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Abstract

Consider a random walk S = (Sn : n ≥ 0) that is ‘perturbed’ by a stationary sequence
(ξn : n ≥ 0) to produce the process S = (Sn + ξn : n ≥ 0). In this paper, we are
concerned with developing limit theorems and approximations for the distribution of
Mn = max{Sk + ξk : 0 ≤ k ≤ n} when the random walk has a drift close to 0. Such
maxima are of interest in several modeling contexts, including operations management
and insurance risk theory. The associated limits combine features of both conventional
diffusion approximations for random walks and extreme-value limit theory.
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1. Introduction

Let S = (Sn : n ≥ 0) be a random walk sequence such that S0 = 0 and Sn = X1 +· · ·+Xn,
where the Xi are independent and identically distributed. Given a sequence (ξn : n ≥ 0) of
‘perturbations’, we call the process (Sn + ξn : n ≥ 0) a ‘perturbed random walk’. In this paper,
we are concerned with developing limit theorems and related approximations for the maximum

Mn = max
0≤k≤n

(Sk + ξk).

‘Perturbed random walks’ have previously been studied in the insurance risk theory literature;
see, for example, Gerber (1970), Schmidli (1995), and Schlegel (1998). In contrast with the
perturbations studied in those papers, which have generally been themselves of random walk
type, we shall assume that (ξn : n ≥ 0) is a stationary sequence. This stationarity assumption
also means that our perturbed random walks cannot be viewed through the prism of nonlinear
renewal theory (see, for example, Woodroofe (1982)), because our perturbations typically
violate the ‘uniform continuity in probability’ hypothesis that is common in that literature.
The class of stationary perturbation discussed here is both natural from a modeling standpoint,
and reflects a middle ground between the perturbations of random walk type (in which the
perturbations are of the same magnitude as the unperturbed random walk) and those arising in
nonlinear renewal theory (in which the perturbations are, in a sense, asymptotically constant;
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664 V. F. ARAMAN AND P. W. GLYNN

see Glasserman and Liu (1997) for a particular case of such perturbations appearing in an
inventory production context).

For our class of perturbed random walk, the large-time behavior of Sn+ξn is largely explained
by that of the random walk S itself. On the other hand, the maximum Mn inherits some of
the extreme-value behavior of the perturbations. Consequently, the limit theory that appears in
this paper combines features of the classical diffusion approximations for conventional random
walks with certain characteristics associated with the extreme-value behavior of (ξn : n ≥ 0).

As indicated above, the distribution of Mn is relevant to a variety of applications. In
particular,

1. Mn has the distribution of the time spent by order n in a make-to-order production facility,
in which possible delays in the delivery of supplier components are explicitly modeled;

2. Mn arises as the end-to-end delay for the nth data packet in a communications network
with multiple paths connecting the source node to the destination node; and

3. P(M∞ > x) is the ruin probability for an insurer having initial reserve x, when certain
customers do not necessarily pay their premiums on time.

We refer the reader to Araman and Glynn (2004) for further details of these modeling applica-
tions. Araman and Glynn (2004) also studied the tail probability P(M∞ > x) as x → ∞ and
developed a number of different asymptotics for both heavy-tailed and light-tailed perturbations.

In contrast, our interest here is on studying approximations for Mn when the random walk S

has drift close to 0. This setting is of great importance, in view of our modeling applications. In
particular, asserting that S is almost driftless lets us model, for example, a make-to-order facility
that is running at close to 100% utilization. In addition, in the insurance risk setting, by making
this assumption we can model a marketplace in which the insurer can set its premiums at a rate
only slightly higher than the average payout rate. Of course, from a mathematical standpoint,
this nearly driftless setting corresponds to the environment in which diffusion approximations
for (conventional) random walks are applicable.

We present four different types of result. In Section 2, we discuss finite-time diffusion
approximations for Mn when the perturbations are light tailed, whereas, in Section 3, we
describe the corresponding theory for heavy-tailed perturbations. In Section 4, we provide a
diffusion approximation for M∞ in the light-tailed case and, in Section 5, we conclude the
paper with a description of approximations for M∞ in the presence of heavy tails.

