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Poincaré inequalities, embeddings, and

wild groups

Assaf Naor and Lior Silberman

Compositio Math. 147 (2011), 1546–1572.

doi:10.1112/S0010437X11005343

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X11005343 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X11005343
https://doi.org/10.1112/S0010437X11005343


Compositio Math. 147 (2011) 1546–1572
doi:10.1112/S0010437X11005343
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Abstract

We present geometric conditions on a metric space (Y, dY) ensuring that, almost surely,
any isometric action on Y by Gromov’s expander-based random group has a common
fixed point. These geometric conditions involve uniform convexity and the validity of
nonlinear Poincaré inequalities, and they are stable under natural operations such as
scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric
embedding theory to establish the validity of these conditions for a variety of classes of
metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild
groups’.

1. Introduction

We establish the existence of finitely generated groups with strong fixed point properties. The
seminal work on this topic is Gromov’s construction [Gro03] of random groups from expander
graph families, leading to a solution [HLS02, § 7] of the Baum–Connes conjecture for groups, with
coefficients in commutative C∗-algebras. Here we study Gromov’s construction, highlighting the
role of the geometry of the metric space on which the group acts. As a result, we isolate key
properties of the space acted upon that imply that any isometric action of an appropriate random
group has a common fixed point. Using techniques from the theory of metric embeddings in order
to establish these properties, we obtain new fixed point results for a variety of spaces that will be
described below. This answers in particular a question of Pansu [Pan06] (citing Gromov). In fact,
we prove the stronger statement that for every Euclidean building B (see [KL97]), there exists a
torsion-free hyperbolic group for which every isometric action on `2(B) has a common fixed point
(this statement extends to appropriate `2 products of more than one building). Thus, following
Ollivier’s terminology [Oll05], Gromov’s groups are even ‘wilder’ than previously shown.

For p> 1 say that a geodesic metric space (Y, dY) is p-uniformly convex if there exists a
constant c > 0 such that for every x, y, z ∈ Y , every geodesic segment γ : [0, 1]→ Y with γ(0) = y,
γ(1) = z, and every t ∈ [0, 1] we have

dY (x, γ(t))p 6 (1− t)dY (x, y)p + tdY (x, z)p − ct(1− t)dY (y, z)p. (1)

It is immediate to check that (1) can hold only for p> 2. The inequality (1) is an obvious
extension of the classical notion of p-uniform convexity of Banach spaces (see, e.g., [BCL94]),
and when p= 2 it is an extension of the CAT(0) property (see, e.g., [BH99]).
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We shall say that a metric space (Y, dY) admits a sequence of high girth p-expanders if
there exists k ∈ N, γ, η > 0, and a sequence of k-regular finite graphs {Gn = (Vn, En)}∞n=1 with
limn→∞ |Vn|=∞ such that the length of the shortest non-trivial closed path (the ‘girth’) in Gn
is at least η log |Vn|, and such that for every f : Vn→ Y we have

1
|Vn|2

∑
u,v∈Vn

dY (f(u), f(v))p 6
γ

|En|
∑
uv∈En

dY (f(u), f(v))p. (2)

When Y = R it is well-known that inequality (2) with p= 2 is equivalent to the usual notion of
combinatorial expansion (for a survey on expander graphs see [HLW06], especially § 2). It is less
well-known [Mat97] that this is true for all 1< p <∞; we reproduce the proof in Lemma 4.4. It
is also worth noting that unless Y consists of a single point, the sequence of graphs considered
must necessarily be a sequence of combinatorial expanders.

As we shall see later, a large class of metric spaces of interest consists of spaces that are both
p-uniformly convex and admit a sequence of high girth p-expanders. In fact, in all cases that
we study, the Poincaré inequality (2) holds for every sequence of combinatorial expanders. It is
an open problem whether the existence of a sequence of bounded degree graphs satisfying (2)
implies the same conclusion for all combinatorial expanders, but we will not deal with this issue
here as the existence statement suffices for our purposes.

Gromov’s remarkable construction [Gro03] of random groups is described in detail in § 6. In
order to state our results, we briefly recall it here. Given a (possibly infinite) graph G= (V, E),
and integers j, d ∈ N, a probability distribution over groups Γ associated to G and generated by
d elements s1, . . . , sd is defined as follows. Orient the edges of G arbitrarily. For every edge e ∈ E
choose a word we of length j in s1, . . . , sd and their inverses uniformly at random from all such
(2d)j words, such that the random variables {we}e∈E are independent. Each cycle in G induces
a random relation obtained by traversing the cycle, and for each edge e of the cycle, multiplying
by either we or w−1

e , depending on whether e is traversed according to its orientation or not.
These relations induce the random group Γ = Γ(G, d, j).

Our main result is the following theorem.

Theorem 1.1. Assume that a geodesic metric space (Y, dY) is p-uniformly convex and admits
a sequence of high girth p-expanders {Gn = (Vn, En)}∞n=1. Then for all d> 2 and j > 1 with
probability tending to 1 as n→∞, any isometric action of the group Γ(Gn, d, j) on Y has a
common fixed point.

It was shown in [AD08, Gro03, Oll06] that for every d> 2, for large enough j (depending
only on d and the parameters k, η), the group Γ(Gn, d, j) is torsion-free and hyperbolic with
probability tending to 1 as n→∞.

Using a variety of results and techniques from the theory of metric embeddings, we present a
list of metric spaces (Y, dY) for which the conditions of Theorem 1.1 are satisfied.1 These spaces
include all Lebesgue spaces Lq(µ) for 1< q <∞, and more generally all Banach lattices which are
p-uniformly convex for some p ∈ [2,∞). Moreover, they include all (possibly infinite dimensional)
Hadamard manifolds (in which case p= 2, c= 1), all Euclidean buildings (p= 2, c= 1, again),
and all p-uniformly convex Gromov hyperbolic metric spaces of bounded local geometry. It was

1 Note that our conditions on the metric space (Y, dY) in Theorem 1.1 are closed under `p sums (
⊕N

s=1 Ys)p,
provided that in (2), the same high-girth expander sequence works for all the Ys. This holds true in all the examples
that we present, for which (2) is valid for every connected graph, with γ depending only on p, the spectral gap of
the graph, and certain intrinsic geometric parameters of Y .
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asked by Pansu in [Pan06] whether for every symmetric space or Euclidean building an
appropriate random group has the fixed point property. Our results imply that this is indeed
the case. As a corollary, by a ‘gluing’ construction of [ABJLMS09] (see also [FS08, § 3.3]) it
follows that there exists a torsion-free group that has the fixed point property with respect
to all the spaces above. This yields one construction of ‘wild groups’. Alternatively, one could
follow the original approach of Gromov [Gro03], who considers the group Γ = Γ(G, d, j), where
the graph G is the disjoint union of an appropriate subsequence of the expanders {Gn}∞n=1 from
Theorem 1.1, which is a torsion-free group with positive probability [AD08, Gro03, Oll06]. For
this group Γ, Pansu asked [Pan06] whether it has the fixed point property with respect to all
symmetric spaces and all buildings of type Ãn. Our result implies that for every d, j almost
surely Γ will indeed have this fixed point property, and also on all `2 products of such spaces.

Theorem 1.2. Let G be the disjoint union of a family of high-girth combinatorial expanders
(that is, of a family of graphs for which a single γ applies in (2) for all R-valued functions).
Let d> 2 and j > 1. Then with probability 1 the group Γ(G, d, j) has the fixed-point property
for isometric actions on all p-uniformly convex Banach lattices, all buildings associated to
linear groups, all non-positively curved symmetric spaces, and all p-uniformly convex Gromov
hyperbolic spaces. The fixed-point property also holds for an `p-product of p-uniformly convex
spaces, as long as the constant in (2) is uniformly bounded for these spaces.

Problems similar to those studied here were also investigated in [IKN09, IN05], where
criteria were introduced that imply fixed point properties of random groups in Żuk’s triangular
model [Zuk03]. These criteria include a Poincaré-type inequality similar to (2), with the
additional requirement that the constant γ is small enough (in our normalization, they require
p= 2 and γ < 2). Unfortunately, it is not known whether it is possible to establish such a strong
Poincaré inequality for the spaces studied here, except for CAT(0) manifolds, trees, and a specific
example of an Ã2 building (see [IKN09, IN05]). Our approach is insensitive to the exact value of
γ in (2). In fact, γ can be allowed to grow to infinity with |Vn|; see (16) and Theorem 7.6 below.

It was shown in [Pan95] that any cocompact lattice Γ in Spn,1(R) admits a fixed-point-
free action by linear isometries on Lp for any p> 4n+ 1. Also, Γ acts by isometries on the
symmetric space of Spn,1(R) (which is a Hadamard manifold) without fixed points. Thus, while
it is known [Gro03, Sil03] that Gromov’s random groups have property (T ), our results do not
follow from property (T ) alone. See [BFGM07, FM05] for a discussion of the relation between
property (T ) and fixed points of actions on Lp.

We end this introduction by noting that the above gluing-type construction based on
Theorem 1.1 yields a non-hyperbolic group. This is necessary, since it was shown in [Yu05]
that any hyperbolic group admits a proper (and hence fixed-point free) isometric action on an
Lp(µ) space for p large enough. It was pointed out to us by Francois Dahmani that in [Kap05, § 8]
it is shown how to construct a hyperbolic group with the fixed-point property on all symmetric
spaces and buildings associated to linear groups. Such a group has no infinite linear images.
(This is related to the well-known problem of the existence of a hyperbolic group which is not
residually finite.)

