equivalently x G Z)(l, ±y)). It also is imme
diate that x, — y G Z)(l,—xy). Moreover, y ^ D{l,x) for otherwise x,—x G D(l,—y) 
which yields y G D(l, 1). Contradiction. Summarizing, we obtain 

(4.2) xG£>(l,±y), xGZ)(l ,-xy), y ^ D ( l , x ) , 

- 1 GD(l ,dzx)-D( l ,±y) , ûGD(l,±}i) - D ( l , ± x ) . 

Considéra = (l,xy, l,xy). Then D(cr) = U ^ ( l , - ^ y ) ^ ( l ^ ) ^ ^ Z)(l,xy). So 

D(a) = D(l,xy)(D{l, 1) UD(1,JC) UZ)(l,y)). 

From (4.2) {l,x} Ç D(l,x) HD(l,y). In fact equality holds. Let u G £>(l,x) HD(l,y). 
Then—a« G D(<7). Could—aw G D(l,xy)D(l,x)l If so, then {a, ax, ay, axy}nD(l,x) ^ 
(/>. But if either a or ax G D(l,x), then —a G £>(l,x) which yields x G D(\,a). Contra
diction. Also if ay or axy G D(l,x), then it follows that —axy G D(\,x) DD(l, — y) Ç 
D(l,xy). Hence —a G D(l,xy). Contradiction. So —au ^ D(l,xy)D(l,x), and sim
ilarly —au £ £>(l,xy)D(l,y). Thus, it must be the case that —au G D(l,xy)D(l, 1) 
which yields u G £>(l,xy)D(l, 1). So u G £>(l,x) H D(l,y) H {l,x,y,xy}Z)(l, 1) Ç 
D(l , -xy)n{l ,x,y,xy}D(l , l ) = { l , x , -y , -xy} (D( l , - xy )nD( l , l ) )Ç({ - l , x , y} ) . 
Since x G D(l,y) and — 1 ^ D(l,y), u ^ — 1, —x, —y, —xy. Also since y ^ D(l,x), it is 
impossible for u to be either y orxy. Thus u G {l,x}, andD(l,x) HZ)(l,y) = {l,x}. 

By (4.2) D(l,xy) Ç £>(l,y). So D(l,xy)D(l,x) H D(l,xy)D(l,y) = 
D(l,xy)(D(l,x) H D(l,xy)D(l,y)) (by Lemma 1.3) = D(l,xy)(D(l,x) n D(\,y)) = 
D(l,xy). 

Also 
D(l,xy)Z)(l,x) = {l,y}£>(l,x) 

and 

D(l,xy)D(Ul) = {l,y}D(hl). 
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Now chooser G {l,y}D(l,x) -D(l9xy) and v G D(l9y) -D(l9xy). Then uv G D(a)-
D(l9xy)(D(l9x) U D ( l j ) ) implies MV G {l,y}D(l,l). In particular if v = a, then the 
last statement gives 

{l,y}D(l9x)-D(l,xy)Ç{l,y}D(l9l). 

But* G £>(1,1) shows D(l,xy) Ç {l,;y}D(l, 1); so {l,;y}D(l,jc) Ç {l,_y}D(l, 1). 
Starting with u — —1 we see also that D(l,y) Ç {l,_y}D(l, 1). Consequently, 

(4.3) D(Uxy, l,xy) = {1, }>}£>( 1,1). 

Now suppose wGD( l , l ) . Then since 

a^(l9wy9 l9wy)9D(l9wy) = D{\9wy) H {l9y}D(l9 1) 

= {l,wv}(Z)(l,w^)nD(l,l))Ç {l,w^}Z)(l,-wj) 

= {1,-1}D(1,-H7). 

Replacing w by —w leads to 

(4.4) {l,-l}D(l,wy> = {l , -- l}D(l , -wy)forai lwGZ)(l , l ) . 

L e t r = (l9a9y9ay).ThmD(T) = D(l9a)(D(l9y}UD(l9-y)UD(l9ay)UD(l9-ay}). 
But using (4.4) with w = 1 and a, we see that D{r) = D(l9a)D(l9y)UD(l9a)D(l9ay). 
By (4.2), x G D(l,;y). Suppose also that x G £>(l,tf)D(l,<ry). Then {±x9±ax} n 
D(l,<ry) ^ </>. But if either JC or ax G D(l,oy), then JC G D(\9ay) since a G Z)(l,<jy) by 
(4.2).Thus —«_y G D(l,— x), and so —a G D(l,—JC) which gives x G D{l9a). Contra
diction. On the other hand if either — x or —ax G D{\9ay)9 then — ax G Z)(l,<ry); and so 
—ay G D(1,OK) HD(1, — ay) C D(l9xy). Contradiction. Hence, by Lemma 1.2 

EKT) = D(l9a)D(l9y) = {l9-l}D(l9y). 