2. Finite-horizon limit theory with light tails

To rigorously describe such heavy-traffic limit theory, we must consider a family of perturbed
random walks that is parameterized by the mean of the increment random variable. To this
end, consider a perturbed random walk that describes a processing facility with ‘balanced
loading’, so that the increment random variables (Xi : i ≥ 1) have mean 0. For µ ∈ R, let
Xi(µ) = Xi + µ and let Sn(µ) = ∑n

i=1 Xi(µ) for n ≥ 0. Furthermore, we shall permit the
distribution of the perturbation to depend upon µ. Specifically, for the perturbed random walk
indexed by µ, let ξi(µ) = κ(µ)ξi for some appropriately chosen κ(·). We shall be concerned
with the behavior of the maximum random variable

Mn(µ) = max
0≤k≤n

(Sk(µ) + ξk(µ))

for µ close to 0.
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Maximum of a perturbed random walk 665

The assumption that we impose on the Xi (when they describe a system with balanced
loading), namely that (Sn : n ≥ 0) satisfy a functional central limit theorem or invariance
principle, is standard in the literature on heavy-traffic limit theory. By ‘

d=’ we denote equality
in distribution.

Assumption 1. Suppose that there exist constants σ and p ≥ 2 and a probability space
supporting both a sequence of random variables (X′

i : i ≥ 1) and a standard Brownian motion
B = (B(t) : t ≥ 0) for which

(i) (X′
i : i ≥ 1)

d= (Xi : i ≥ 1) and

(ii)
∑n

i=1 X′
i = σB(n) + o(n1/p) almost surely (a.s.) as n → ∞.

The precise form of Assumption 1 is that of a ‘strong approximation’ hypothesis. Such an
assumption is valid when the Xi are independent and identically distributed with E |Xi |p < ∞
for p > 2; see p. 107 of Csörgő and Révész (1981). However, this hypothesis is also known to
be valid for a large class of dependent Xi ; see, for example, Philipp and Stout (1975) and Csáki
and Csörgő (1995). Since the X′

i appearing in Assumption 1 share the same joint distributions
as those of the Xi , we can and will henceforth assume that the probability space supporting the
Xi is that guaranteed by Assumption 1.

We use the following notation: by ‘
d−→’ we denote convergence in distribution, by �·	 we

denote the greatest-integer function, and by 
·� we denote the least-integer function. Now
consider our assumptions on the perturbations.

Assumption 2. Suppose that (ξj : j ≥ 0) is a stationary sequence for which there exist positive
constants γ and β such that

max0≤k≤n ξk

(log n)γ
d−→ β

as n → ∞.

Assumption 2 holds, for example, when the ξj are independent and identically distributed
with a right tail satisfying

log P(ξj > x)

x1/γ
→ −β−1/γ (1)

as x → ∞. However, Assumption 2 continues to be valid under quite modest dependency
hypotheses on the ξj ; see Glynn and Zeevi (2000) for details. It should be noted that the tail
condition (1) holds for ξj that have Gaussian, gamma, or Weibull (right) tails.

We are now ready to state our first heavy-traffic limit theorem.

Theorem 1. Assume that Assumption 1 and Assumption 2 hold, and suppose that κ(µ) ∼
c(|µ|(log(1/|µ|))γ )−1 as µ either decreases or increases to 0, where c is a positive constant.
Then

|µ|M�t/µ2	(µ)
d−→ max

0≤s≤t
(σB(s) − s) + 2γ βc

as µ ↗ 0, and

|µ|M�t/µ2	(µ)
d−→ max

0≤s≤t
(σB(s) + s) + 2γ βc

as µ ↘ 0.

https://doi.org/10.1239/aap/1127483741 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483741


666 V. F. ARAMAN AND P. W. GLYNN

Proof. We consider only the case in which µ ↗ 0, so that µ is negative throughout the
proof; the case µ ↘ 0 can be handled analogously. We start by noting that the upper bound

|µ|M�t/µ2	(µ) ≤ |µ| max
0≤k≤�t/µ2	

Sk(µ) + |µ| max
0≤k≤�t/µ2	

ξk(µ) (2)

clearly holds. For the lower bound, fix an ε > 0 and use the path-by-path uniform continuity
of Brownian motion to choose an l large enough that

P

(
max

0≤|s−u|≤t/ l
0≤s,u≤t

|(σB(s) − s) − (σB(u) − u)| >
1

3
ε

)
< ε.