Overview of the structure of this paper
In § 2 we recall some background on fixed point properties of groups, and how they are classically
proved. The natural approach to finding a fixed point from a bounded orbit by considering the
average (or center of mass) of the orbit requires appropriate definitions in general uniformly
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convex metric spaces; this is discussed in § 3. However, in our situation orbits are not known to
be bounded, so the strategy is to average over certain bounded subsets of an orbit. The hope is
that by iterating this averaging procedure we will converge to a fixed point. It turns out that
this approach works in the presence of sufficiently good Poincaré inequalities; this is explained
in § 7, a key technical tool being Theorem 3.10 (before reading § 7, readers should acquaint
themselves with the notations and definitions of § 6, which recalls Gromov’s construction of
random groups). We prove the desired Poincaré inequalities (in appropriate metric spaces) via a
variety of techniques from the theory of metric embeddings; §§ 4 and 5 are devoted to this topic.

Asymptotic notation
We use A.B, B &A to denote the estimate A6 CB for some absolute constant C; if we need
C to depend on parameters, we indicate this by subscripts, thus A.p B means that A6 CpB
for some Cp depending only on p. We shall also use the notation A�B for A.B ∧B .A.

2. Background on fixed-point properties of groups

We start by setting some terminology.

Definition 2.1. Let Γ be a finitely generated group, let (Y, dY) be a metric space, and let
ρ : Γ→ Isom(Y ) be an action by isometries. We say that the action satisfies condition (N), (F)
or (B) as follows:

(N) if the image ρ(Γ) is finite;

(F) if the image ρ(Γ) has a common fixed point;

(B) if some (equivalently every) Γ-orbit in Y is bounded.

For a class C of metric spaces, we say that Γ has property (NC), (FC) or (BC) if every action
ρ : Γ→ Isom(Y ), where Y ∈ C, satisfies the respective condition.

The Guichardet–Delorme theorem [Del77, Gui77] asserts that if H is Hilbert space then Γ
has property (FH) if and only if it has Kazhdan property (T ). The reader can take this as the
definition of property (T ) for the purpose of this paper.

Fixed-point properties can have algebraic implications for the group’s structure. For example,
finitely generated linear groups have isomorphic embeddings into linear groups over local fields,
and these latter groups act by isometries on non-positively curved spaces with well-understood
point stabilizers. For completeness and later reference, we include the following simple lemma.

Lemma 2.2 (Strong non-linearity). Let S be the class of the symmetric spaces and buildings
associated to the groups GLn(F ), where F is a non-Archimedean local field. Let Γ be a finitely
generated group with property (FS). Then any homomorphic image of Γ into a linear group is
finite.

Proof. Let Γ be finitely generated group with property (FS). Let K be a field, and let
ρ : Γ→GLn(K) be a homomorphism. Without loss of generality we can assume K to be the
field generated by the matrix elements of the images of the generators of Γ, and then let A⊂K
be the set of matrix elements of the images of all elements of Γ. Clearly ρ(Γ) is finite if and only
if A is a finite set, and [BG07, Lemma 2.1] reduces the finiteness of A to showing that the image of
A under any embedding of K in a local field F is relatively compact. Hence, let ι :K→ F be such
an embedding. This induces a group homomorphism GLn(K)→GLn(F ) which we also denote ι.
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Composing with ρ we obtain a homomorphism ι ◦ ρ : Γ→GLn(F ). Now let S be the symmetric
space (if F is Archimedean) or Bruhat–Tits building (if F is non-Archimedean) associated to
GLn(F ). Since GLn(F ) is a group of isometries of S, the image of ι ◦ ρ must fall in the stabilizer
in GLn(F ) of a point of S. Since these stabilizers are compact subgroups of GLn(F ) we are
done. 2

Lemma 2.2 implies, via our results as stated in the introduction, that Gromov’s wild
groups are not isomorphic to linear groups. Alternatively, this fact also follows from the result
of [GHW05] that asserts that any linear group admits a coarse embedding into Hilbert space,
while it was shown in [Gro03] that Gromov’s random group does not admit such an embedding
(indeed, this was the original motivation for Gromov’s construction). It also follows from
Lemma 2.2 that all linear homomorphic images of Gromov’s random group are finite. In fact,
it was later observed in [FS08] that the random group has no finite images, and hence also no
linear images, since finitely generated linear groups are residually finite.

It is clear that the condition (B) is implied by either condition (N) or (F). When Y is complete
and p-uniformly convex the converse holds as well (weaker notions of uniform convexity suffice
here). We recall the standard proof of this fact below, since it illustrates a ‘baby version’ of the
averaging procedure on uniformly convex spaces that will be used extensively in what follows.

Lemma 2.3 (‘Bruhat’s lemma’). Let Y be a uniformly convex geodesic metric space. Then the
condition (B) for isometric actions on Y implies condition (F).

Proof. To any bounded set A⊂ Y associate its radius function rA(y) = supa∈A dY (y, a). For any
a ∈A and y0, y1 ∈ Y let y1/2 be a midpoint of the geodesic segment connecting them. By (1)
we have that dY (a, y1/2)p is less than the average of dY (a, y0)p and dY (a, y0)p by a positive
quantity depending only on dY (y0, y1) and growing with it. It follows that the diameter of the
set Cε ⊂ Y on which rA exceeds its minimum by no more than ε goes to zero with ε. Since Y
is complete it follows that rA(y) has a unique global minimizer, denoted c∞(A) ∈ Y , and called
the circumcenter of A. Since its definition involved only the metric on Y , the circumcenter map
is equivariant under isometries of Y . It follows that the circumcenter of a bounded orbit for a
group action is a fixed point. 2

3. Averaging on metric spaces

We saw above how to find a fixed point from a bounded orbit, by forming a kind of ‘average’
(circumcenter) along the orbit. When the orbits are not known to be bounded, it is not possible to
form such averages. However, if Γ (generated by S = S−1) acts on a p-uniformly convex space Y ,
it is possible to average over small pieces of the orbit: passing from a point y to an appropriately
defined average of the finite set {sy}s∈S (the precise notion of averaging is described below).
Under suitable conditions this averaging procedure is a contraction on Y , leading to a fixed
point. In practice we will need to average over small balls rather than just S itself, but the idea
remains the same.

‘Averaging’ means specifying a function that associates to Borel probability measures σ on
Y a point c(σ) ∈ Y , in a well-behaved manner. We will not axiomatize the needed properties,
instead defining the procedures we will use. We start with a particularly simple example. In what
follows all measures are assumed to have finite support; this suffices for our purposes, and the
obvious generalizations are standard.

1550

https://doi.org/10.1112/S0010437X11005343 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005343
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Example 3.1. Let Y be a Banach space, and let σ be a (finitely supported) probability measure
on Y . The vector-valued integral

clin(σ) =
∫
Y
y dσ(y)

is called the linear center of mass of σ.

This center of mass behaves well under linear maps, but its metric properties are not so clear.
Thus even for the purpose of proving fixed-point properties for actions on Lp we use a nonlinear
averaging method, related to a metric definition of linear averaging on Hilbert space. This is a
standard method in metric geometry (see for example [Jos97, ch. 3]).

For a metric space (Y, dY) we write M(Y ) for the space of probability measures on Y
with finite support. Generally it is enough to assume below that the measures have finite pth
moment for the appropriate p> 2 but we will not use such measures since our groups are finitely
generated.

3.1 Uniformly convex metric spaces and the geometric center of mass
We continue with our complete metric space (Y, dY). A geodesic segment in Y is an isometry
γ : I → Y where I ⊆ R is a closed interval, and the metric on I is induced from the standard
metric on R. If the endpoints a < b of I are mapped to y, z ∈ Y respectively, we will say that the
segment γ connects y to z, and usually denote it by [y, z]. Moreover, for any t ∈ [0, 1] we will
use [y, z]t to denote γ((1− t)a+ tb). This notation obscures the fact that there may be distinct
geodesic segments connecting y to z, but this will not be the case for the spaces we consider (see
below).

We now assume that Y is a geodesic metric space, i.e., that every two points of Y are
connected by a geodesic segment.

Definition 3.2. Let 26 p <∞. Y is said to be p-uniformly convex if there exists a constant
cY > 0 such that for every x, y, z ∈ Y , every geodesic segment [y, z]⊆ Y , and every t ∈ [0, 1] we
have

dY (x, [y, z]t)p 6 (1− t)dY (x, y)p + tdY (x, z)p − cpY t(1− t)dY (y, z)p. (3)
We say that Y is uniformly convex if it is p-uniformly convex for some p> 2.

The above definition is an obvious extension of the notion of p-uniform convexity of Banach
spaces (see, e.g., [BCL94, Fig76]). For concreteness, an Lp(µ) space is p uniformly convex if
p ∈ [2,∞) and 2-uniformly convex if p ∈ (1, 2]. In Hilbert space specifically, (3) with p= 2 and
cY = 1 is an equality, and it follows that the same holds for conclusions such as (5) below. We
also note that it is easy to see that a uniformly convex metric space is uniquely geodesic by
examining midpoints.

We now recall the notion of CAT(0) spaces. For y1, y2, y3 ∈ Y , choose Y1, Y2, Y3 ∈ R2 such that
‖Yi − Yj‖2 = dY (yi, yj) for any i, j. Such a triplet of reference points always exists, and is unique
up to a global isometry of R2. It determines a triangle ∆ = I12 ∪ I23 ∪ I13 consisting of three
segments of lengths dY (yi, yj). Any choice of three geodesic segments γij : Iij → Y connecting
yi, yj gives a reference map R : ∆→ Y . We say that (Y, dY) is a CAT(0) space if for every three
points yi ∈ Y every associated reference map R does not increase distances. It is a standard
fact (see [BH99]) that (Y, dY) is a CAT(0) space if and only if it is 2-uniformly convex with the
constant cY in (3) equal to 1. Every CAT(0) space is p-uniformly convex for all p ∈ [2,∞) since
the plane R2 is p-uniformly convex (it is isometric to a subset of Lp).
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Assume that (Y, dY) is p-uniformly convex. Let σ ∈M(Y ). Integrating (3) we see that for all
y, z ∈ Y ,

cpY t(1− t)dY (y, z)p 6 (1− t)dp(σ, y)p + tdp(σ, z)p − dp(σ, [y, z]t)p, (4)
where for w ∈ Y we write

dp(σ, w) =
(∫

Y
dY (u, w)p dσ(u)

)1/p

.

