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ASYMPTOTIC BOUNDS FOR THE DISTRIBUTION
OF THE SUM OF DEPENDENT RANDOM VARIABLES

RUODU WANG,∗ University of Waterloo

Abstract

Suppose thatX1, . . . , Xn are random variables with the same known marginal distribution
F but unknown dependence structure. In this paper we study the smallest possible
value of P(X1 + · · · + Xn < s) over all possible dependence structures, denoted by
mn,F (s). We show that mn,F (ns) → 0 for s no more than the mean of F under weak
assumptions. We also derive a limit of mn,F (ns) for any s ∈ R with an error of at
most n−1/6 for general continuous distributions. An application of our result to risk
management confirms that the worst-case value at risk is asymptotically equivalent to the
worst-case expected shortfall for risk aggregation with dependence uncertainty. In the
last part of this paper we present a dual presentation of the theory of complete mixability
and give dual proofs of theorems in the literature on this concept.
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1. Introduction

Let X = (X1, . . . , Xn) be a random vector with the same known marginal distributions F ,
denoted asXi ∼ F, i = 1, . . . , n. When F is known but the joint distribution of (X1, . . . , Xn)

is unknown, the distribution of X is undetermined with some marginal constraints. For any
s ∈ R and ψ : R

n → R, let

mψ,F (s) = inf{P(ψ(X) < s) : Xi ∼ F, i = 1, . . . , n}
and

wψ,F (s) = inf{P(ψ(X) �= s) : Xi ∼ F, i = 1, . . . , n}.
The P(ψ(X) ≤ s) and P(ψ(X) = s) cases, and the cases concerning the largest, instead of
the smallest, possible values, are technically similar; we focus on the P(ψ(X) < s) case in
this paper. The study of mψ,F (s) originated from a question raised by A. N. Kolmogorov, and
partially answered in Makarov (1982) as the first result for n = 2 and ψ(x, y) = x + y. There
has been extensive research on this topic over the past few decades. Admittedly, most of the
recent research onmψ,F (s) has been motivated by the rapidly growing applications in financial
risk management in the past several years. Roughly speaking, finding mψ,F (s) is equivalent
to finding the worst-case value at risk with dependence uncertainty, which plays an important
role in the study of risk aggregation. We refer the reader to Embrechts and Puccetti (2010)
for an overview on this topic, where the connection between mψ,F (s) and risk management is
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Asymptotic bounds for the distribution of the sum 781

explained in detail. Numerical calculation ofmψ,F (s) and its importance in quantifying model
uncertainty are discussed in the more recent paper Embrechts et al. (2013).

Unfortunately, when n ≥ 3, the quantity mψ,F (s) is not solved except for a few special
cases of F and ψ . The most studied and most interesting choice of ψ is the sum function
ψn(X) = X1 + · · · +Xn due to its mathematical tractability and financial interpretation as the
aggregate risk. Equivalent forms ofψn includes the product function�n(X) = X1 × · · · ×Xn,
noting that m�n,F (s) = mψn,G(log s), where G is the distribution of logX, X ∼ F . In this
paper we will focus on ψn(X). For simplicity, throughout, we define mn,F = mψn,F and
wn,F = wψn,F for the sum functions ψn, n = 1, 2, . . ..

A duality theorem for mψ,F was given in Gaffke and Rüschendorf (1981) and used in
Rüschendorf (1982) to find mn,F for uniform and binomial distributions. Besides the uniform
and binomial cases, explicit values ofmn,F were not found untilWang andWang (2011) revealed
the connection between mn,F and the class of completely mixable distributions, introduced in
the same paper. A distribution F is said to be n-completely mixable if there exist (dependent)
random variablesX1, . . . , Xn, identically distributed asF , such thatX1+· · ·+Xn is a constant.
Based on complete mixability, Wang et al. (2013) gave explicit values of mn,F for F with tail-
monotone densities. The reader is also referred to Denuit et al. (1999) for a study of mn,F
using the method of copulas, to Embrechts and Puccetti (2006) for a lower bound using the
duality, and to Puccetti and Rüschendorf (2013) for the connection between the sharpness of
the duality bounds and complete mixability. A history of the study of mn,F and its connection
to mass-transportation theory can be found in the book Rüschendorf (2013).

Recent developments in complete mixability has raised increasing attention in quantitative
risk management, not limited to the problems related to mn,F . The concept is of importance
in variance minimization and convex ordering with constraints, and was studied prior to the
formal introduction of complete mixability; see, for example, Rüschendorf and Uckelmann
(2002). The concept of complete mixability was later studied and used in the research of risk
aggregation with dependence uncertainty; see, for example, Puccetti et al. (2012), Wang et al.
(2013), Puccetti and Rüschendorf (2013), Embrechts et al. (2013), and Bernard et al. (2013). It
turns out that the concept has a dual representation based on the quantitiesmn,F (s) andwn,F (s),
which will be given in this paper.

In this paper we study the asymptotic limit of the probability mn,F as n → ∞ based on
the duality theorem in Gaffke and Rüschendorf (1981). We will show that, for any continuous
distribution F with a bounded density,

mn,F (ns) → F(a0) as n → ∞,

where a0 = inf{a ∈ R : E[X | X ≥ a] ≥ s, X ∼ F }. The convergence rate will also
be obtained. Our result has a clear interpretation in risk management. It suggests that, for
general continuous distributions with bounded density, the worst-case value at risk (VaR) and
worst-case expected shortfall (ES) are asymptotically equivalent, and that the superadditivity
ratio of VaR is asymptotically equal to the value of ES/VaR for F . This phenomenon, from a
risk management point of view, was first noted in the recent paper Puccetti and Rüschendorf
(2014) and later in the paper Puccetti et al. (2013) with assumptions and technical approaches
completely different from this paper. In the last part of this paper we will construct a bridge
that connects mn,F (s), wn,F (s), and the theory of complete mixability.

The rest of the paper is organized as follows. In Section 2 we give the dual representation for
the quantitiesmn,F (s) andwn,F (s). Two admissible sets will be introduced and their properties
will be studied. In Section 3 we will present our main results on the asymptotic bounds for
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mn,F (s), and discuss their applications in risk management. In Section 4 we give the dual
representation of the complete mixability. We conclude in Section 5. Throughout the paper,
we identify probability measures with the corresponding cumulative distribution functions.

2. Dual representation and admissible sets

In this section we associate the probabilitiesmψn,F andwψn,F with an optimization problem
over some functional sets, called admissible sets, and study the properties of the admissible
sets. Throughout the paper, we use the notation x ∨ y = max{x, y}, x ∧ y = min{x, y}, and
(x)+ = max{x, 0} for x and y either numbers, functions, or random variables.

2.1. Dual representation of the infimum distribution of the sum

A duality for mψ,F was given in Gaffke and Rüschendorf (1981) and Rüschendorf (1982):

mψ,F (s) = 1 − inf

{
n

∫
f dF ; f : R → R is bounded and measurable such that

n∑
i=1

f (xi) ≥ 1[s,+∞)(ψ(x1, . . . , xn)) for all xi ∈ R, i = 1, . . . , n

}
.