Let k∗ be a maximizer of max{Sk(µ) : 0 ≤ k ≤ �t/µ2	}, let t (i) = it/ l, and let i∗ = �lµ2k∗/t	,
meaning that t (i∗) ≤ µ2k∗ ≤ t (i∗ + 1). We then have the following lower bound:

|µ|M�t/µ2	(µ) ≥ |µ| max
t (i∗)≤µ2k≤t (i∗+1)

(Sk(µ) + ξk(µ))

≥ |µ| min
t (i∗)≤µ2k≤t (i∗+1)

Sk(µ) + |µ| max
t (i∗)≤µ2k≤t (i∗+1)

ξk(µ)

≥ |µ| max
0≤k≤�t/µ2	

Sk(µ) − |µ| max
µ2|k−j |≤t/ l

0≤k,j≤�t/µ2	

|Sk(µ) − Sj (µ)|

+ |µ| min
0≤i<l

max
it/ lµ2≤k<(i+1)t/ lµ2

ξk(µ). (3)

It follows from the upper bound (2) and the lower bound (3) that
∣∣∣∣|µ|M�t/µ2	(µ) − |µ| max

0≤k≤�t/µ2	
Sk(µ) − 2γ βc

∣∣∣∣
≤

∣∣∣∣|µ| max
0≤k≤�t/µ2	

ξk(µ) − 2γ βc

∣∣∣∣
+

∣∣∣∣|µ| min
0≤i<l

max
it/ lµ2≤k<(i+1)t/ lµ2

ξk(µ) − 2γ βc

∣∣∣∣
+ |µ| max

µ2|k−j |≤t/ l

0≤k,j≤�t/µ2	

|Sk(µ) − Sj (µ)|. (4)

On the basis of Assumption 1, standard arguments imply that

|µ| max
0≤k≤�t/µ2	

Sk(µ)
d−→ max

0≤s≤t
(σB(s) − s) (5)

and

|µ| max
µ2|k−j |≤t/ l

0≤k,j≤�t/µ2	

|Sk(µ) − Sj (µ)| d−→ max
0≤|s−u|≤t/ l

0≤s,u≤t

|(σB(s) − s) − (σB(u) − u)| (6)

as µ ↗ 0; see Glynn (1998), for example. Also, Assumption 2 shows that

|µ| max
0≤k≤�t/µ2	

ξk(µ) = |µ|κ(µ) max
0≤k≤�t/µ2	

ξk
d−→ 2γ βc (7)
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as µ ↗ 0. The stationarity of the ξj then implies that

|µ| max
it/ lµ2≤k<(i+1)t/ lµ2

ξk(µ)
d−→ 2γ βc

as µ ↗ 0, from which it follows easily that

|µ| min
0≤i<l

max
it/ lµ2≤k<(i+1)t/ lµ2

ξk(µ)
d−→ 2γ βc (8)

as µ ↗ 0. Consequently, (4)–(8) establish that

P

(∣∣∣∣|µ|M�t/µ2	(µ) − |µ| max
0≤k≤�t/µ2	

Sk(µ) − 2γ βc

∣∣∣∣ > ε

)

≤ P

(∣∣∣∣|µ| max
0≤k≤�t/µ2	

ξk(µ) − 2γ βc

∣∣∣∣ >
ε

3

)

+ P

(∣∣∣∣|µ| min
0≤i<l

max
it/ lµ2≤k<(i+1)t/ lµ2

ξk(µ) − 2γ βc

∣∣∣∣ >
ε

3

)