Now let d= infy∈Y dp(σ, y), and assume dp(σ, y), dp(σ, z)6 (dp + ε)1/p. Letting w ∈ Y denote
the midpoint of any geodesic segment connecting y and z we have dp(σ, w)> d and hence

cpY
4
dY (y, z)p 6 dp + ε− dp = ε.

In other words, the set of y ∈ Y such that dp(σ, y)p is at most dp + ε has diameter .cY ε
1/p. By

the completeness of Y , there exists a unique point cp(σ) ∈ Y such that dp(σ, cp(σ)) = d.
To justify the notation c∞(A) introduced in Lemma 2.3 note that d∞(σ, y) = rA(y) where A

is the essential support of σ.

Definition 3.3. The point cp(σ) is called the geometric center of mass of σ. We will also use
the term p-center of mass when we wish to emphasize the choice of exponent. The point c∞(A)
is called the circumcenter of A.

Remark 3.4. Consider the special case of the real line with the standard metric, and of
σ = tδ1 + (1− t)δ0. Then cp(σ) represents a weighted average of 0, 1 ∈ R. We note that (except
for special values of t), the cp(σ) vary depending on p.

We now apply (4) where z = cp(σ). Still using dp(σ, [y, z]t)> d we get

cpY t(1− t)dY (cp(σ), y)p 6 (1− t)(dp(σ, y)p − dp).
Dividing by 1− t and letting t→ 1 we get the following useful inequality:

dp(σ, y)p > dp(σ, cp(σ))p + cpY dY (cp(σ), y)p. (5)

3.2 Random walks
Let X be a discrete set. Following Gromov [Gro03] we shall use the following terminology.

Definition 3.5. By a random walk (or a Markov chain) on X we shall mean a function
µ :X →M(X). The space of random walks will be denoted W(X).

For a random walk µ and x ∈X we will denote below the measure µ(x) by either µx or
µ(x→ ·). The latter notation emphasizes the view of µ as specifying the transition probabilities
of a Markov chain on X. For ν ∈M(X), µ, µ′ ∈W(X) we write

ν ∗ µ def=
∫
X
dν(x)µx ∈M(X).

The map x 7→ (µ′ ∗ µ)x
def= µ′x ∗ µ defines a random walk on X. For n ∈ N we define inductively

µn+1 def= µn ∗ µ.
Let ν be a measure on X. We say that a random walk µ ∈W(X) is ν-reversible, if we have

dν(x) dµ(x→ x′) = dν(x′) dµ(x′→ x), (6)

as an equality of measures on X ×X. If X is finite, we can assume that ν is a probability
measure. In general integrating (6) with respect to x′, we see that ν is a stationary measure
for µ, in the sense that ν ∗ µ= ν.
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Finally, let the discrete group Γ act freely on X. The induced action of Γ on M(X)
preservesM(X) in this case. The space of Γ-equivariant random walks will be denoted WΓ(X).
Moreover, we have a quotient space Γ\X. Fixing a probability measure ν̄ on Γ\X, we will
call µ ∈WΓ(X) ν̄-reversible if it is ν-reversible where ν is the pull-back of ν̄ defined by∫
X f dν =

∫
Γ\X(

∑
γ∈Γ f(γx)) dν̄(x) for any f ∈ Cc(X).

3.3 Averaging of equivariant functions into uniformly convex spaces
Continuing with the notation used so far, let µ ∈WΓ(X) be reversible with respect to the
probability measure ν̄ on Γ\X. Let (Y, dY) be a p-uniformly convex metric space on which
Γ acts by isometries.

Now let f :X → Y be Γ-equivariant. For x ∈X, the push-forward f∗µx is a probability
measure on Y with finite support (the image of the support of µx under f). We set

|∇µ(f)|p(x) =
(∫

X
dµ(x→ x′)dY (f(x), f(x′)p)

)1/p

, (7)

E(p)
µ (f) =

1
2

∫
Γ\X

(|∇µ(f)|p(x))p dν̄(x), (8)

B(X, Y ) = {f ∈ C(X, Y )Γ | E(p)
µ (f)<∞}. (9)

For f, g ∈ C(X, Y )Γ, the function x 7→ dY (f(x), g(x)) is Γ-invariant, and we can hence
set

dp(f, g) def=
(∫

Γ\X
dY (f(x), g(x))p dν̄(x)

)1/p

.

This defines a (possibly infinite) complete metric. The triangle inequality gives the following
lemma.

Lemma 3.6. We have the following.

(i) Let f, g ∈ C(X, Y )Γ. Assume dp(f, g)<∞. Then f ∈B(X, Y ) if and only if g ∈B(X, Y ).

(ii) Let f ∈B(X, Y ). Then E(p)
µn (f)<∞ for all n> 1.

Proof. For all x, x′ ∈X,

dY (g(x), g(x′))6 dY (g(x), f(x)) + dY (f(x), f(x′)) + dY (f(x′), g(x′))

and hence

31−pdY (g(x), g(x′))p 6 dY (g(x), f(x))p + dY (f(x), f(x′))p + dY (f(x′), g(x′))p. (10)

Integrating dµ(x→ x′) gives Γ-invariant functions of x which may be integrated dν̄(x). Using
the stationarity of dν̄ we then have

E(p)
µ (g)6 3p−1E(p)

µ (f) + 3p−1dp(f, g)p.

Similarly, integrating

n1−pdY (f(x0), f(xn))p 6
n−1∑
i=0

dY (f(xi), f(xi+1))p

against dν̄(x0)
∏n−1
i=0 dµ(xi→ xi+1) gives E(p)

µn (f)6 np−1E(p)
µ (f). 2
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Continuing the analysis of the map x 7→ f∗µx, we note that this is a Γ-equivariant map
X →M(Y ). Since Γ acts by isometries, the map

(A(p)
µ f)(x) def= cp(f∗µx)

is also Γ-equivariant; this will be our averaging procedure. If Y is a Hilbert space and p= 2, then
A

(p)
µ is the usual linear average with respect to µ. In particular, A(2)

µ1 A
(2)
µ2 =A

(2)
µ1∗µ2 . This does

not hold in general (for spaces other than Hilbert space, or even in Hilbert space for p > 2). In
particular, we will later use A(p)

µn for large n and not just (A(p)
µ )n.

We first verify that the averaging procedure remains in the space B(X, Y ).

Lemma 3.7. For f ∈B(X, Y ) we have

dp(f, A(p)
µ f).cY (E(p)

µ (f))1/p,

E(p)
µ (A(p)

µ f).p,cY E
(p)
µ (f).

Proof. At every x ∈X the fundamental estimate (5) gives

cpY dp(f(x), A(p)
µ f(x))p 6 dp(f(x), f∗(µx))p =

∫
dY (f(x), f(x′))p dµ(x→ x′).

Now both sides are Γ-invariant functions of x ∈X and the first claim follows by integrating
against dν̄. For the second claim apply inequality (10) from the proof of Lemma 3.6 with
g =A

(p)
µ (f). 2

We measure the contractivity of A(p)
µ with respect to the energy E(p)

µ . It is not hard to verify
that contraction will imply the existence of fixed points.

Proposition 3.8. Assume that there exist n> 1 and c < 1 such that for all f ∈B(X, Y )
we have E(p)

µ (A(p)
µn f)6 cE(p)

µ (f). Suppose that the graph on X given by connecting x, x′ if
µ(x→ x′)> 0 is connected. Then, as long as B(X, Y ) is non-empty (this is the case, for example,
when Γ\X is finite), it contains constant maps. In particular, Γ fixes a point in Y .

Proof. Choose an arbitrary f0 ∈B(X, Y ) and let fk+1 =A
(p)
µn fk. By assumption we have

E(p)
µ (fk)6 ckE

(p)
µ (f0). By Lemma 3.6 E(p)

µn (fk)6 np−1ckE(p)
µ (f0), and by Lemma 3.7 this means

that
dp(fk+1, fk)p .p,cY ,n c

kE(p)
µ (f0).

It now follows that fk are a Cauchy sequence and hence converge to a function f ∈B(X, Y ). We
have E(p)

µ (f) = 0 so f(x) = f(x′) whenever µ(x→ x′)> 0. By the connectivity assumption this
means f is constant on X and its value is the desired fixed point. 2

We now address the problem of showing that averaging reduces the energy. We prove two
technical inequalities.

Proposition 3.9 (Generalization of [Sil03, B.25]). We have,

E(p)
µ (A(p)

µn f) .p,cY

∫
Γ\X

dν̄(x)
∫
X

[dµn+1(x→ x′)− dµn(x→ x′)]dY (A(p)
µn f(x), f(x′))p

·
∫

Γ\X
dν̄(x)

∫
X
dµn(x→ x′)dY (A(p)

µn f(x), f(x′))p

.p,cY E
(p)
µn (f). (11)
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Proof. Recall that A(p)
µn f(x) = cp(f∗µn(x→ ·)). The fundamental estimate (5) then reads:

cpY dY (y, A(p)
µn f(x))p

6
∫
X
dY (y, f(x′))p dµn(x→ x′)−

∫
X
dY (A(p)

µn f(x), f(x′))p dµn(x→ x′). (12)

Setting y =A
(p)
µn f(x′′), integrate (12) dµ(x′′→ x). The resulting function of x′′ is Γ-invariant and

we integrate it dν̄(x′′) to get (also using the reversibility)

2cpY E
(p)
µ (A(p)

µn f) 6
∫

Γ\X
dν̄(x′′)

∫
X
dµn+1(x′′→ x′)dY (A(p)

µn f(x′′), f(x′))p

−
∫

Γ\X
dν̄(x)

∫
X
dµn(x→ x′′)dY (A(p)

µn f(x′′), f(x))p.