(2.1)

For simplicity, we define mn,F = mψn,F and wn,F = wψn,F for the sum functions ψn,
n = 1, 2, . . . . To better study the values of mn,F and wn,F using the duality, for μ ∈ R, we
define the admissible sets

An(μ) =
{
f : R → R, measurable,

1

n

n∑
i=1

f (xi) ≥ 1{[nμ,∞)}(x1 + · · · + xn)

for all x1, . . . , xn ∈ R

}

and

Bn(μ) =
{
f : R → R, measurable,

1

n

n∑
i=1

f (xi) ≥ 1{nμ}(x1 + · · · + xn)

for all x1, . . . , xn ∈ R}.

It is obvious thatAn(μ) ⊂ Bn(μ). Note that here μ is any real number and in the later sections
it is often chosen as the mean of a distribution F . The following lemma states the relationship
between the probabilities mn,F and wn,F , and the admissible sets An and Bn.

Lemma 2.1. For any μ ∈ R and any distribution F , we have

mn,F (nμ) = 1 − inf

{∫
f dF : f ∈ An(μ)

}

and

wn,F (nμ) = 1 − inf

{∫
f dF : f ∈ Bn(μ)

}
.
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Proof. To be more specific, by taking ψ(X) = X1 + · · · +Xn in (2.1), we obtain

mn,F (nμ) = 1 − inf

{
n

∫
f dF ; f : R → R is bounded and measurable such that

n∑
i=1

f (xi) ≥ 1[nμ,+∞)(x1 + · · · + xn) for all xi ∈ R, i = 1, . . . , n

}
.

(2.2)

Since any function f is the limit of bounded functions, the boundedness in (2.2) can be
dropped. Thus, simply replacing nf in (2.2) by f , we have the first equality mn,F (nμ) =
1 − inf{∫ f dF : f ∈ An(μ)}.

For the second equality, take ψ(x1, . . . , xn) = 1{nμ}(x1 + · · · + xn) in (2.1). We have

mψ,F (1) = 1 − inf

{
n

∫
f dF ; f : R → R is bounded and measurable such that

n∑
i=1

f (xi) ≥ 1[1,+∞)(1{nμ}(x1 + · · · + xn)) for all xi ∈ R, i = 1, . . . , n

}

= 1 − inf

{∫
f dF : f ∈ Bn(μ)

}
.

Note that mψ,F (1) = inf{P(1nμ(X1 + · · · +Xn) < 1) : Xi ∼ F, i = 1, . . . , n} = wn,F (nμ).
Thus, wn,F (nμ) = 1 − inf{∫ f dF : f ∈ Bn(μ)}.

The quantities mn,F (nμ) and wn,F (nμ), when μ is chosen as the mean of F , turn out to be
closely related to the concept of complete mixability. We will use them to formulate the theory
of complete mixability in Section 4. Before that, we first study the properties of the two sets
An(μ) and Bn(μ).

2.2. Properties of the admissible sets

Using the duality in Lemma 2.1, we can examine the probabilitiesmn,F (nμ) and wn,F (nμ)
by investigating the sets An(μ) and Bn(μ). Hence, it would be of interest to derive some
relevant properties of the admissible sets. Throughout the rest of the paper, we will use a class
of functions fa for a, μ ∈ R defined as (for simplicity, μ is dropped in the notation)

fa(x) = (1 + a(x − μ))+.

Note that (fa ∧ n)/n is exactly the admissible functions used in Section 4 of Embrechts and
Puccetti (2006). For technical reasons, at this moment we do not truncate fa by n as in the
above paper.

In the following, we introduce a few propositions concerning some properties of the admis-
sible sets. These properties will be used to derive the asymptotic behavior of the admissible
sets, and later they contribute to the proof of our main result in Section 3. We first introduce
some elements in An(μ) and Bn(μ). The following proposition gives important forms of the
elements in An(μ) and Bn(μ); later we will see that the functions fa are fundamental in the
asymptotic sense for the sets An(μ) and Bn(μ). The proof is quite straightforward and is thus
omitted.
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Proposition 2.1. Let n ∈ N and μ ∈ R.

(a) fa ∈ Bn(μ) for a ∈ R and fa ∈ An(μ) for a ≥ 0. In particular,

(i) if μ �= 0 then f1/μ(x) = (x/μ)+ ∈ Bn(μ);
(ii) if μ > 0 then f1/μ(x) = (x/μ)+ ∈ An(μ);

(iii) f0(x) = 1 ∈ An(μ) ⊂ Bn(μ).

(b) n 1[μ,∞)(·) ∈ An(μ) ⊂ Bn(μ).

In the next result we list some properties of the admissible sets. In summary, the sets An(μ)
andBn(μ) are convex, and a dominating or truncated function of an element inAn(μ) orBn(μ)
is still in An(μ) or Bn(μ). These simple properties provide analytical convenience and will be
used later. Their proofs are also quite straightforward and are thus omitted.

Proposition 2.2. Let n ∈ N and μ ∈ R.

(a) An(μ) is a convex set, i.e. for any λ ∈ [0, 1] and f, g ∈ An(μ), we have λf + (1−λ)g ∈
An(μ).

(b) If f ∈ An(μ) then f ≥ 0.

(c) If f ∈ An(μ), g : R → R, and g ≥ f , then g ∈ An(μ).
(d) If f ∈ An(μ) then f ∧ n ∈ An(μ).
(e) The above holds if An(μ) is replaced by Bn(μ).

One may wonder the effect of n on the sets An(μ) and Bn(μ). The next proposition states
the connection between the sets An(μ) (and also Bn(μ)) for different values of n.

Proposition 2.3. Let n, k ∈ N and μ ∈ R.

(a) An+k(μ) ⊂ An(μ) ∪ Ak(μ). In particular, Adn(μ) ⊂ An(μ) for all d ∈ N.

(b) Bn+k(μ) ⊂ Bn(μ) ∪ Bk(μ). In particular, Bdn(μ) ⊂ Bn(μ) for all d ∈ N.

Proof. For any f ∈ An+k(μ) and f �∈ Ak(μ), there exist y1, . . . , yk ∈ R such that y1+· · ·+
yk ≥ kμ and

∑k
j=1 f (yj ) < k. Note that, for any x1, . . . , xn ∈ R such that x1 +· · ·+xn ≥ nμ,

we have
n∑
i=1

f (xi)+
k∑
j=1

f (yj ) ≥ n+ k,

since
∑n
i=1 xi + ∑k

j=1 yj ≥ (n+ k)μ. This implies that
∑n
i=1 f (xi) > n and f ∈ An(μ).

Thus, An+k(μ) ⊂ An(μ) ∪ Ak(μ). The proof for Bn(μ) is similar.

The fact that Adn(μ) ⊂ An(μ) tells us that, roughly speaking (although not strictly), the set
An(μ) gets smaller as n gets larger. It motivates us to study the asymptotic behavior of An(μ)
as n → ∞. Fortunately, we are able to characterize the limit of An(μ). Before presenting this
result, we give a lemma whose proof is trivial by definitions.