+ P

(
|µ| max

µ2|k−j |≤t/ l

0≤k,j≤�t/µ2	

|Sk(µ) − Sj (µ)| >
ε

3

)

→ P

(
max

0≤|s−u|≤t/ l
0≤s,u≤t

|(σB(s) − s) − (σB(u) − u)| >
ε

3

)

< ε

as µ ↗ 0. Thus, we have proved that∣∣∣|µ|M�t/µ2	(µ) − |µ| max
0≤k≤�t/µ2	

Sk(µ) − 2γ βc

∣∣∣ d−→ 0

as µ ↗ 0. A ‘converging together’ argument, together with (5), proves the theorem.

We note that max0≤s≤t (σB(s) − s)
d= X(t), where X = (X(t) : t ≥ 0) is a reflecting

Brownian motion with drift −1 and variance parameter σ 2, conditional on starting from the
origin. As a consequence, the limiting random variable appearing in Theorem 1 is known to
have a closed-form distribution; see, for example, Harrison (1985).

The magnitude of κ(µ) is chosen in Theorem 1 such that we obtain a limiting regime in
which both the random walk (Sn : n ≥ 0) and the perturbation (ξj : j ≥ 0) influence the limiting
random variable. (If κ(µ) is chosen to go to infinity more slowly than is specified in Theorem 1,
the limit random variable turns out to be the same reflecting Brownian motion as would appear
in the standard heavy-traffic limit for the unperturbed random walk (Sn : n ≥ 0), whereas if
κ(µ) is chosen to go to infinity more rapidly, the limit is governed only by the distribution of
the ξj .)

Intuitively, we expect to obtain better approximations to the distribution of the maximum
of the perturbed random walk when the approximating limit random variable depends on the
distributions of both the underlying random walk and the associated perturbations. For a given
perturbed random walk (Sj + ξj : j ≥ 0), the approximation suggested by Theorem 1 is

max
0≤k≤n

(Sk + ξk)
D≈ max

0≤s≤n
(σB(s) + µs) + (log n)γ β, (9)
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where ‘
D≈’ denotes ‘approximate equality in distribution’ (and is intended to have no rigorous

meaning) and the parameters µ, σ 2, γ , and β are obtained from (1) and the relations

µ = lim
n→∞

1

n
E Sn (10)

and

σ 2 = lim
n→∞

1

n
var Sn. (11)

We define µ and σ 2 as in (10) and (11) because Theorem 1 permits the increments of the
underlying random walk to be dependent, in which event (10) and (11) are the appropriate
relations that typically define µ and σ 2. It should be further noted that Theorem 1 permits some
dependency in the ξj (see Glynn and Zeevi (2000) for details), and further allows the random
walk and the perturbations to be correlated. Permitting such a dependency can be useful. For
example, the processing times at the server (in Example 1 of Araman and Glynn (2004), say)
may be correlated with the perturbations. Indeed, supplier delay may be a consequence of a
large order, which in turn may also cause the processing time for that order at the production
facility to be longer than normal.

With regard to the mathematical validity of the approximation (9), Theorem 1 proves that the
approximation should be good over spatial scales of order 1/|µ| when |µ| is small, the time n

is of order 1/µ2, and the perturbations are quite large (of order κ(|µ|)).
Unlike the conventional heavy-traffic limit theorem for queues, Theorem 1 cannot be derived

by directly applying a continuous-mapping argument to a functional limit theorem for the
perturbed random walk

(|µ|(S�t/µ2	(µ) + ξ�t/µ2	(µ)) : t ≥ 0).