Inequality (11) follows directly from the triangle inequality and Lemma 3.7. 2

Theorem 3.10. Let Γ be a group generated by the symmetric set S of size 2d, acting by
isometries on the p-uniformly convex space Y , let X = Cay(Γ; S) (the Cayley graph of Γ), and
let f ∈B(X, Y ). Let µ be the jth convolution power of the standard random walk on X for an
even j. Then

E(p)
µ (A(p)

µn f).p,cY ,d,j

√
log n
n
· E(p)

µn (f) +
1
n
· E(p)

µ (f).

Proof. Pulling back f to a function on the free group on S (acting on Y via the quotient map)
we may assume that Γ is the free group and X the 2d-regular tree. Now, [Sil03, Proposition 2.9]
implies that µn+1(x→ x′)− µn(x→ x′) is typically small: given x, except for a set of x′ of
(µn+1 + µn)(x→ ·)-mass .d n−θ, the difference is .d,j,θ

√
log n/n µn(x→ x′), where θ > 0 is

arbitrary.
Applying this in Proposition 3.9 we find that

E(p)
µ (A(p)

µn f).p,cY ,d,j,θ

√
log n
n
· E(p)

µn (f) + n−θ max
dX(x,x′′)6j(n+1)

2|dX(x,x′′)

dY (A(p)
µn f(x), f(x′′))p.

Now
dY (A(p)

µn f(x), f(x′′)p).p,cY max
dX(x,x′)6jn
2|dX(x,x′)

dY (f(x′), f(x′′))p,

and by the triangle inequality

dY (f(x′), f(x′′))p 6 (2n+ 1)p−1 max
dX(x,x′)6j
2|dX(x,x′)

dY (f(x), f(x′))p.

Finally, the latter quantity is at most .j,d E
(p)
µ (f) (one needs that µj(x→ ·) is supported on all

points x′ at even distance from x at most j). Putting it all together we have

E(p)
µ (A(p)

µn f).p,cY ,d,j,θ

√
log n
n
· E(p)

µn (f) + np−1−θE(p)
µ (f),

as required. 2

It is now clear that (assuming we can arrange n to be large) what is needed is that E(p)
µn (f)

is not too large compared to E(p)
µ (f). This is what we establish in the next two sections.
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4. Poincaré inequalities on metric spaces

It turns out that it is hard to show directly that averaging with respect to the generators of
the random group reduces the energy (compare [IKN09]). Instead, it is preferable to average
with respect to some power of the generators, as in Theorem 3.10, where we gain by making
n large. This requires controlling E(p)

µn (f) in terms of E(p)
µ (f). Such a control takes the form of

inequalities involving distances alone rather than centers of mass, so that methods from metric
embedding theory can be used to prove them. In this section we state the inequalities that
we need, and show that they hold for functions from expander graphs to certain target metric
spaces (Lp spaces and CAT(0) manifolds). In § 5 we use metric embeddings to establish these
inequalities for additional classes of metric spaces. In § 7 we then show that a strong enough
Poincaré inequality for a particular target is enough to control averaging so that the random
group has the fixed-point property on that target.

We fix a group Γ, a discrete Γ-space X, a Γ-equivariant random walk µ ∈W(X), reversible
with respect to the Γ-invariant measure ν which gives finite measure to any fundamental domain
for Γ\X.

Definition 4.1. Let Y be a metric space, and p> 1. Let n >m> 1 be integers. We say that a
Poincaré inequality of exponent p holds if there exists c > 0 such that for any f ∈B(X, Y ),

E(p)
µn (f)6 cpE(p)

µm(f). (13)

If ν itself is a probability measure, we also say that a Poincaré inequality holds if exists c̄ > 0
such that for any f , ∫

X×X
dν(x) dν(x′)dY (f(x), f(x′))p 6 c̄pE(p)

µm(f). (14)

Inequality (14), when Y is a Hilbert space and p= 2 is the classical Poincaré inequality. It is
sometimes easier to work with than the inequality (13) (for example when proving such results
as the extrapolation lemma below). It will be inequality (13), however, that will be used for
obtaining fixed point properties for the random group. Note that inequality (14) can be thought
of as the limit as n→∞ of (13).

Lemma 4.2. Let ν be a probability measure.

(i) Assume that (14) holds with the constant c̄. Then (13) holds with c= 2c̄ for all n >m.

(ii) Assume that Y is p-uniformly convex, and let V (p)(f) =
∫
X dν(x)dpY (f(x), cp(f∗ν)). Then

V (p)(f)6
∫
X×X

dν(x) dν(x′)dpY (f(x), f(x′))6 2p−1V (p)(f).

Proof. For any x, x′, x′′ ∈X we raise the triangle inequality to the pth power to obtain

dY (f(x), f(x′))p 6 2p−1dY (f(x), f(x′′))p + 2p−1dY (f(x′), f(x′′))p.

Integrating against dν(x) dµn(x→ x′) dν(x′′) and using the stationarity and reversibility of the
Markov chain gives

E(p)
µn (f)6 2p−1

∫
X×X

dν(x) dν(x′)dY (f(x), f(x′))p,

whence the first claim. For the proof of the second claim write y0 = cp(f∗ν), and recall
that

∫
X dν(x)dY (f(x), y0)p 6

∫
X dν(x)dY (f(x), y)p holds for all y ∈ Y by definition of cp.
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Setting y = f(x′) and averaging with respect to x′ gives half of the inequality. For the other
half use dY (f(x), f(x′))6 dY (f(x), y0) + dY (y0, f(x′)). 2

We study metric inequalities for functions on finite Markov chains (typically, the standard
random walks on finite graphs). In the following we use the shorthand (V, µ, ν) for the data of
a finite set V (‘vertices’), and a Markov chain µ ∈W(V ) reversible with respect to a probability
measure ν ∈M(V ). Recall that the Markov chain is ergodic if for any u, v ∈ V there is n such
that µn(u→ v)> 0. For such a Markov chain the averaging operator A(2)

µ acting on L2(ν) is the
usual nearest-neighbor averaging operator Af(u) =

∫
V f(v) dµ(u→ v). It is well known that this

is a self-adjoint operator with spectrum contained in [−1, 1], with 1 a simple eigenvalue (here
we use ergodicity). The spectral gap of the chain is then the difference between 1 and the second
largest eigenvalue.

Definition 4.3. To the metric space Y we associate its Poincaré modulus of exponent p, p> 2.
Denoted Λ(p)

Y (σ), it is the smallest number Λ such that for any finite reversible ergodic Markov
chain (V, µ, ν) with spectral gap at least σ and any function f : V → Y we have∫

V×V
dν(u) dν(v)dY (f(u), f(v))p 6 Λp

∫
V×V

dν(u) dµ(u→ v)dY (f(u), f(v))p. (15)

Observe that spectrally expanding both sides of (15) shows that for Y Hilbert space, Λ(2)
Y (σ) =

1/
√
σ.

We also define the local Poincaré modulus of exponent p to be

Λ(p)
Y (σ, N) = sup{Λ(p)

Y ′ (σ) | Y ′ ⊆ Y, |Y ′|6N}.

We say that Y has small Poincaré moduli of exponent p if its local Poincaré moduli of that
exponent satisfy

Λ(p)
Y (σ, N).p,σ o

((
log N

log log N

)1/2p)
. (16)

Note that a bound of O(log N) in (16) holds true for any metric space, by Bourgain’s embedding
theorem [Bou85] and (18) below.

We shall proceed to bound the Poincaré modulus for non-Hilbertian spaces, i.e., to show
that a Poincaré inequality holds for Markov chains on these spaces, with the constant bounded
by a function of the spectral gap of the chain. The first case is that of Lp. The proof below
is a slight variant of Matoušek’s extrapolation lemma for Poincaré inequalities; see [Mat97],
and [BLMN05, Lemma 5.5]; we include it since it has been previously stated for graphs rather
than general Markov chains.

Lemma 4.4 (Matoušek extrapolation). Let (V, µ, ν) be a reversible Markov chain. Assume the

Poincaré inequality (14) holds with exponent p> 1 and Poincaré modulus Ap for functions

f : V → R. Then for any q > p the inequality (14) holds for such functions with the exponent q

and modulus 4Aq and for any 1< q 6 p the inequality holds with exponent q and modulus Aq.

Proof. For u ∈ V set g(u) = |f(u)|q/p sgn f(u). Shifting f by a constant does not change
the claimed inequalities, and using the intermediate value theorem we may assume

∫
g dν = 0.
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By the convexity of the norm, Hölder’s inequality, and the assumed Poincaré inequality, we have

‖g‖Lp(ν) =
∥∥∥∥g − ∫ g dν

∥∥∥∥
Lp(ν)

6
∫
dν(v)‖g − g(v)‖Lp(ν) 6

(∫
dν(v)‖g − g(v)‖pLp(ν)

)1/p

=
(∫

dν(u) dν(v)|g(u)− g(v)|p
)1/p

6 (Ap)
(∫

dν(u) dµ(u→ v)|g(u)− g(v)|p
)1/p

.