Lemma 2.2. Let n, k ∈ N and μ ∈ R.

(a) If f ∈ An(μ) then (n − k)f (μ − ks) + kf (μ + (n − k)t) ≥ n for all t, s ∈ R, t ≥ s,
and k = 0, . . . , n. In particular, f (t) ≥ 1 for all t ≥ μ.
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(b) If f ∈ Bn(μ) then (n − k)f (μ − ks) + kf (μ + (n − k)s) ≥ n for all s ∈ R and
k = 0, . . . , n. In particular, f (μ) ≥ 1.

The following theorem characterizes the limit of An(μ) as n → ∞. It is clear from the
theorem that fa plays a fundamental role in the limit of An(μ).

Theorem 2.1. Let A(μ) = ⋂∞
n=1An(μ). Then

(a) A(μ) = {f : R → R, f ≥ fa for some a ≥ 0};
(b) limn→∞An(μ) exists and equals A(μ).

Proof. (a) If f ≥ fa then by Proposition 2.1(a) and Proposition 2.2(c) we have f ∈ An(μ)
for all n ∈ N. In the following we will show that, for any f ∈ A(μ), we have f ≥ fa for some
a ≥ 0. For any f ∈ A(μ), it is obvious that f ≥ 0. Let d1 = sup{(1 − f (μ− c))/c : c > 0}
and d2 = inf{(f (μ+ c)− 1)/c : c > 0}. By Lemma 2.2(a) we know that d2 ≥ 0. If d1 ≤ d2
then we have f (x) ≥ fd2(x).

Now suppose that d1 > d2. Then there exist c1 > 0 and c2 > 0 such that

f (μ+ c2)− 1

c2
<

1 − f (μ+ c1)

c1
. (2.3)

On the other hand, by Lemma 2.2(a) we know that

f (μ+ (n− k)t)− 1 ≥ n− k

k
(1 − f (μ− ks))

for all n ∈ N, t, s ∈ R, t ≥ s, and k = 1, . . . , n. We take kn = �c1n/(c1 + c2)�. It is easy
to see that (n − kn)/kn ≤ c2/c1 and (n − kn)/kn → c2/c1 as n → ∞. Furthermore, take
sn = c1/kn and tn = c2/(n− kn). Then sn ≤ tn and

f (μ+ c2)− 1 ≥ n− kn

kn
(1 − f (μ− c1)).

By takingn → ∞, we obtain that (2.3) is violated. Thus, d1 ≤ d2 holds true andf (x) ≥ fd2(x).
(b) Recall that lim infn→∞An(μ) = limm→∞

⋂∞
n=m An(μ) and lim supn→∞An(μ) =

limm→∞
⋃∞
n=m An(μ). It is obvious that

A(μ) ⊂ lim inf
n→∞ An(μ) ⊂ lim sup

n→∞
An(μ).

We use the same argument as in (a) for any f ∈ Ak(μ) for some k ∈ N. Assume that d1 > d2.
Note that, for all ε > 0, there exist N ∈ N such that, for all n > N , (n− kn)/kn ≥ c2/c1 − ε.
We rewrite (2.3) as

f (μ+ c2)− 1 = c2

c1
(1 − f (μ+ c1))− δ, δ > 0. (2.4)

Thus, by taking ε which violates (2.4), we find that if d1 > d2 for f then f �∈ An(μ) for all
n > N . This implies that

lim inf
n→∞ An(μ) ⊂ lim sup

n→∞
An(μ) ⊂ A(μ).

Finally, we conclude that A(μ) = lim infn→∞An(μ) = lim supn→∞An(μ); thus, A(μ) =
limn→∞An(μ).

Remark 2.1. A similar asymptotic result for the limit of Bn(μ) is not available using a similar
method, owing to the fact that the elements in Bn(μ) are less regulated than in An(μ).
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3. Asymptotic bounds on the distribution function of the sum

Motivated by the analysis onAn(μ), we first provide a new result on the bound formn,F (nμ),
whereμ is the mean ofF , which implies thatmn,F (nμ) → 0 as n → ∞ under a weak condition
on F . Then we extend the result tomn,F (s) for any s ∈ R. Finally, we will present applications
of our results to risk management. All the distributionsF discussed in this section are continuous
since we will always assume a bounded density.

3.1. Asymptotic result of mn,F (nμ), where μ is the mean of F

In Section 2.2 we found that limn→∞An(μ) = A(μ) = {f : R → R, f ≥ fa for some a ≥
0}. One may immediately note that

∫
fa dF ≥ ∫

1 + a(x − μ) dF = 1 for all a ≥ 0. This sug-
gests, not directly implies, the possibility that, when n is large, mn,F (nμ) = 1 − inf{∫ f dF :
f ∈ An(μ)} may be close to 0 since the set An(μ) contains mostly functions greater than
fa for some a. This motivates us to use the duality to investigate the asymptotic behavior of
mn,F (nμ). Before providing the main result, we first present a lemma.

Lemma 3.1. Define kn(x, y) = �xn/(x + y)� for x, y ∈ R.

(a) For any f ∈ An(μ) and a ≥ 0, we have

f (x)− fa(x) ≥ a(μ− x)− kn(μ− x, c)

n− kn(μ− x, c)
(f (μ+ c)− 1)

for any x < μ and c ≥ 0. Here by convention we use 1/0 = +∞.

(b) Let a = inf{(f (μ + c) − 1)/c : p ≤ c ≤ q}. Then f (x) − fa(x) ≥ 0 for any x ∈
[μ+ p,μ+ q].

Proof. We prove only part (a) as part (b) is trivial. By Lemma 2.2(a) we know that

f (μ+ (n− k)t)− 1 ≥ n− k

k
(1 − f (μ− ks))

for all n ∈ N, t, s ∈ R, t ≥ s, and k = 1, . . . , n. For any x < μ and c ≥ p, it is easy to
see that (n− kn(μ− x, c))/kn(μ− x, c) ≤ c/(μ− x). Take s = (μ− x)/kn(μ− x, c) and
t = c/(n− kn(μ− x, c)). Then s ≤ t and

f (μ+ c)− 1 ≥ n− kn(μ− x, c)

kn(μ− x, c)
(1 − f (x)).

Hence (by setting 1/0 = +∞ when kn = n),

f (x) ≥ 1 − kn(μ− x, c)

n− kn(μ− x, c)
(f (μ+ c)− 1).

Finally,

f (x)− fa(x) ≥ a(μ− x)− kn(μ− x, c)

n− kn(μ− x, c)
(f (μ+ c)− 1).

Theorem 3.1. Let F be a distribution on [0, 1] with mean μ and a bounded density F ′ ≤ m0.
Then mn,F (nμ) ≤ 2n−1/3m0 for n ≥ 33.
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Proof. First, without loss of generality, we assume that μ = 1
2 . We will comment on the

case μ �= 1
2 at the end of the proof. To avoid displaying too many fractions in equations, we

still use the notation μ for 1
2 .