The reason is that |µ|S�t/µ2	(µ) is converging (weakly) to a process with continuous paths
(namely Brownian motion), while, as µ ↗ 0, (|µ|ξ�t/µ2	(µ) : t ≥ 0) takes both very large and
very small values in any time interval of positive length, precluding the possibility that its limit
can live on a function space like D[0, ∞), the space of right-continuous functions on [0, ∞)

with left limits. As a consequence,

(|µ|(S�t/µ2	(µ) + ξ�t/µ2	(µ)) : t ≥ 0)

typically does not obey a functional limit theorem.
Nevertheless, there is a functional analog of Theorem 1. In particular, the techniques used

in proving Theorem 1 can be used to show that, as µ ↗ 0,

|µ|M�·/µ2	(µ)
d−→ X(·) + 2γ βc

in D[0, ∞), where X = (X(t) : t ≥ 0) is a reflecting Brownian motion with drift −1 and
variance parameter σ 2, conditioned on X(0) = 0; a corresponding limit theorem holds when
µ ↘ 0. Note that the presence of the maximum in the defining relation for the Mn means that
(Mn : n ≥ 0) only ‘sees’ large values of the perturbations, so that the presence of the small
values causes no difficulties. Thus, the mathematical issues raised in the previous paragraph
do not arise here.
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3. Finite-horizon limit theory with heavy tails

We now turn to studying heavy-traffic limit theory when the perturbations have a ‘heavy
tail’. In particular, we replace Assumption 2 with the following hypothesis.

Assumption 3. Suppose that (ξj : j ≥ 0) is a sequence of independent and identically dis-
tributed random variables, independent of the sequence (Xj : j ≥ 1) and having a common
distribution given by

P(ξj > x) =

⎧⎪⎨
⎪⎩

1, x ≤ b,(
b

x

)α

, x ≥ b,

for some positive constants b and α.

Thus,Assumption 3 is concerned with the special case in which the heavy-tailed perturbations
follow a Pareto distribution. Note also that Assumption 3 demands more independence than
does Assumption 2.

As in Theorem 1, our heavy-tailed, heavy-traffic limit theorem concerns the parameterized
family of perturbed random walks given by

( n∑
j=1

Xj + nµ + κ(µ)ξn : n ≥ 0

)
.

Theorem 2. Assume that Assumption 1 and Assumption 3 hold, and suppose that κ(µ) =
|µ|(2−α)/α . Then

P(|µ|M�t/µ2	(µ) > x)

→ 1 − E exp

(
−bα

∫ t

0
(x − σB(s) + s)−α ds

)
1
(

max
0≤s≤t

(σB(s) − s) ≤ x
)

as µ ↗ 0 and

P(|µ|M�t/µ2	(µ) > x)

→ 1 − E exp

(
−bα

∫ t

0
(x − σB(s) − s)−α ds

)
1
(

max
0≤s≤t

(σB(s) + s) ≤ x
)

as µ ↘ 0.

Proof. As in the proof of Theorem 1, we prove only the case in which µ ↗ 0. We start by
observing that Assumption 1 implies

|µ|M�t/µ2	(µ) = max
0≤k≤�t/µ2	

(|µ|Sk(µ) + |µ|2/αξk)

= max
0≤k≤�t/µ2	

(|µ|(σB(k) + kµ) + |µ|2/αξk) + o(1) a.s.

as µ ↗ 0. However, the scaling properties of Brownian motion yield the distributional equality

max
0≤k≤�t/µ2	

(|µ|(σB(k) + kµ) + |µ|2/αξk)
d= max

0≤k≤�t/µ2	
(σB(µ2k) − µ2k + |µ|2/αξk).
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Furthermore, the independence of the perturbations and the random walk (and, consequently,
the Brownian motion) show that

P
(

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k + |µ|2/αξk) > x
)

= P
(

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k) > x − b|µ|2/α
)

+ P
(

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k) ≤ x − b|µ|2/α,

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k + |µ|2/αξk) > x
)

= P
(

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k) > x − b|µ|2/α
)

+ E

[
1 −

�t/µ2	∏
k=0

(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

× 1
(

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k) ≤ x − b|µ|2/α
)]

, (12)

where F̄ξ (x) = P(ξj > x). The path continuity of Brownian motion shows that

max
0≤k≤�t/µ2	

(σB(µ2k) − µ2k) → max
0≤s≤t

(σB(s) − s) a.s. (13)

as µ ↗ 0, and

E

[�t/µ2	∏
k=0

(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

× 1
(
x − |µ|1/2α ≤ max

0≤k≤�t/µ2	
(σB(µ2k) − µ2k) ≤ x − b|µ|2/α

)]