We next use the elementary inequality

|aq/p ± bq/p|6 q/p|a± b|(aq/p−1 + bq/p−1),

to deduce that

‖g‖Lp(ν) 6 (Aq)
[∫

dν(u) dµ(u→ v)|f(u)− f(v)|p(|f(u)|q/p−1 + |f(v)|q/p−1)p
]1/p

6 (Aq)
[∫

dν(u) dµ(u→ v)|f(u)− f(v)|q
]1/q

·
[∫

dν(u) dµ(u→ v)(|f(u)|q/p−1 + |f(v)|q/p−1)qp/(q−p)
](q−p)/pq

, (17)

where we have used Hölder’s inequality.
By the triangle inequality in Lqp/(q−p), symmetry and reversibility, the last term in (17) is at

most

2
[∫

dν(u)|f(u)|((q−p)/p)·(qp/(q−p))
](q−p)/pq

= 2‖f‖(q−p)/pLq(ν) .

Recalling that |g(u)|= |f(u)|q/p, this means

‖f‖q/pLq(ν) 6 (2Aq)
[∫

dν(u) dµ(u→ v)|f(u)− f(v)|q
]1/q

‖f‖q/p−1
Lq(ν) ,

and collecting terms finally gives

‖f‖Lq(ν) 6 (2Aq)
[∫

dν(u) dµ(u→ v)|f(u)− f(v)|q
]1/q

.

To conclude the proof we note that[∫
dν(u) dν(v)|f(u)− f(v)|q

]1/q

6 2‖f‖Lq(ν)

follows by applying the triangle inequality in Lq(ν × ν) to the functions (u, v) 7→ f(u) and
(u, v) 7→ −f(u). 2

Corollary 4.5. We have Λ(p)
R (σ)6 2p(1/

√
σ). Integrating, this bound also holds for Λ(p)

Lp
(σ).

Since Hilbert space embeds isometrically into Lp for all p> 1, we see that for p> 2,

Λ(p)
L2

(σ)6 Λ(p)
Lp

(σ)6
2p√
σ
. (18)

Remark 4.6. In [Mat97] it is shown that any N -point metric space embeds in Lp with distortion
. (1 + (1/p) logN ). It follows that for any metric space Y and any exponent p> 2,

Λ(p)
Y (σ, N).

p+ log N√
σ

.
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Remark 4.7. The argument above was special for Lp spaces. However, using a different
method, it was shown in [Oza04] that for any Banach lattice Y that does not contain almost
isometric copies of every finite metric space, we have Λ(2)

Y (σ).Y,σ 1. While this is not stated
explicitly in [Oza04], it follows easily from the proof of Lemma A.4 there; this observation is
carried out in detail in [NR05].

We also note for future reference that the Poincaré modulus behaves well under natural
operations on metric spaces. The (trivial) proof is omitted.

Proposition 4.8. Fix a function L(σ, N) and let C be the class of metric spaces Y such that

Λ(p)
Y 6 L. Then C is closed under completion, passing to subspaces, `p products, and ultralimits.

The property of being p-uniformly convex with constant cY is also preserved by the same
operations, except that one must pass to convex (i.e., totally geodesic) subspaces.

In the class of CAT(0) spaces, a further reduction is possible: it is enough to establish the
Poincaré inequality for all the tangent cones of the space Y . This is essentially an observation
from [Wan98, Proof of Theorem 1.1] (see also [IN05, Lemma 6.2]). It relies on the equivalent
formulation from Lemma 4.2. We recall the definition of the tangent cone to a metric space Y at
the point y ∈ Y . Let γ, γ′ : [0, ε]→ Y be unit-speed geodesic segments issuing from y. For each
t > 0 let θt,t′ be the angle such that

dY (γ(t), γ′(t′))2 = dY (y, γ(t))2 + dY (y, γ′(t′))2 − 2dY (y, γ(t))dY (y, γ′(t′)) cos θt,t′ .

The Alexandroff angle between γ, γ′ is defined as θ(γ, γ′) = lim supt,t′→0 θt,t′ . It is easy to check
that this provides a pseudometric on the space of germs of geodesic segments issuing from y.
Identifying segments at angle zero gives the space of directions SyY . Now let TyY be the infinite
cone over SyY with the metric d̃(aγ, bγ′) =

√
a2 + b2 − 2ab cos θ(γ, γ′). There is a natural ‘inverse

of the exponential map’ πy : Y → TyY given by mapping z ∈ Y to dY (y, z) · [y, z] where [y, z] is
the geodesic segment connecting y to z (πy(y) is the cone point). By definition πy preserves
distances from y, in that d̃(πy(y), πy(z)) = dY (y, z). The key properties for us are that when Y is
CAT(0), πy is 1-Lipschitz (in fact, this is equivalent to the CAT(0) inequality) and that in that
case (TyY, d̃) is a CAT(0) metric space as well; see [BH99, Theorem II.3.19]. It is also important
to note that if σ is a probability measure on Y and y = c2(σ) then c2(πy∗σ) = πy(y) (this is since
the fact that y minimizes z 7→ dY (σ, z) can be stated in terms of distances from y alone; see
[IN05, Proposition 3.5]).

The following proposition was proved in an equivalent form in [Wan98].

Proposition 4.9. Let Y be a CAT(0) space. Then

Λ(2)
Y (σ, N)6 2 sup

y∈Y
Λ(2)
TyY

(σ, N).

In particular, Λ(2)
Y (σ)6 2 supy∈Y Λ(2)

TyY
(σ).

Proof. Let (V, µ, ν) be a finite Markov chain as above. For a CAT(0) space Y let v(Y ) be minimal
such that for all f : V → Y we have

V (2)(f)6 v(Y )E(2)
µm(f).

Lemma 4.2 shows that the constant c in the Poincaré inequality for functions from V to Y satisfies
v(Y )6 c6 2v(Y ). It thus remains to show that v(Y )6 supy∈Y v(TyY ). Indeed, let f :X → Y ,
and let y = c2(f∗ν), f̃ = πy ◦ f . As noted above we have c2(f̃∗ν) = πy(y) and since distances
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from y are preserved V (2)(f) = V 2(f̃). Since πy is non-expansive, E(2)
µm(f̃)6 E(2)

µm(f). It follows

that V (2)(f)6 v(Tc2(f∗ν))E
(p)
µm(f) and we are done. 2

Note that when Y is a Riemannian manifold, the tangent cone constructed above is isometric
to the ordinary tangent space at y, equipped with the inner product given by the Riemannian
metric at that point. In other words, the tangent cones of a manifold are all isometric to Hilbert
spaces. An approximation argument also shows that Λ(2)

Y (σ)> Λ(2)
TyY

(σ) for all y ∈ Y .

Corollary 4.10. Let Y be a Hilbert manifold with a CAT(0) Riemannian metric (for example,
a finite-dimensional simply connected Riemannian manifold of non-positive sectional curvature).

Then 1/
√
σ 6 Λ(2)

Y (σ)6 2/
√
σ.

5. Padded decomposability and Nagata dimension

We start by recalling some definitions and results from [LN05]. Let (X, dX) be a metric
space. Given a partition P of X and x ∈X we denote by P(x) the unique element of P
containing x. For ∆> 0, a distribution Pr over partitions of X is called a ∆-bounded stochastic
decomposition if

Pr[∀C ∈P, diam(C)6∆] = 1,

i.e., almost surely with respect to Pr partitions of X contain only subsets whose diameter
is bounded by ∆. Given ε, δ > 0 we shall say that a ∆-bounded stochastic decomposition Pr is
(ε, δ)-padded if for every x ∈X,

Pr[P(x)⊇BX(x, ε∆)]> δ.

Here, and in what follows, BX(x, r) def= {y ∈X : dX(x, y)6 r} denotes the closed unit ball of
radius r centered at x.

Given two metric spaces (Y, dY) and (Z, dZ), and X ⊆ Y , we denote by e(X, Y, Z) the
infimum over all constant K such that every Lipschitz function f :X → Z can be extended to a
function f̃ : Y → Z such that ‖f̃‖Lip 6K · ‖f‖Lip. The absolute Lipschitz extendability constant
of (X, dX), denoted ae(X), is defined as

ae(X) def= sup{e(X, Y, Z) : Y ⊇X, Z a Banach space}.

In words, the inequality ae(X)<K implies that any Banach space valued Lipschitz mapping on
X can be extended to any metric space containing X such that the Lipschitz constant of the
extension grows by at most a factor of K. This notion was introduced in [LN05], where several
classes of spaces were shown to be absolutely extendable. We note that in the extension theorems
we quote below from [LN05] the role of the target space being a Banach space is very weak, and
it can also be, for example, any CAT(0) space; we refer to [LN05] for a discussion of this issue.

The following theorem was proved in [LN05].

Theorem 5.1 (Absolute extendability criterion [LN05]). Fix ε, δ ∈ (0, 1) and assume that
(X, dX) admits a 2k-bounded (ε, δ)-padded stochastic decomposition for every k ∈ Z. Then

ae(X).
1
εδ
.

In [LN05] several classes of spaces were shown to satisfy the conditions of Theorem 5.1,
including subsets of Riemannian surfaces of bounded genus and doubling metric spaces. For our
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applications we need to enrich the repertoire of these spaces. We do so by relating the notion of
padded decomposability to having finite Nagata dimension, and using results from [LS05] which
bound the Nagata dimension of various classes of spaces (which will be listed shortly).

Let (X, dX) be a metric space. Following [LS05, Nag83], given γ > 1 and d ∈ N we say that
X has Nagata dimension at most d with constant γ if for every s > 0 there exists a family of
subsets C ⊆ 2X r {∅} with the following properties.

(i) The family C covers X, i.e.,
⋃
C∈C C =X.

(ii) For every C ∈ C , diam(C)6 γs.