It is obvious that, when n ≥ 3, p := n−2/3 < μ. Take any g ∈ An(μ), and let f = g ∧ n.
Then f ∈ An(μ) by Proposition 2.2(d). We will show that

∫
f dF ≥ 1 − n−1/3m0.

We assume thata := inf{(f (μ+c)−1)/c : p ≤ c ≤ μ} is attained at a point c0 ∈ [p,μ] such
that a = (f (μ+ c0)− 1)/c0. By definition, It is obvious that 0 ≤ a ≤ (n− 1)/μ = 2(n− 1).
The case when this infimum is not attained is similar and will be explained later.

Next we calculate
∫
(f − fa) dF . Note that fa(x) = 0 for x ≤ μ− 1/a. By Lemma 3.1(b)

we have f (x) − fa(x) ≥ 0 for x ∈ [μ + p, 1]. We first consider the case a < 1/p. We can
write ∫ 1

0
(f − fa) dF ≥

∫ μ−p

0∨(μ−1/a)
(f − fa) dF +

∫ μ+p

μ−p
(f − fa) dF. (3.1)

By taking c = c0 in Lemma 3.1(a) we have
∫ μ−p

0∨(μ−1/a)
(f − fa) dF ≥

∫ μ−p

0∨(μ−1/a)
a(μ− x)

(
1 − kn(μ− x, c0)

n− kn(μ− x, c0)

c0

μ− x

)
dF. (3.2)

Note that in the integral of (3.2), μ− x ∈ [p,μ] and c0 ∈ [p, 1 − μ]. Let b = (μ− x)/(μ−
x+ c0). Then p/(1/2 +p) = p/(1 −μ+p) ≤ b ≤ μ/(μ+p) = 1/2/(1/2 +p) and, hence,
b(1 − b) ≥ p/2(1/2 + p)2. It is easy to see that

kn(μ− x, c0)

n− kn(μ− x, c0)

c0

μ− x
≤ bn+ 1

(1 − b)n− 1

1 − b

b

= 1 + 1

b(1 − b)n− b

≤ 1 + 2(1/2 + p)2

pn− (1/2 + p)
.

Also, note that, since the mean of F is 1
2 and F is supported in [0, 1], we have

1

2
=

∫
x dF ≤

(
1 − F

(1

2
− p

))
+

(1

2
− p

)
F

(1

2
− p

)
.

Therefore, F( 1
2 − p) ≤ 1/(1 + 2p). By (3.2) we have

∫ μ−p

0∨(μ−1/a)
(f − fa) dF ≥

∫ μ−p

0∨(μ−1/a)
a(μ− x)

(
− 2(1/2 + p)2

pn− (1/2 + p)

)
dF

≥ −a
(
μ− μ+ 1

a

)
2(1/2 + p)2

pn− (1/2 + p)
F

(
1

2
− p

)

≥ − 1/2 + p

pn− (1/2 + p)

= 1

n1/3

1 + 2n−2/3

2 − n−1/3 − 2n−1 .

Some straightforward algebra shows that

1 + 2n−2/3

2 − n−1/3 − 2n−1 ≤ 2

3
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for n ≥ 33. In the following we also assume that n ≥ 33. Thus,

∫ μ−p

0∨(μ−1/a)
(f − fa) dF ≥ −2

3
n−1/3. (3.3)

On the other hand, since f (x) ≥ 0 for x < μ and f (x) ≥ 1 for x ≥ μ, we have

∫ μ+p

μ−p
(f − fa) dF ≥ −

∫ μ

μ−p
fa dF +

∫ μ+p

μ

(1 − fa) dF

≥ −m0

(∫ μ

μ−p
(1 + a(x − μ)) dx +

∫ μ+p

μ

a(x − μ) dx

)

= −m0p

= −n−2/3m0. (3.4)

Finally, by (3.1), (3.3), and (3.4), we conclude that

∫ 1

0
(f − fa) dF ≥ −n−1/3

(
2

3
+ n−1/3m0

)
.

Also, note that m0 is the maximum density of a distribution on [0, 1]; hence, m0 ≥ 1. Thus,

∫ 1

0
(f − fa) dF ≥ n−1/3

(
2

3
+ n−1/3m0

)
≥ n−1/3

(
2

3
m0 + n−1/3m0

)
≥ −n−1/3m0. (3.5)

Now we consider the case 1/p ≤ a ≤ 2(n− 1). In this case, we have

∫ 1

0
(f − fa) dF ≥

∫ μ+p

μ−1/a
(f − fa) dF

= −
∫ μ

μ−1/a
fa dF +

∫ μ+p

μ

(1 − fa) dF

≥ −m0

(∫ μ

μ−1/a
(1 + a(x − μ)) dx +

∫ μ+p

μ

a(x − μ) dx

)

= −m0

(
1

2a
+ ap2

2

)

≥ −n−1/3m0. (3.6)

Combining (3.5) and (3.6), we have

∫ 1

0
(f − fa) dF ≥ −n−1/3m0

for both a and n ≥ 33.
We can easily verify that

∫
fa dF ≥ ∫

(1 + a(x − μ)) dF = 1. Thus,

∫ 1

0
f dF ≥ 1 − n−1/3m0.
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Now we comment on the case when a = inf{(f (μ+ c)− 1)/c : p ≤ c ≤ μ} is not attained
at any point c0 ∈ [p,μ]. In this case, for each δ > 0, there exist 0 < ε < δ such that we can
find cε ∈ [p,μ] where (f (μ+ cε)− 1)/cε = a+ ε. Every argument in the above proof is still
true if a is replaced by a+ ε and c0 is replaced by cε, except for f ≥ fa+ε no longer holds for
x ∈ [u+ p, 1] (Lemma 3.1(b) is not satisfied). Thus, using the same argument, we have

∫ 1

0
(f − fa+ε) dF ≥ −n−1/3m0 −

∫ 1

u+p
(fa+ε − f ) dF.

Note that fa+ε − f ≤ fa+ε − fa since f ≥ fa for x ∈ [u+ p, 1]; thus,

∫ 1

u+p
(fa+ε − f ) dF ≤

∫ 1

u+p
(fa+ε − fa) dF = ε

∫ 1−μ

p

x dF ≤ δ.

It follows that ∫ 1

0
f dF ≥ 1 − n−1/3m0 − δ.

Since δ > 0 is arbitrary, we have
∫ 1

0 f dF ≥ 1 − n−1/3m0.
In summary, for any g ∈ An(μ) and f = g ∧ n, we have

∫ 1
0 f dF ≥ 1 − n−1/3m0 and,

therefore,
∫ 1

0 g dF ≥ 1 − n−1/3m0 since g ≥ f . As g is chosen arbitrarily, we conclude that

inf

{∫
g dF : g ∈ An(μ)

}
≥ 1 − n−1/3m0.

Equivalently, mn,F (nμ) ≤ n−1/3m0.
Finally, we consider the general case μ �= 1

2 . If μ > 1
2 , letX ∼ F andG be the distribution

ofX/2μ. Note thatG has mean 1
2 and it is easy to seemn,G(n/2) = mn,F (nμ). The maximum

density of G is 2μm0 ≤ 2m0. The case μ < 1
2 is similar. Thus, for any distribution F with

maximum density m0, we can conclude that mn,F (nμ) ≤ 2n−1/3m0.