≤ P
(
x − |µ|1/2α ≤ max

0≤k≤�t/µ2	
(σB(µ2k) − µ2k) ≤ x − b|µ|2/α

)

→ 0 (14)

as µ ↗ 0. Furthermore, because max0≤s≤t (σB(s) − s) is a random variable possessing a
density, it follows that, conditional on the maximum of σB(s)− s being less than or equal to x,
the maximum is almost surely strictly smaller than x. On a sample path on which the maximum
is strictly less than x − |µ|1/2α , we have

�t/µ2	∏
k=0

(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

= exp

(�t/µ2	∑
k=0

log(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

)

= exp

(�t/µ2	∑
k=0

log(1 − bα(x − σB(µ2k) + µ2k)−αµ2)

)
(15)
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for µ sufficiently small that the maximum is smaller than x − 2|µ|1/2α . Furthermore, for such
values of µ,

(x − σB(µ2k) + µ2k)−αµ2 ≤ 2|µ|3/2

uniformly in k. Consequently, for such µ,

log(1 − bα(x − σB(µ2k) + µ2k)−αµ2)

= −bα(x − σB(µ2k) + µ2k)−αµ2 + O(µ3)

uniformly in k, so that

�t/µ2	∑
k=0

log(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

= −bα

�t/µ2	∑
k=0

(x − σB(µ2k) + µ2k)−αµ2 + o(1) a.s. (16)

as µ ↗ 0. On paths on which the maximum is strictly less than x − 2|µ|1/2α ,

(x − σB(s) + µs)−α

is continuous and bounded in s over [0, t]. It follows that, because the above sum is a Riemann
approximation to the integral, we have

�t/µ2	∑
j=0

(x − σB(µ2k) + µ2k)−αµ2 →
∫ t

0
(x − σB(s) + s)−α ds (17)

as µ ↗ 0 for such paths. In view of (15)–(17), we therefore may conclude that

�t/µ2	∏
k=0

(1 − F̄ξ ((x − σB(µ2k) + µ2k)|µ|−2/α))

→ exp

(
−bα

∫ t

0
(x − σB(s) + s)−α ds

)
(18)

for such paths. However, the left-hand side of (18) is a family of random variables that is
bounded in µ (by the constant 1), so the bounded convergence theorem, together with (12),
(13), and (14), then yields the desired conclusion.

Theorem 2 suggests an approximation for the maximum of a perturbed random walk that
is appropriate when the perturbations have a right tail that is Pareto. In particular, for a given
perturbed random walk (Sj+ξj : j ≥ 0)with Pareto perturbations, the approximation suggested
by Theorem 2 is

P
(

max
0≤k≤n

(Sk + ξk) > x
)

D≈ 1 − E

[
exp

(
−bα

∫ n

0
(x − σB(s) − µs)−α ds

)

× 1
(

max
0≤s≤n

(σB(s) + µs) ≤ x − b
)]

. (19)
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The parameters µ and σ 2 appearing in (19) are defined as in (10) and (11), while the quantities
b and α are the parameters that define the Pareto distribution of the perturbations. As for
Theorem 1, we expect the above approximation to be good over spatial scales of order 1/|µ|
when |µ| is small, the time n is of order 1/µ2, and the perturbations are of order |µ|(2−α)/α .

4. Infinite-horizon limit theory with light tails

In the previous two sections, we used Theorems 1 and 2 to discuss the heavy-traffic setting,
providing approximations to the maximum of perturbed random walks over finite time intervals.
However, in view of the discussion in Section 2 of Araman and Glynn (2004), perhaps the
most interesting characteristic of the perturbed random walk is the distribution of the all-
time maximum M∞. Since M∞ involves the ‘infinite-time’ behavior of the perturbed random
walk, we cannot conclude from Theorems 1 and 2 that our Brownian approximations are
appropriate for use as approximations of M∞. In the remainder of this section, we provide
rigorous justification for such Brownian approximations to the distribution of M∞. We start by
considering light-tailed perturbations by (slightly) strengthening Assumption 2.