(iii) For every A⊆X with diam(A)6 s, we have |{C ∈ C : C ∩A 6= ∅}|6 d+ 1.

The infimum over all γ for which X has Nagata dimension at most d with constant γ will be
denoted γd(X). If no such γ exists we set γd(X) =∞. Finally, the Nagata dimension of X is
defined as

dimN (X) = inf{d> 0 : γd(X)<∞}.
It was proved in [LS05] that X has finite Nagata dimension if and only if X embeds
quasisymmetrically into a product of finitely many trees.

Lemma 5.1 (Bounded Nagata dimension implies padded decomposability). Let (X, dX) be a
metric space, γ > 1 and d ∈ N. Assume that γd(X)< γ <∞. Then, for every k ∈ Z, X admits
a 2k-bounded (1/100γd2, 1/(d+ 1))-padded stochastic decomposition.

Proof. It is easy to iterate the definition of Nagata dimension to prove the following fact, which is
(part of) [LS05, Proposition 4.1] (with explicit, albeit sub-optimal, estimates that can be easily
obtained from an examination of the proof in [LS05]). Let r = 50γ · d2. For every j ∈ Z there
exists a family of subsets B ⊆ 2X r {∅} with the following properties.

(i) For every x ∈X there exists B ∈B such that BX(x, rj)⊆B.

(ii) There is a partition B =
⋃d
i=0 Bi, where for every i ∈ {0, . . . , d} the sets in Bi are

disjoint, and for every B ∈Bi, diam(B)6 rj+1.

We now construct a random partition P of X as follows. Let π be a permutation of {0, . . . , d}
chosen uniformly at random from all such (d+ 1)! permutations. Define a family of subsets
B̃π
i ⊆ 2X r {∅} inductively as follows: B̃π

0 = Bπ(0), and for 06 i < d

B̃π
i+1 =

{
B

∖ ⋃
C∈

⋃i
`=0 B̃π

π(`)

C :B ∈Bπ(i+1)

}∖
{∅}.

Finally we set Pπ =
⋃d
i=0 B̃π

i . Since B covers X, Pπ is a partition of X. Moreover, by
construction, for every C ∈Pπ, diam(C)6 rj+1.

Fix x ∈X. By the first condition above there exists i ∈ {0, . . . , d} and B ∈Bi such that
BX(x, rj)⊆B. If π(0) = i then Pπ(x) =B ⊇B(x, rj). This happens with probability 1/(d+ 1).

Letting k be the largest integer j such that rj+1 6 2k we see that Pπ is a 2k-bounded
stochastic partition such that for every x ∈X,

Pr
[
Pπ(x)⊇B

(
x,

2k−1

r

)]
>

1
d+ 1

,

as required. 2
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The following corollary shows that many of the Lipschitz extension theorems proved in [LS05]
are direct consequences of the earlier results of [LN05]. The cubic dependence on the Nagata
dimension is an over-estimate, and can be easily improved. We believe that the true bound should
depend linearly on the dimension, but this is irrelevant for the purposes of the present paper.

Corollary 5.2. For every metric space X and d ∈ N,

ae(X) =O(γd(X)d3).

Thus, doubling metric spaces, subsets of compact Riemannian surfaces, Gromov hyperbolic
spaces of bounded local geometry, Euclidean buildings, symmetric spaces, and homogeneous
Hadamard manifolds, all have a finite absolute extendability constant.

The list of spaces presented in Corollary 5.2 is a combination of the results of [LN05, LS05].
In particular the last four classes listed in Corollary 5.2 were shown in [LS05] to have finite
Nagata dimension. It should be remarked here that Lipschitz extension theorems for Gromov
hyperbolic spaces of bounded local geometry were previously proved in [NPSS06] via different
methods.

We will use the following embedding theorem, which follows from [LMN05, Proof of
Theorem 5.1], though it isn’t explicitly stated there in full generality. We include the simple
proof for the sake of completeness.

Theorem 5.2 (Snowflake embedding). Fix ε, δ, θ ∈ (0, 1). Let (X, dX) be a metric space which
admits for every k ∈ Z a 2k-bounded (ε, δ)-padded stochastic decomposition. Then the metric
space (X, dθX) embeds into Hilbert space with bi-Lipschitz distortion .1/ε

√
δθ(1− θ).

Proof. For every k ∈ Z let Prk be an (ε, δ)-padded distribution over 2k-bounded partitions of X.
We also let {σC}C⊆X be independent symmetric ±1 Bernoulli random variables, which are
independent of Prk. Denote by Ωk the measure space on which all of these distributions
are defined. Let fk :X → L2(Ωk) be given by the random variable

fk(x) = σP(x) ·min{dX(x, X r P(x)), 2k} (P is a partition of X).

Finally, define F :X → (
⊕

k∈Z L2(Ωk))⊗ `2 by

F (x) =
∑
k∈Z

2−k(1−θ)fk(x)⊗ ek.

Fix x, y ∈X and let k ∈ Z be such that 2k < dX(x, y)6 2k+1. It follows that, for every 2k-
bounded partition P of X, P(x) 6= P(y). Thus σP(x) and σP(y) are independent random
variables, so that

F (x)− F (y)‖22 > 2−2k(1−θ)‖fk(x)− fk(y)‖2L2(Ωk)

=
EσEPrk [σP(x) ·min{dX(x, X r P(x)), 2k} − σP(y) ·min{dX(y, X r P(y)), 2k}]2

22k(1−θ)

(♣)
=

EPrk [min{dX(x, X r P(x))2, 22k}] + EPrk [min{dX(y, X r P(y))2, 22k}]
22k(1−θ)

(♠)

>
δ(ε2k)2

22k(1−θ) >
ε2δ

22θ
· dX(x, y)2θ, (19)

where in (♣) we used the independence of σP(x) and σP(y), and in (♠) we used the (ε, δ)-padded
property.
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In the reverse direction, for every j ∈ Z, if P is a 2j-bounded partition of X then it is
straightforward to check that for all x, y ∈X we have the point-wise inequality,

|σP(x) ·min{dX(x, X r P(x)), 2j} − σP(y) ·min{dX(y, X r P(y)), 2j}|
6 2 min{dX(x, y), 2j}. (20)

Indeed, if dX(x, y)> 2j then (20) is trivial. If P(x) = P(y) then (20) follows from the
Lipschitz condition |dX(x, X r P(x))− dX(y, X r P(x))|6 dX(x, y). Finally, if dX(x, y)< 2j

and P(x) 6= P(y) then dX(x, X r P(x)), dX(y, X r P(y))6 dX(x, y)< 2j , implying (20) in
this case as well.

It follows from (20) that

‖F (x)− F (y)‖22 .
∑
j∈Z

min{dX(x, y)2, 4j}
4j(1−θ)

.
∑
j6k

4jθ + dX(x, y)2
∑
j>k+1

4−j(1−θ)

.
4kθ

θ
+ dX(x, y)2 · 4−k(1−θ)

1− θ
.
dX(x, y)2θ

θ(1− θ)
. (21)

Combining (19) and (21), we get that the bi-Lipschitz distortion of f is .1/ε
√
δθ(1− θ). 2

Corollary 5.3. Let (Y, dY) be a metric space which admits for every k ∈ Z a 2k-bounded
(ε, δ)-padded stochastic decomposition (thus, (Y, dY) can belong to one of the classes of spaces
listed in Corollary 5.2). Then, using the notation of § 4, for every p ∈ [1,∞) we have

Λ(p)
Y (σ).ε,δ,p,σ 1. (22)

Proof. By Theorem 5.2 the metric space (Y,
√
dY ) embeds into Hilbert space with distortion

.ε,δ1. By (18) we know that Λ(2p)
L2

(σ).p σ−1/2. It follows that Λ(p)
Y (σ).ε,δ,p σ−1 .ε,δ,p,σ 1, as

required. 2

Remark 5.4. For our purposes the dependence on σ in (22) is irrelevant. Nevertheless, the proof
Corollary 5.3 can be optimized as follows. For θ ∈ (0, 1), use Theorem 5.2 to embed the metric
space (Y, dθY ) into Hilbert space with distortion .1/ε

√
δθ(1− θ). From (18) we know that

Λ(p/θ)
L2

(σ). p/θ
√
σ. Thus, there exists a universal constant c > 1 such that

Λ(p)
Y (σ)6

(
p

θ
√
σ
· c

ε
√
θ(1− θ)

)1/θ

. (23)

One can then choose θ so as to minimize the right-hand side of (23). If one cares about the
behavior of our bound as σ→ 0, then the optimal choice is θ = 1− (log log(1/σ))/log(1/σ),
yielding, for σ ∈ (0, 1/4), the estimate

Λ(p)
Y (σ).ε,δ,p

log(1/σ)√
σ

. (24)

Using the ideas presented here more carefully, the logarithmic term in (24) was subsequently
removed in [NR05] (where the dependence on σ was of importance for certain applications).

6. A brief review of the construction of the random group

We recall here the ‘graph model’ for random groups and the iterative construction of a group from
an appropriate sequence of graphs. The construction is due to Gromov [Gro03]; further details
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may be found in the works of Ollivier [Oll05, Oll06], or in the more recent work of Arzhantseva
and Delzant [AD08].

Let G= (V, E) be an undirected simple graph. The set of edges E then has a natural double
cover, the set of oriented edges of G

~E = {(u, v), (v, u) | {u, v} ∈ E}.

Now let Γ be a group. A symmetric Γ-labeling of G is a map α : ~E→ Γ such that α(u, v) =
α(v, u)−1 for all {u, v} ∈ E. The set of these will be denoted A(G, Γ). More generally an
S-labeling is a labeling whose image lies in a (symmetric) subset S ⊆ Γ. The set of such labels
will be denotes A(G, S).