Remark 3.1. Our result is only meaningful whenn is large. Note that only whenn ≥ (2m0)
3 ≥

23 is our bound less than 1, so it is reasonable to assume that n ≥ 33. In this paper we are more
interested in the asymptotic results; hence, the case for small n is not our focus. Also, from the
proof, we can see that the bound can be improved tomn,F (nμ) ≤ max{2μ, 2(1 − μ)}n−1/3m0.

We conclude this section with the following immediate corollary.

Corollary 3.1. Let F be a distribution on [a, b] with mean μ and a bounded density F ′ ≤ m0.
Then mn,F (ns) ≤ 2n−1/3(b − a)m0 for n ≥ 33 and all s ≤ μ. In particular, we have
mn,F (ns) → 0 as n → ∞ for all F supported in a finite interval with mean μ and a bounded
density, and s ≤ μ.

3.2. Asymptotic result of mn,F (ns), s ∈ R

We will use the results obtained in Section 3.1 to give an upper bound on mn,F (ns) for any
s ∈ R. Here we use the notationns for any real number instead of s to allow asymptotic analysis.
Note that the existing results in the literature usually concern lower bounds onmn,F (ns); see, for
example, Embrechts and Puccetti (2006) and Wang et al. (2013). A lower bound on mn,F (ns)
can be obtained by taking the supremum of 1 − ∫

f dF over a collection of candidate functions
f ∈ An(s), such as fa∧n used in Embrechts and Puccetti (2006). An upper bound onmn,F (ns),
on the other hand, is more challenging to obtain. It also gives approximations for mn,F (ns)
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since lower bounds on mn,F (ns) are well documented. In this paper we give an upper bound
on mn,F (ns) for a continuous distribution F with a finite mean. The case in which F(s) = 0
or F(s) = 1 is trivial, so we only consider 0 < F(s) < 1.

Theorem 3.2. Suppose that a distribution F has a bounded density F ′ ≤ m0 and a finite mean
μ, and that 0 < F(s) < 1. We define a0 = inf{a ∈ R : E[X | X ≥ a] = s, X ∼ F } for
s ≥ μ.

(a) We have
mn,F (ns) ≤ 2n−1/3m0(b − a)(F (b)− F(a))+ F(a)

for n ≥ 33 and any a < b such that (1/(F (b)− F(a)))
∫ b
a
x dF(x) = s.

(b) For s < μ, there exists N ∈ N such that mn,F (ns) ≤ n−1/6 for any n ≥ N .

(c) For s ≥ μ, mn,F (ns) ≤ F(a0)+ o(1) as n → ∞.

(d) For s ≥ μ, if F has a finite variance then there exists N ∈ N such that mn,F (ns) ≤
n−1/6 + F(a0) for any n ≥ N .

(e) Suppose that the support of F is in [c, d], −∞ < c < d < ∞. Then mn,F (ns) ≤
2n−1/3m0(d − c)+ F(a0) for n ≥ 33.

Proof. (a) Let F1, F2, and F3 be the conditional distributions of F on (−∞, a), [a, b), and
[b,∞), respectively, and let p1 = F(a), p2 = F(b) − F(a), and p3 = 1 − F(b). Note that
F = p1F1 + p2F2 + p3F3 and that the mean of F2 is s. Let A, B, and C be disjoint sets with
probabilities p1, p2, and p3, respectively. Then

mn,F (ns) = inf{P(X1 + · · · +Xn < ns) : Xi ∼ F, i = 1, . . . , n}
≤ inf{P(X1 + · · · +Xn < ns) : Xi = 1A Xi,1 + 1B Xi,2 + 1C Xi,3,

Xi,j ∼ Fj , i = 1, . . . , n, j = 1, 2, 3}

=
3∑
j=1

pj inf{P(X1,j + · · · +Xn,j < ns) : Xi,j ∼ Fj , i = 1, . . . , n}.

Since a < s < b, we have

mn,F (ns) ≤
3∑
j=1

pj inf{P(X1 + · · · +Xn < ns) : Xi ∼ Fj , i = 1, . . . , n}

= p1 + p2 inf{P(X1 + · · · +Xn < ns) : Xi ∼ Fj , i = 1, . . . , n}
≤ F(a)+ (F (b)− F(a))2n−1/3m0(b − a). (3.7)

This completes the proof of (a).
(b) Suppose that s < μ. We take an = s − n1/6/3m0 and bn such that (1/(F (bn) −

F(an)))
∫ bn
an
x dF(x) = s. Such bn is always possible since an < s < μ. It is easy to see

that bn ≤ b0, where s ≤ b0 < ∞ is such that (1/F (b0))
∫ b0
−∞ x dF(x) = s. We can see that

(3.7) becomes

mn,F (ns) ≤ F(an)+ F(bn)2n
−1/3m0

(
b0 − s + 1

3m0
n1/6

)
≤ F(an)+ n−1/6
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for large n. We also noted that F(an)|an| → 0 since F has a finite mean. Thus, F(an) =
o(n−1/6) and mn,F (ns) ≤ n−1/6 for large n.

(c) Suppose that s > μ. We take bn = s + n1/6/3m0 and an such that (1/(F (bn)−
F(an)))

∫ bn
an
x dF(x) = s. It is easy to see that an ≥ a0, where −∞ < a0 < s is such that

(1/(1 − F(a0)))
∫ ∞
a0
x dF(x) = s. We can see that (3.7) becomes

mn,F (ns) ≤ F(an)+ F(bn)2n
−1/3m0

(
s + 1

3m0
n1/6 − a0

)
≤ F(an)+ n−1/6 (3.8)

for large n. Thus, by noting that an → a0 as n → ∞ and F(an)− F(a0) ≤ m0(an − a0), we
have mn,F (ns) ≤ F(a0)+ o(1).

For mn,F (nμ), write a0(s) such that (1/(1 − F(a0(s))))
∫ ∞
a0(s)

x dF(x) = s for s > μ. We
have mn,F (nμ) ≤ mn,F (ns) ≤ F(a0(s))+ o(1) for s > μ. By taking the limit as s → μ and
noting that a0(s) → a0(μ), we find that the result holds for mn,F (nμ).

(d) Suppose that s > μ. Again, we take bn = s+n1/6/3m0 and an such that
∫ bn
an
x dF(x)= s.

As in part (c), (3.8) holds. We will show that F(an) − F(a0) = o(1/bn). Note that
∫ ∞
a0
(s−

x) dF(x) = ∫ bn
an
(s − x) dF(x). This implies that

(s − an)(F (an)− F(a0)) ≤
∫ an

a0

(s − x) dF(x) =
∫ ∞

bn

(x − s) dF(x). (3.9)

Note that F has a finite variance; hence,
∫ ∞
bn
(x − s) dF(x) = o(1/bn). Since s − an →

s−a0 > 0, it follows from (3.9) that F(an)− F(a0) = o(1/bn) = o(n−1/6). By (3.8) we have
mn,F (ns) ≤ F(a0)+ n−1/6. The case in which s = μ is similar to part (c).