Assumption 4. Suppose that (ξj : j ≥ 0) is a stationary sequence for which there exist positive
constants γ and β such that

max0≤k≤n ξk

(log n)γ
→ β a.s.

as n → ∞.

See Zeevi and Glynn (1999) for such almost-sure convergence results in the stationary
sequence setting.

Clearly, M∞ is finite valued only when the underlying random walk has negative drift. We
therefore restrict attention, in the following results, to the case in which µ ↗ 0.

Theorem 3. Assume that Assumption 1 and Assumption 4 hold, and suppose that κ(µ) ∼
c(|µ|(log(1/|µ|))γ )−1 as µ ↗ 0, where c is a positive constant. Then

|µ|M∞(µ)
d−→ max

t≥0
(σB(t) − t) + 2γ βc

as µ ↗ 0.

Proof. Fix an ε > 0. We first set t∗ = max(1, t1, t2), where t1 and t2 are chosen so that

P
(

max
t≥t1

(σB(t) − t) ≥ −|ξ0|
)

< ε

and
(log t + 2)γ

t
≤ 1

16βc
for t ≥ t2.

Observe that∣∣∣P(
max

0≤t≤t∗
(σB(t) − t) + 2γ βc ∈ ·

)
− P

(
max
t≥0

(σB(t) − t) + 2γ βc ∈ ·
)∣∣∣

≤ P
(

max
t≥t∗

(σB(t) − t) ≥ 0
)

< ε. (20)

Assumption 1 guarantees that there exists a finite-valued random variable L1 such that

|Sk − σB(k)| ≤ 1
4k1/2
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for k ≥ L1, whereas Assumption 4 ensures the existence of an L2 for which

max
0≤k≤n

ξk ≤ 2β(log n)γ

for n ≥ L2. Set L = max(L1, L2) and note that

| P(|µ|M�t∗/µ2	(µ) ∈ ·) − P(|µ|M∞(µ) ∈ ·)|
≤ P

(
max

k≥
t∗/µ2�
(|µ|Sk(µ) + |µ|ξk(µ)) ≥ |µ|ξ0(µ)

)

≤ P
(

max
k≥
t∗/µ2�

(|µ|Sk(µ) + |µ|ξk(µ)) ≥ |µ|ξ0(µ), L ≤ 
t∗/µ2�
)

+ P(L > 
t∗/µ2�). (21)

On {L ≤ 
t∗/µ2�}, we have

|µ|ξk(µ) ≤ 2c

(log 1/|µ|)γ max
0≤j≤k

ξj

≤ 4βc
(log k)γ

(log 1/|µ|)γ (22)

for k ≥ 
t∗/µ2� and µ sufficiently small. However, (log k)γ /k decreases for large k, meaning
that, for |µ| ≤ 1/e and k ≥ 
t∗/µ2�, we have

4βc
(log k)γ

(log 1/|µ|)γ ≤ 4βc
(log t∗/µ2)γ k

t∗/µ2(log 1/|µ|)γ

= 4βc

(
log t∗

log 1/|µ| + 2

)γ 1

t∗
kµ2

≤ 4βc(log t∗ + 2)γ
1

t∗
kµ2

≤ 1
4kµ2, (23)

where the definition of t2 was used in the final inequality. On {L ≤ 
t∗/µ2�}, we also have

|µ||Sk − σB(k)| ≤ |µ| 1
4k1/2 ≤ |µ| 1

4k1/2k1/2|µ| ≤ 1
4kµ2 (24)

for k ≥ 
t∗/µ2�, where the fact that t∗ ≥ 1 was used in the second inequality above.
Combining (22)–(24), we conclude that, on {L ≤ 
t∗/µ2�}, we have

|µ|Sk + |µ|ξk(µ) ≤ |µ|σB(k) − 1
2µ2k

for k ≥ 
t∗/µ2�. Hence, for µ sufficiently small,

P
(

max
k≥
t∗/µ2�

(|µ|Sk + |µ|ξk(µ)) ≥ |µ|ξ0(µ)
)