Let S ⊆ Γ be a symmetric subset, 1 /∈ S. The Cayley graph Cay(Γ; S) is the graph with vertex
set Γ and directed edge set {(x, xs) | x ∈ Γ, s ∈ S}. This is actually an undirected graph since S is
symmetric and carries the natural symmetric labeling α(x, xs) = s. The Cayley graph Cay(Γ; S)
is connected if and only if S generates Γ. In that case let ~c be an oriented cycle (that is, a closed
path) in that graph, and let w ∈ S∗ be the word in S read along the cycle. It is clear that w
is trivial as an element of Γ. Conversely, any relator w ∈ S∗ for Γ induces many closed cycles
on Cay(Γ; S): starting at any x ∈ Γ one follows the edges labeled by successive letters in w.
Since w = 1 in Γ, this path is a closed cycle in the Cayley graph. This observation motivates the
following construction.

Given a symmetric Γ-labeling α ∈ A(G, Γ) and an oriented path ~p= (~e1, . . . , ~er) in G, we set
α(~p) = α(~e1) · . . . · α(~er). We write

Rα = {α(~c) | ~c a cycle in G},

and will consider groups of the form

Γα = Γ/〈Rα〉N, (25)

where 〈Rα〉N is the normal closure of 〈Rα〉. Alternatively, given a presentation Γ = 〈S|R〉 we
also have Γα = 〈S|R ∪Rα〉 once we write the labels α(~e) as words in S. Given u ∈ V (G) and
x ∈ Cay(Γα; S) we define a map αu→x :G→ Cay(Γα; S) as follows. For v ∈ V (G) choose a path
~p from u to v in G, and define αu→x(v) = xα(~p). Note that by construction, αu→x(v) does not
depend on the choice of the path ~p, and hence αu→x is well-defined.

With a choice of a probability measure Pr onA(G, Γ), the groups Γα become ‘random groups’.
Note the ad hoc nature of this construction: it is very useful for proving the existence of groups
with desired properties (for example see [OW07]). However, the groups Γα are not ‘typical’ in
any sense of the word.

As above, let S be a symmetric set of generators for Γ. For any integer j let Prj on A(G, Sj)
be given by independently assigning a label to each edge, uniformly at random from Sj . Fixing
an orientation of E (i.e., a section ι : E→ ~E of the covering map ~E→ E) shows that A(G, Sj) is
non-canonically isomorphic to the product space ESj and identifies Prj with the natural product
measure on that space.

Definition 6.1 [Oll05, Definition 50]. A sequence of finite connected graphs {Gi}∞i=1 is called
good for random quotients if there exist positive constants C,∆ such that:

(i) the maximum degree of Gi satisfies ∆(Gi)6∆;
(ii) the girth of Gi satisfies g(Gi)> C · diam(Gi);
(iii) |V (Gi)| (equivalently, g(Gi)) tend to ∞ with i.
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Theorem 6.2 ([Oll05, Theorem 51], [AD08, Theorem 6.3]). Let {Gi}∞i=1 be good for random
quotients, let Γ be a non-elementary torsion-free hyperbolic group with property (T ), and
let ε > 0. Then there exist A> 0, an integer j > 1 and a subsequence {ik}k>1 such that for
G=

⊔
k>1 Gik and α chosen from A(G, Sj) we have with positive Prj-probability that the

following hold.

(i) For anyK > 1, if we setG(K) =
⊔
k6K Gik and α(K) = α�G(K)

, then Γ(K) = Γα(K)
is a torsion-

free non-elementary hyperbolic group. In particular, Γα is an infinite group.

(ii) For any choice of vertices u0, v, w ∈ V (Gik) and x0 ∈ Cay(Γα; S) the natural map αu0→x0 :

Gik →Xα
def= Cay(Γα; S) has

A(dGik (v, w)− ε diam(Gik))6
1
j
dXα(αu0→x0(v), αu0→x0(w))6 dGik (v, w).

When we apply Theorem 6.2 in § 7, we will take the initial group Γ to be a free group.
Even though Γ does not have property (T ), Theorem 6.2 still applies if we assume that Γ(1),
the quotient by the relations on Gi1 , satisfies the assumptions of Theorem 6.2. This happens
with positive probability if we take i1 large enough, as explained in the discussion preceding
Definition 50 in [Oll05].

7. From Poincaré inequalities to fixed points

Let {Gi}∞i=1 be an expander family of graphs, with all vertices of degrees between 3 and d
and g(Gi)& log |V (Gi)|. For later convenience we assume that the graphs are non-bipartite. Let
G=

⊔
i>1 Gi be the disjoint union of the graphs.

Let Γ = 〈S〉 be free on the symmetric set of generators S of size 2k. We set X = Cay(Γ; S);
a 2k-regular tree. As in § 6, for j > 1 let A(G, Sj) denote the space of symmetric maps from
the (directed) edges of G to Sj . Given α ∈ A(G, Sj) let Γα be the quotient of Γ presented by
declaring every word read along a cycle in G to be a relator. To every α ∈ A(G, Sj) we associate
its restrictions αk to the copy of Gk.

Our model for random groups is obtained by choosing the value of α at each edge
independently and uniformly at random. In § 6 we reviewed the assumptions on Gi needed
so that, with high probability, the group Γα is infinite. We now show that with probability 1 the
quotient group Γα has strong fixed-point properties.

We follow below the lines of [Sil03], with the natural changes that are required for handling
powers p rather than powers 2, and p-uniformly convex metric spaces rather than CAT(0) spaces.
Moreover, the handling of j > 1 in [Sil03] was rather awkward. Taking advantage of the fact that
we are reproducing much of the analysis of [Sil03], we give a cleaner argument here for the case
j > 1.

7.1 Simulating random walks and transferring Poincaré inequalities

Let G be a connected finite graph (one of the Gi). We assume 36 δ(G)6∆(G)6 d and let
g = g(G), N = |V (G)|. We choose α ∈ A(G, Sj) uniformly at random. In particular, the label
α(e) is chosen independently for each edge e. Given u, v ∈ V (G) such that dG(u, v)< g/2, and
x ∈X, let βu→x(v) denote the vertex xα(~p) of X, where ~p is the unique shortest path joining u
and v in G. Note that, using the notation of § 6, πα(βu→x(v)) = αu→x(v), where πα :X →Xα is
the natural quotient map.

1565

https://doi.org/10.1112/S0010437X11005343 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005343


A. Naor and L. Silberman

For every q ∈ N, q < g/2, we define the random walk µqG,α on the tree X as follows:

µqG,α(x→ ·) =
∑
u∈G

νG(u)((βu→x)∗µ
q
G(u→ ·)), (26)

where µG is the standard random walk on G and νG is its stationary measure. Since βu→γx(v) =
γβu→x(v), (26) is a Γ-equivariant random walk on X.

For any fixed x, x′ ∈X, µqG,α(x→ x′) is a random variable depending on the choice of α. We
denote its expectation by µ̄qG,X(x→ x′) ∈WΓ(X). It is important to note that while µqG and µqX
are indeed q-fold convolutions of the random walks µG and µX , this is not the case for the other
walks we consider such as µqG,α.

The walks µqG,α(x→ x′) will now be used to ‘simulate’ the walks µnX on X. Indeed, with
high (asymptotic) probability the walks µqG,α(x→ x′) are close to their expectation values µ̄qG,X
(x→ x′), and these expectation values can be related to walks µnX for appropriate values of n.

Equation (26) above furnishes the connection between the averaging notions on X and on G.
For computations, however, we rewrite it as

µqG,α(x→ x′) =
∑
|~p |=q

νG(p0)µqG(~p)1(xα(~p) = x′), (27)

where the sum is over all oriented paths ~p of length q in G starting at p0, and 1(x= y) is
the characteristic function of the diagonal of X ×X, so that α 7→ 1(xα(~p) = x′) is an indicator
random variable for the event that α(~p) equals x−1x′ as elements of Γ.

We now easily compute the mean walk µ̄qG,X . We start with the instructive case q = 1, where
unwinding the definitions of νG and µG gives

µ1
G,α(x→ x′) =

1
2|E(G)|

∑
~e∈ ~E

1(xα(~e) = x′).

Taking expectation we conclude that µ̄1
G,X(x→ x′) equals the probability that following a random

word in Sj will lead us from x to x′, that is µjX(x→ x′).
A similar calculation for q > 1 gives the following.

Lemma 7.1 (Generalization of [Sil03, Lemma 2.12]). Let q < g/2. We can write µ̄qG,X as a convex
combination

µ̄qG,X =
q∑
l=0

P qG(l)µjlX (28)

where the weights P qG(l) are concentrated on large values of l, in the sense that

QqG
def=
∑
l6q/6

P qG(l)6 e−q/18. (29)

Also, wherever µ̄qG,X(x→ x′) is non-zero then it is at least

ε(d, k, j)q def=
(

1
d(2k)j

)q
. (30)

Proof. Given a path ~p in G of length q < g/2, let p̃ be the shortest path connecting the endpoints
of G. Since the ball of radius q in G around the starting vertex p0 of ~p is a tree, p̃ is unique and
can be obtained from ~p by successively canceling ‘backtracks’ (consecutive steps which traverse
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a single edge in opposite directions). This p̃ is a simple path, traversing each of its edges exactly
once. It follows that the law of the Γ-valued random variable α 7→ α(p̃) is that of a uniformly
chosen element in Sjl where l = |p̃|. Moreover, the symmetry of the labeling α shows that the
words α(~p) and α(p̃) are equal as elements of the free group Γ. In particular, the expectation of
the indicator variable 1(xα(~p) = x′) in (27) is µjlX(x, x′). Equation (28) now follows, with

P qG(l) =
∑

|~p |=q,|p̃|=l

νG(p0)µqG(~p).