(e) The proof of this part can be directly obtained from (3.7) by letting a = c and b = b0 in
part (b) for s ≤ μ, and a = a0 and b = d for s > μ.

Remark 3.2. We may directly use Lemma 3.1 for μ = s and apply the proof of Theorem 3.1
to obtain the same asymptotic result for mn,F (ns). That is, to show that

∫
(f − fa) dF → 0

for all f ∈ An(s), where fa = (1 + a(x − s))+ as in Section 2.2 with μ replaced by s. The
two methods are equivalent.

Remark 3.3. Our assumption on the distribution F is very weak. Note that our asymptotic
results do not require F to have a bounded support. For s < μ, we only need F to have a
finite mean and a bounded density. For s ≥ μ, we also need F to have a variance to obtain
a convergence rate of n−1/6. The asymmetry between the two cases is due to the fact that the
convergence of F(an) → F(a) and the convergence of n−1/3bn → 0 are different in nature.
Also, note that our bound is only meaningful for large values of n.

Wang et al. (2013) obtained mn,F (ns) ≥ F(a0) for s ≥ μ for any distribution F with a
finite mean (see Corollary 2.4 in their paper). Hence, the upper bound on mn,F (ns) obtained
above andmn,F (ns) converge to the same limit F(a0) or 0, and, for a distribution F with finite
variance, |mn,F (ns)− F(a0)| ≤ n−1/6 for s ≥ μ. We combine this result in the following
corollary.

Corollary 3.2. For any distribution F with finite mean, we have mn,F (ns) → F(a0) for all
s ≥ μ, where a0 = inf{a ∈ R : E[X | X ≥ a] ≥ s, X ∼ F }. Moreover, if F has a finite
variance then F(a0) ≤ mn,F (ns) ≤ F(a0)+ n−1/6 for large n.

https://doi.org/10.1239/jap/1409932674 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932674


792 R. WANG

Remark 3.4. When the support of F is in R+, we can also combine the upper bound in
Corollary 3.2 with the dual bound given in Embrechts and Puccetti (2006). That is, for F with
a finite variance, we have

1 − inf
a≥0

∫
(fa ∧ n) dF ≤ mn,F (ns) ≤ F(a0)+ n−1/6, (3.10)

where fa = (1 + a(x − s))+ as in Section 2.2 with μ replaced by s. It was pointed out in
Wang et al. (2013) thatF(a0) ≤ 1 − infa≥0

∫
(fa ∧ n) dF ; hence, (3.10) gives a possibly better

estimation of mn,F (ns) if F is supported in R+.

3.3. Applications in risk management

One of the strongest motivations to study the bound function mn,F (s) is to induce the sharp
bounds on quantile-based risk measures of the aggregate risk S = X1 + · · · +Xn, when the
marginal distributions of X1, . . . , Xn are given but the dependence structure among them is
unknown. This is a typical setting of dependence uncertainty in risk management and has
been studied extensively in the literature; a history and recent developments on dependence
uncertainty can be found in Bernard et al. (2013). A widely used risk measure is the so-called
VaR at level α, defined as

VaRα(F ) = inf{s ∈ R : F(s) ≥ α} =: F−1(s), α ∈ (0, 1).

An upper bound on the above VaR, called the worst-case VaR, is defined as

VaRα(n, F ) = sup{VaRα(X1 + · · · +Xn) : Xi ∼ F, i = 1, . . . , n}.
Computing the worst VaR is of great interest in the recent research of quantitative risk man-
agement; the reader is referred to Embrechts and Puccetti (2006), Embrechts and Puccetti
(2010), Puccetti and Rüschendorf (2013), and Wang et al. (2013) for the study of this problem
and applications in practice. It is well known that, for a continuous distribution F , mn,F is
strictly increasing, invertible, and VaRα(n, F ) = m−1

n,F (α); see, for example, Embrechts and
Puccetti (2006) and Wang et al. (2013). The following corollary states the asymptotic behavior
of VaRα(n, F ). The result is, with no surprise, related to the other popular risk measure ES
(sometimes also called TVaR), defined as

ESα(F ) = 1

1 − α

∫ 1

α

F−1(p) dp, α ∈ [0, 1),

for F with a finite mean.

Corollary 3.3. For F with a finite mean and a bounded density, VaRα(n, F )/n → ESα(F ) as
n → ∞ for α ∈ (0, 1).

Proof. Note that ESF(a0)(F ) = s and VaRF(a0)(n, F )/n = m−1
n,F (F (a0))/n → s =

ESF(a0)(F ) for any a0 ∈ R by Corollary 3.2 and the asymptotic continuity of mn,F .

Remark 3.5. Wang et al. (2013) pointed out that mn,F (ns) ≥ F(a0) is equivalent to VaRα(n,
F ) ≤ nESα(F ). This result can also be explained from the risk management perspective. By
the coherence of the ES (see Artzner et al. (1999)), the worst-case ES is

ESα(n, F ) := sup{ESα(X1 + · · · +Xn) : Xi ∼ F, i = 1, . . . , n} = nESα(F ).
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By definition, it is clear that VaRα(F ) ≤ ESα(F ) for any distribution F ; thus, we have
VaRα(n, F ) ≤ ESα(n, F ) = nESα(F ). Corollary 3.3 suggests that, for large n, VaR and ES are
asymptotically equivalent. Thus, when n is large, using the worst-case VaR or the worst-case
ES for risk regulation will not lead to much difference. From the risk management perspective,
this phenomenon was mentioned in Puccetti and Rüschendorf (2014) under a strong mixable
assumption on the distribution which requires an equivalence ofmn,F (ns) = ∫

(fa ∧ n) dF for
some a ≥ 0. This strong assumption was verified only in a few cases, as studied in Puccetti
and Rüschendorf (2013) and Wang et al. (2013). Our asymptotic result does not require this
assumption and, hence, gives a stronger result. In another recent paper Puccetti et al. (2013)
studied this equivalence using the complete mixability, and obtained the asymptotic equivalence
under different conditions, without estimates of the convergence rate. Their result requires a
strictly positive and continuous density function of F bounded below on any finite intervals,
which, interestingly, is not comparable to our condition of bounded (above) density. Note that
this asymptotic equivalence can also be generalized to possible inhomogeneous portfolios with
a finite number of choices of different marginal distributions (see Puccetti et al. (2013)).

Another interpretation of our result concerns the superadditivity ratio of VaR. It is well
known that the risk measure VaR is often criticized for not being subadditive, and, hence, it is
not coherent. It is then of interest to study the superadditive ratio δα(n), defined as

δα(n) = VaRα(n, F )

VaR+
α (n, F )

,

where VaR+
α (n, F ) = nVaRα(F ) is called the VaR of comonotonic risks. For a discussion

on δα(n) in risk aggregation, we refer the reader to Embrechts et al. (2013), in which it was
mentioned that numerical evidence suggests that δα(n) converges to a limit quite fast, without
theoretical proofs. Our result shows that this limit exists and it can be identified easily.