Using(4.4) then, we seeD( 1,ay) Ç D{r) impliesD(l9ay) = D(l9ay)n{l9-\}D(l9-y) 
= {\9y}(D(l9ay)nD(l9-y)) Ç {l9y}D(l9a) = ({-\,a9y}). 

Since v G D(l,ay) and —1 ^ D(l,<xy), we obtain D(l9ay) = {l,a,j ,«v}. Using 
(4.2), (4.4) and —1 ̂  D(l, —ay), we also see D(l, — <jy) = {l,a, —y, — ay}. This estab
lishes part of Claim 5. 

Now consider -0 = (l,xy,a,<xry). Then using D(\9a) = {±l9±a}9— 1 G D(l,ox), 
andD(l,oy) = {1,floury}, we see Z)(0) = \JD{l,xy)D(l,az), z G Z)(l,xy); and so 

D(t/0 = D(l,Jcy)(D(l,o*) UZ)(l,ary)). 

Suppose —1 G D(l,xy)£>(l,axy). Then {—l9—x9—y9—xy} nD(l9axy) ^ 0, but all 
four possibilities lead to quick contradictions. Thus by Lemma 1.2, D(l9xy9a9axy) — 
D(l9xy)D(l9ax). 
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Nowx E D(xy,ax) and ax E D(a,axy), soD(l,x) Ç D(\fj). Consequently, 

(4.5) D{l9x) = D(l,x)n{hx,y,xy}D(l,ax). 

Suppose w E D(l,x) nyD(l,ax). Then g(w, — x) = 0 = q(wy, —ax). Thus q(wy,a) — 
q(wy, —x) which implies q(w, a) — q(y, —x). By the linkage property there exists z such 
that q(w,a) = q(z,a) and q(y, —x) — q(y,z). So z E D(l, —ay) — {I,a, —y, —ay}, and 
wx E D(l, - a ) . It follows that w E £>(1, -a). Hence, 

w E D ( l , - a ) n D ( U ) C\yD(\,ax) C D(l,ax) r\yD(l,ax). 

But by (42) y £ D(l,x) which yields -x £ D(l,-y),-ax £ D(^-y)> and finally 
y ^ D(l,ax). Thus we have shownD(l,x) r\yD(l,ax) = </>. 

In a similar fashion it can be demonstrated that D(l,x) D xyD(\,ax) = </>. Conse
quently, 

D(1,JC) = D(l,*)n{l,Jc}D(l,ajc) = {l,Jc}(D(l,Jc)nD(l,ûuc»Ç {\,x}D(l,-a). 

From (4.3), D(l,x) Ç {l, j}D(l, 1). Using the above then we see D(l,x) Ç 
{l , jc}D(l ,-a)n{l ,y}D(l , l> = {l,y,x9xy}(D(l,-a) HD(1,1)) - ({-l,a,x,y}). 

From (4.2) and the earlier computations of D( 1, =hry), it follows that — 1, JC E D( 1, x) 
and {a,y,ay} HD(l,x) = (j). Hence, D(1,JC) = {±1, ±JC}; and Claim 5 is established. 

CLAIM 6. Let /,y E / and k, I E AT where / and AT are defined above. Then uik = u^ 
(mod {l,a}) and v# = vjk (mod {1,-1}). 

Set u — u^, u' — Ujk, v — vtk, v' = v^. Then 

(4.6) D(l9uv) = {l,M,v,Mv}andD(l,wV) = {l,u',vf,ufv}. 

From Claim 5, it is also the case that 

(4.7) D(\,u) = {±l,±w} andD(l,±tfv) = {I,a, ±v, ±av} (corresponding signs) 

D(l,u') = { ± l , ± i / } a n d D ( l , W ) = {l,a, ± v ' , W } . 

We know already that v = vf (mod D(l,a)). Suppose v' — av. Then from (4.6) and 
(4.7), u' E D(l,au'v) HD(l,w /) Ç D(l,—av). Contradiction. Now assume v' = -av. 
Then uf E D(l, — au'v) nD(\,uf) Ç D{1, a v), again a contradiction. So v' E {1 , -1} v. 
Showing w = u' (mod {1, «}) is done similarly, and Claim 6 is proved. 

Now set Hx = ({uik}U{a})mdH2 = ({v,-*}U{-l}). Just as in Section 3, G = H\ ± 
H2. It is also easy to see that 1,-1 are the distinguished elements of H\, H2 respectively 
and that D(l,a)nHx = {l ,a},D(l, 1) H//2 = {1 , -1} . The theorem now follows just 
as Theorem 3.1 did. • 

One might ask is it possible for the hypotheses of Theorems 3.1 and 4.1 to be true 
simultaneously. If so, then D(l, 1) = D(l,a) CD(1 , —a). But the proofs of Claim 4 in 
each of Sections 3 and 4 only relied onD(l, 1) UD(l,a) U D ( l , - a ) ^ G. In particular 
the only way both hypotheses can hold is if a E DR; and this possibility occurs only in 
( 1 ) and (2) of Theorems 3.1 and 4.1. 
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