Note that P qG(l) is precisely the probability that q steps of the stationary random walk on G
travel a distance l. The bound (29) is established in [Sil03, Lemma 2.12].

For the lower bound on µ̄qG,X(x→ x′) note first that for any path ~p in G of length q,
µqG(~p)> d−q since every vertex has degree at most d. Now let 06 l 6 q and assume that l, q have
the same parity (if either condition fails then P qG(l) = 0). Then for any vertex p0 there exists paths
~p of length q and reduced length l starting at p0. It follows that P qG(l)>

∑
p0
νG(p0)d−q > d−q

for l as above.
Finally, let x, x′ ∈X and let their distance be at most jq and have the same parity as

jq (otherwise, for every term in (28) either P qG(l) or µjlX(x→ x′) vanishes). Then the same
argument shows that µjqX (x→ x′)> (2k)−jq. Equation (30) now follows from the estimate
µ̄qG,X(x→ x′)> P qG(q)µjqX (x→ x′). 2

Definition 7.2. We say that µ•G,α effectively simulates µ•X up to time q0 if for every 16 q 6 q0

and every x, x′ ∈X we have

µqG,α(x→ x′)> 1
2 µ̄

q
G,X(x→ x′),

and in addition we have for every x, x′ ∈X

µ1
G,α(x→ x′)6 2µjX(x→ x′).

When the walks on G effectively simulate the walks on X we can transfer Poincaré inequalities
from G to Γα.

Proposition 7.3. Let G= (V, E) be a finite graph on N vertices, and let σ be the spectral gap
of G. Let α ∈ A(G, Sj) be such that µ•G,α effectively simulates µ•X up to a time q0 & log N .
Let Y be a metric space on which Γα acts by isometries. Write B(X, Y ) for the space of
Γ-equivariant functions from X to Y where the free group Γ acts via its quotient Γα. Then
for every f ∈B(X, Y ) there exists m comparable to log N such that

E(p)

µjmX
(f). (Λ(p)

Y (σ, N))pE(p)

µjX
(f).

Proof. By definition of µqG,α, we have for q < g/2

|∇µqG,α(f)|pp(x) =
∑
u∈V

νG(u)|∇µqG(f ◦ βu→x)|pp(u). (31)

Note that in (31) the composition f ◦ βu→x is well defined since βu→x(v) is defined for all
v ∈ V (G) with dG(u, v)< g/2, and q < g/2. The same remark applies for the remainder of the
computations below, where we treat βu→x as a function even though it is only a partially defined
function.
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Since the action of Γ on Y factors via Γα, the function f can also be viewed as an equivariant
function on Xα. Fixing u0 ∈ V , we use this to set f0 = f ◦ αu0→x. Then for each u ∈ V (G) we
have

|∇µqG(f ◦ βu→x)|pp(u) = |∇µqG(f0)|pp(u),

by projecting to Xα and translating by the element γ ∈ Γ which sends αu0→x(u) back to x. It
follows that

|∇µqG,α(f)|pp(x) = 2E(p)

µqG
(f0). (32)

Applying the Poincaré inequality (13) for maps from G to Y and using (32) on both sides we
have

|∇µqG,α(f)|pp(x). (Λ(p)
Y (σ(G), N))p|∇µG,α(f)|pp(x). (33)

If q is small enough then the assumption of effective simulation allows us to replace the random
walks in (33) by their expectations up to a constant loss. Applying Lemma 7.1 and omitting
some (non-negative) terms in the sum in (28), we find

min
q>l>q/6

|∇
µjlX

(f)|pp(x)
(29)

6
∑

q>l>q/6

P qG(l)
1−QqG

|∇
µjlX

(f)|pp(x). (Λ(p)
Y (σ(G), N))p|∇

µjX
(f)|pp(x).

By assumption we can take q � log N , and the proof is complete. 2

Proposition 7.4 (Generalization of [Sil03, Lemma 2.13]). Let G be a finite graph with
36 δ(G)6∆(G)6 d. Let N = |V (G)|, and assume g = g(G)> C log N . Then there exists C ′ > 0
depending on d, k, j, C so that the probability of µ•G,α failing to effectively simulate µ•X up to
time C ′ log N is od,k,j(1) as N →∞.

Proof. Since Γ acts transitively on X, our measure-valued random variables µqG,α(x→ ·) are
determined by their value at any particular x ∈X, which we fix. For each choice of α, the measure
µqG,α(x→ ·) is supported on the ball BX(x, jq), so for each q we need to control |BX(x, jq)| real-
valued random variables on A(G, Sj). Let µqG,α(x→ x′) be one such random variable. We give a
bound τq to its Lipschitz constant as a map from A(G, Sj) (equipped with the Hamming metric)
to [0, 1]. For this it suffices to consider a pair of labelings α, α′ which agree everywhere except
at e ∈ E. We then have (sum over paths which traverse e at some point)

|µqG,α(x→ x′)− µqG,α′(x→ x′)|6
∑
e∈~p

νG(p0)µqG(~p).

There are at most 2qdq−1 such paths, and each contributes at most (2d/3N)3−q to the right-
hand-side since νG(u) = d(u)/2|E(G)|. the vertex degrees allow us to take

τq =
4q
3N

(
d

3

)q
.

We would like to rule out µqG,α(x→ x′) deviating from its non-zero mean µ̄qG,X(x→ x′) by
a factor of at least 2. It enough to bound the probability of deviation by at least 1

2ε(d, k, j)
q,

where 1
2ε(d, k, j) is as in (30)). Azuma’s inequality (see, e.g., [AS00, Theorem 7.2.1]) shows that

the probability for this is at most

exp
{
−ε(d, k, j)

2q

8|E(G)|τ2
q

}
.
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We can choose C ′ small enough to ensure (d/3ε2)jq is an arbitrary small power of N . Also
|E(G)|.d N , so the probability of deviation is exponentially small in a positive power of N . The
number of random variables is polynomial in N (it is at most (2k)qj for each q) so we can take
the union bound. A similar analysis shows that probability of some µ1

G,α(x→ x′) being too large
also decays. 2

7.2 Fixed points
Returning to G being the union of finite components Gi, we summarize the result of the previous
section.

Theorem 7.5. Assume that the {Gi}i>1 are connected non-bipartite graphs on Ni vertices with
vertex degrees in [3, d], spectral gaps σ(Gi)> σ > 0 and girths &log Ni. Let G=

⊔
i>1 Gi and

let Γα be constructed at random from α ∈ A(G, Sj) with j even. Then almost surely for every
metric space Y , and every action of Γα on Y by isometries, there exists arbitrarily large Ni such
that for any f ∈B(Xα, Y ) there exist m comparable to log Ni such that

E(p)

µjmX
(f). (Λ(p)

Y (σ, Ni))pE(p)

µjX
(f).

Theorem 7.6. Let Γα satisfy the conclusion of Theorem 7.5. Let Y be p-uniformly convex, and

assume that Λ(p)
Y (σ)<∞ or, in greater generality, that

lim
N→∞

(
log log N

log N

)1/2p

Λ(p)
Y (σ, N) = 0

(in the terminology of Definition 4.3, we are assuming that Y has small Poincaré moduli of
exponent p). Then every isometric action of Γα on Y fixes a point.

Proof. By Theorems 3.10 and 7.5, there exist arbitrarily large N such that for any equivariant
f ∈B(Xα, Y ) (identified with its pull-back to X) there is some m comparable to log N such that

E(p)

µjX
(A(p)

µjmX
f).p,cY ,j,d

(
Q(N) +

1
log N

)
E(p)

µjX
(f),

where Q(N)→ 0 as N →∞. Choosing N large enough, we see that we can ensure the existence
of m such that

E(p)

µjX
(A(p)

µjmX
f)6 1

2E
(p)

µjX
(f).

Note that the choice of N was independent of f . Now Proposition 3.8 shows that iterating
the averaging (with m depending on f but bounded by N) leads to a sequence converging to a
fixed point (here Γ\X is a s single point, so B(X, Y ) is non-empty).

In more detail, let µXα denote the standard random walk on Xα. We have in fact shown the
existence of m such that

E(p)

µjXα
(A(p)

µjmXα
f)6 1

2E
(p)

µjXα
(f).

In order to apply Proposition 3.8 we further need to verify that a certain graph is connected;
specifically the Cayley graph of Γα with respect to the set Sj . Since j is even, Sj contains S2

(as sets of elements of Γα), so it is enough to verify that S2 is a set of generators for Γα. Indeed,
the graphs Gi are non-bipartite and hence contain odd cycles. It follows that some relators in
Rα have odd length, so that, up to multiplication by a relator, every element of Γα can be
represented by a word in S of even length. 2
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Remark 7.7. Theorem 7.6 was formulated for the limiting wild group Γα, i.e., the group
corresponding to the infinite graph G. Arguing identically for the random group corresponding
to the relations of each Gi separately, we obtain Theorem 1.1.
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ETH Zürich (Birkhäuser, Basel, 1997); MR 1451625(98g:53070).

Kap05 M. Kapovich, Representations of polygons of finite groups, Geom. Topol. 9 (2005), 1915–1951
(electronic); MR 2175160(2006g:20069).

KL97 B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean
buildings, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115–197 (1998); MR 1608566(98m:
53068).

LS05 U. Lang and T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and
Lipschitz extensions, Int. Math. Res. Not. IMRN (2005), 3625–3655; MR 2200122.

LMN05 J. R. Lee, M. Mendel and A. Naor, Metric structures in L1: dimension, snowflakes, and
average distortion, European. J. Combin. 26 (2005), 1180–1190.

LN05 J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Invent.
Math. 160 (2005), 59–95.
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