Corollary 3.4. For F with a finite mean and a bounded density, and F−1(α) > 0,

δα(n) = VaRα(n, F )

VaR+
α (n, F )

→ ESα(F )

VaRα(F )
= 1

1 − α

∫ 1
α
F−1(p) dp

F−1(α)
.

4. Dual representation of the complete mixability

In this section we give a dual representation of the recently developing concept of complete
mixability, and provide duality-based proofs of properties of complete mixability proved in the
literature using probability methods.

4.1. Preliminaries on complete mixability

We first give a summary of the existing results on completely mixable distributions which
we will use in the remainder of this paper.

Definition 4.1. A distribution function F on R is called n-completely mixable (n-CM) if there
exist n random variables X1, . . . , Xn identically distributed as F such that

X1 + · · · +Xn = nμ (4.1)

for some μ ∈ R. Any such μ is called a center of F and any vector (X1, . . . , Xn) satisfying
(4.1) with Xi ∼ F, 1 ≤ i ≤ n, is called an n-complete mix.
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It is obvious that if F is n-CM and has finite mean μ, then its center is unique and equal
to μ. We denote by Mn(μ) the set of all n-CM distributions with center μ, and by Mn =⋃
μ∈R

Mn(μ) the set of all n-CM distributions on R.
The following mean condition proposed in Wang and Wang (2011) is important to the CM

distributions.

Definition 4.2. (Mean condition.) Let F be a distribution with finite mean μ, and let [a, b] be
the essential support of F , i.e. a = sup{t ∈ R : F(t) = 0} and b = inf{t ∈ R : F(t) = 1}. We
say that F satisfies the mean condition if

a + b − a

n
≤ μ ≤ b − b − a

n
. (4.2)

In the above condition, a and b can be finite or infinite. It turns out that the mean condition
is necessary for a CM distribution.

Proposition 4.1. (Wang and Wang (2011).) Suppose that F ∈ Mn(μ). Then F satisfies the
mean condition (4.2).

Some straightforward examples of CM distributions are given in Wang and Wang (2011).
We summarize the existing theoretical results below.

Proposition 4.2. The following statements hold.

(a) F is 1-CM if and only if F is the distribution of a constant.

(b) F is 2-CM if and only if F is symmetric, i.e. X ∼ F and a − X ∼ F for some constant
a ∈ R.

(c) Any linear transformation of an n-CM distribution is n-CM.

(d) If F,G ∈ Mn(μ) then λF + (1 − λ)G ∈ Mn(μ) for λ ∈ [0, 1].
(e) If F ∈ Mn(μ) ∪ Mk(μ) for n, k ∈ N then F ∈ Mn+k(μ).

(f) Any continuous distribution functionF having a symmetric and unimodal density isn-CM
for n ≥ 2. (See Rüschendorf and Uckelmann (2002).)

(g) Suppose that F is a continuous distribution with a monotone density on its support. Then
the mean condition (4.2) is sufficient. (See Wang and Wang (2011).)

(h) Suppose that F admits a concave density on its support. Then F is n-CM for n ≥ 3.
(See Puccetti et al. (2012).)

For n = 1 or n = 2, Mn(μ) is fully characterized. However, for n ≥ 3, the full
characterization on Mn(μ) is still an open question and has been extremely challenging. In
this paper we give a dual representation of complete mixability in the hope of giving another
possible research direction to the study of complete mixability.

4.2. Dual representation of complete mixability

In this section we associate the duality to the complete mixability. By definition, we know
that, for any distribution F , F ∈ Mn(μ) is equivalent to wn,F (nμ) = 0. Moreover, for any
distribution F with mean μ, F ∈ Mn(μ) is equivalent to mn,F (nμ) = 0. This allows us to
give two dual representations of complete mixability.

Using Lemma 2.1, we give a dual presentation of n-CM distributions.
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Theorem 4.1. (Dual representation of complete mixability.) (a) A probability distribution F
is n-CM with center μ if and only if

∫
f dF ≥ 1 for all f ∈ Bn(μ).

(b) A probability distribution F with finite mean μ is n-CM if and only if
∫
f dF ≥ 1 for all

f ∈ An(μ).
Proof. (a) By the definition of n-CM distributions, F ∈ Mn(μ) is equivalent town,F (nμ) =

0. By Lemma 2.1, this is again equivalent to inf{∫ f dF : f ∈ Bn(μ)} = 1. Since the function
f (x) = 1 is always in Bn(μ), inf{∫ f dF : f ∈ Bn(μ)} = 1 is equivalent to inf{∫ f dF : f ∈
Bn(μ)} ≥ 1.

(b) Suppose that F ∈ Mn(μ). Since An(μ) ⊂ Bn(μ), by (a) we have
∫
f dF ≥ 1 for

all f ∈ An(μ). Now suppose that
∫
f dF ≥ 1 for all f ∈ An(μ). By Lemma 2.1 we have

mn,F (nμ) = 0. Then there exist random variablesX1, . . . , Xn ∼ F such that P(X1+· · ·+Xn ≥
nμ) = 1 almost surely. Also, note that E[X] = μ; thus, P(X1 + · · · + Xn = nμ) = 1 and
F ∈ Mn(μ).

Remark 4.1. Although being very similar, Theorem 4.1(a) and (b) can be used in different
situations. In general, when we consider the complete mixability of a distribution F with finite
mean, the smaller set An(μ) is more convenient to use than the larger set Bn(μ). However,
when the mean of F does not exist, (b) cannot be used. Also, note that, if we replace [nμ,∞)

in the definition of An(μ) by (−∞, nμ], (b) still holds.

Remark 4.2. For a given function f , it is easy to check whether f is in An(μ) or Bn(μ).
However, it is hard to characterize all the functions in An(μ) or Bn(μ). In general, when a
distribution F is given, it is difficult to check whether

∫
f dF ≥ 1 for all f inAn(μ) or Bn(μ).

Recall that, for any distribution F with meanμ, F ∈ Mn(μ) is equivalent tomn,F (nμ) = 0.
We can define the asymptotic mixability by the condition mn,F (nμ) → 0 as n → ∞.

Definition 4.3. A distribution F with mean μ is asymptotically mixable if mn,F (nμ) → 0 as
n → ∞.

The asymptotic mixability ofF states that, for any ε > 0, there exist n ∈ N random variables
X1, . . . , Xn from the distributionF such that P(X1+· · ·+Xn ≥ nμ) ≥ 1−ε. By Corollary 3.2,
it immediately follows that all distributions with a bounded density are asymptotically mixable.
However, it is left open to answer whether all distributions are asymptotically mixable.

Corollary 4.1. Any distribution with a bounded density is asymptotically mixable.

4.3. Dual proofs of CM properties

In this section we give dual proofs of some theorems given in the literature of complete
mixability. Some of the results are surprisingly simple to prove using the duality, but nontrivial
to prove using probabilistic methods.

Theorem 4.2. (Completeness and convexity.) Let n ∈ N and μ ∈ R.

(a) The (weak) limit of n-CM distributions with center μ is n-CM with center μ.

(b) A (possibly infinite) convex combination of n-CM distributions with center μ is n-CM
with center μ.

Proof. In the following suppose that Fk ∈ Mn(μ), k = 1, 2, . . . . Then, for all f ∈ Bn(μ),∫
f dFk ≥ 1 for k = 1, 2, . . . .
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(a) Suppose that Fk → F . We have
∫
f dF = limk→∞

∫
f dFk ≥ 1; thus, F ∈ Mn(μ).

(b) Suppose that F = ∑∞
k=1 akFk , where ak ≥ 0 and

∑∞
k=1 ak = 1. We have

∫
f dF =∫

f d(
∑∞
k=1 akFk) = ∑∞

k=1 ak
∫
f dFk ≥ 1; thus, F ∈ Mn(μ).

Remark 4.3. The above theorem summarizes the completeness theorems given in Puccetti et
al. (2012), where a nontrivial probabilistic proof was given.

Proposition 4.3. Let n, k ∈ N and μ ∈ R. If F ∈ Mn(μ) ∪ Mk(μ) then F ∈ Mn+k(μ). In
particular, F ∈ Mdn(μ) for any d ∈ N.

Proof. By Proposition 2.3 we know that, for any f ∈ Bn+k(μ), we have f ∈ Bn(μ)∪Bk(μ).
This implies that

∫
f dF ≥ 1 and, hence, F ∈ Mn+k(μ).

Remark 4.4. The above proposition was also given as Proposition 2.1 of Wang and Wang
(2011).

Very often, CM distributions on finite intervals are of interest. Since the complete mixability
is affine invariant, we focus on distributions on [0, 1]. Necessary conditions for complete
mixability are given in the following theorem.

Theorem 4.3. (Necessary conditions.) Suppose that F ∈ Mn(μ) is a probability distribution
on [0, 1]. Then F(nμ/k) ≥ (n − k + 1)/n and F((nμ − n + k)/k) ≤ (k − 1)/n for all
k = 1, . . . , n. In particular,

(a) 1/n ≤ μ ≤ 1 − 1/n, given that [0, 1] is the essential support of F (see (4.2));

(b) 1/n ≤ F(μ) ≤ 1 − 1/n.

Proof. Let X ∼ F be a random variable. Take f = n 1(−∞,nμ/k] /(n − k + 1). When
x1 +· · ·+xn = nμ, since x1 +· · ·+xn ≥ x1 +· · ·+xk , we have at most k− 1 of {x1, . . . , xn}
greater than nμ/k. Thus,

n∑
i=1

1(−∞,nμ/k](xi) ≥ n− k + 1;

hence, f (x1)+ · · · + f (xn) ≥ n and f ∈ Bn(μ). Then
∫
f dF ≥ 1 implies that F(nμ/k) ≥

(n− k + 1)/n.
Similarly, take f = n 1[(nμ−n+k)/k,∞) /(n − k + 1). When x1 + · · · + xn = nμ, since

x1 + · · · + xn ≤ x1 + · · · + xk + (n− k), we have at most k − 1 of {x1, . . . , xn} smaller than
(nμ− n+ k)/k. Thus, f (x1)+ · · · + f (xn) ≥ n, and f ∈ Bn(μ). Then

∫
f dF ≥ 1 implies

that 1 − F((nμ− n+ k)/k) ≥ (n− k + 1)/n; thus, F((nμ− n+ k)/k) ≤ (k − 1)/n.

(a) Take k = 1. We have F(nμ) = 1 and F(nμ−n+ 1) = 0. Then, if [0, 1] is the essential
support of F , 1 ≤ nμ ≤ n− 1.

(b) Take k = n. We have F(μ) ≥ 1/n and F(μ) ≤ (n− 1)/n.

Remark 4.5. The necessary conditions given in Theorem 4.3 can also be obtained using
probabilistic methods. Theorem 4.3(a) is the mean condition (4.2) first given in Wang and
Wang (2011). In the appendix of Puccetti et al. (2013), a probabilistic proof of these necessary
conditions was given.

Theorem 4.4. (Unimodal and symmetric distributions.) Any distribution with a unimodal and
symmetric density is n-CM for n ≥ 2.
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Proof. We first prove that a uniform distribution U on [0, 1] is n-CM for n ≥ 2 using the
duality. For any f ∈ An( 1

2 ), write∫
f dU = lim

m→∞
1

nm

nm∑
i=1

f

(
i

nm

)
= lim
m→∞

1

nm

nm∑
i=1

f

(
i + 1

nm

)
.

It is easy to see that the numbers in the last summation (from 2 to nm+1) can be divided intom
subgroups, such that there are n numbers with a sum at least (1 + nm)nm/2 in each subgroup.
Thus, since f ∈ An( 1

2 ), we have
∑nm
i=1 f ((i + 1)/nm) ≥ nm. Therefore,

∫
f dU ≥ 1 and U

is n-CM for n ≥ 2. Now, suppose that F is a distribution with a unimodal and symmetric
density. It is obvious that F can be written as the limit of a convex combination of uniform
distributions with the same mean as F , and, hence, by Theorem 4.2, F is n-CM for n ≥ 2.

Remark 4.6. The above theorem summarizes the main result of Rüschendorf and Uckelmann
(2002). We note that, for the other existing results, such as the main theorems in Wang and
Wang (2011) and Puccetti et al. (2012) based on combinatorial techniques, a dual proof is not
easy to find.

5. Conclusion

In this paper we studied the duality for the bounds on the distribution of aggregate risk with
uncertainty of dependence, mn,F (s) = inf{P(ψ(X) < s) : Xi ∼ F, i = 1, . . . , n}. It was
proved for any continuous distribution F with a bounded density that

mn,F (ns) → F(a0)

as n → ∞, where a0 = inf{a ∈ R : E[X | X ≥ a] ≥ s, X ∼ F }. We provided an upper
bound onmn,F (ns) which turns out to converge to the real value ofmn,F (ns) with a controlled
convergence rate. An application of our result to risk management directly indicates that the
worst-case value at risk is asymptotically equivalent to the worst-case expected shortfall with
dependence uncertainty, and gives the asymptotic superadditivity ratio of value at risk. We
also provided a dual representation of the complete mixability and proved existing theoretical
results using the dual representation, which enriches the mathematical tools for the theory of
complete mixability.

There are also many open questions in the related study. For the asymptotic bounds, it would
be natural (and challenging) to generalize the bounds to inhomogeneous marginal distributions.
Also, exact values (or more accurate bounds) ofmn,F (ns)might be found through further study
of the admissible sets An(s). Although the rate of n−1/3 is sufficient for the convergence in
our asymptotic results, the rate might still be improved for more practical applications. For the
dual representation of complete mixability, one research direction is to generate new classes
of completely mixable distributions from the duality. Also, note that the question about the
uniqueness of the center of complete mixability has been asked since complete mixability was
first introduced, but has not yet been answered. The admissible sets Bn(μ) may help to study
the uniqueness. That is, is there a distribution F with infinite mean such that

∫
f dF ≥ 1 for

all f ∈ Bn(μ) ∪ Bn(ν), where μ �= ν?
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