≤ P
(

max
k≥
t∗/µ2�

(|µ|σB(k) − µ2k) ≥ |µ|ξ0(µ)
)

≤ P
(

max
s≥t∗

(σB(s) − 1
2 s) ≥ −|ξ0|

)

< ε. (25)
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Inequalities (20), (21), and (25) imply that

∣∣∣P(|µ|M∞(µ) ∈ ·) − P
(

max
t≥0

(σB(t) − t) + 2γ βc ∈ ·
)∣∣∣

≤ | P(|µ|M∞(µ) ∈ ·) − P(|µ|M�t∗/µ2	(µ) ∈ ·)|
+

∣∣∣P(
max
t≥0

(σB(t) − t) + 2γ βc ∈ ·
)

− P
(

max
0≤t≤t∗(σB(t) − t) + 2γ βc ∈ ·

)∣∣∣
≤ 2ε + P(L > 
t∗/µ2�).

By first letting µ ↗ 0 and then letting ε ↘ 0, we obtain the desired result.

Theorem 3 suggests an approximation for the distribution of M∞ that is appropriate to
perturbed random walks with negative drift, for which the perturbations have a right tail of the
type described in (1). However, in developing the approximation, care must be taken, since
naive substitution of n = ∞ into the finite-time approximation (9) leads to a right-hand side that
is infinite. The key is to take advantage of the ‘diffusion scaling’ that is implicit in all the results
of this section. In particular, the results describe the spatial fluctuations of order 1/|µ| that
occur over time scales of order 1/µ2. Thus, in order that the maximum of a perturbed random
walk exceed a level of order 1/|µ|, roughly 1/µ2 time units are required. This suggests that
the implicit time scale that is relevant in approximating the all-time maximum M∞ is a time of
order 1/µ2, meaning that the logarithmic term in (9) is then roughly given by 2γ (log 1/µ)γ .
This yields the approximation

M∞
D≈ max

t≥0
(σB(t) + µt) + 2γ β(log 1/|µ|)γ , (26)

where µ, σ 2, γ , and β are defined as in (9). In view of Theorem 3, (26) should give reasonable
approximations over spatial scales of order 1/|µ| when µ is small and negative and the
perturbations are roughly of order κ(|µ|).

5. Infinite-horizon limit theory with heavy tails

Finally, we turn again to heavy-tailed perturbations that satisfy Assumption 3, to study the
infinite-horizon analog of (19). We note that the term (x − σB(s) − µs)−α appearing there is
almost surely asymptotic to (−µs)−α as s → ∞. Hence, even when the drift is negative, it
follows that ∫ ∞

0
(x − σB(s) − µs)−α ds = ∞ a.s.

for 0 < α ≤ 1, in which case the right-hand side of (19) describes an improper random variable.
Consequently, the approximation described by Theorem 3 has a finite all-time maximum only
when the perturbations follow a Pareto distribution with finite mean. This is in fact consistent
with Proposition 2 of Araman and Glynn (2004). The latter result states that a necessary
and sufficient condition for the all-time maximum of a perturbed random walk to be finite
almost surely is that the perturbation sequence (assumed to consist of independent, identically
distributed, and nonnegative random variables) admits a finite mean. Therefore, we henceforth
restrict our attention to the case in which α > 1. It is then easily seen that the right-hand side
of (19) defines a proper (finite-valued) random variable.
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Theorem 4. Assume that Assumption 1 and Assumption 3 hold, with α > 1. If κ(µ) =
|µ|(2−α)/α then

P(|µ|M∞(µ) > x)

→ 1 − E

[
exp

(
−bα

∫ ∞

0
(x − σB(s) + s)−α ds

)
1
(

max
t≥0

(σB(t) − t) ≤ x
)]

as µ ↗ 0.

The proof of Theorem 4 follows an argument virtually identical to that of Theorem 3, and is
therefore omitted.

The infinite-horizon approximation suggested by Theorem 4 is

P
(

max
k≥0

(Sk + ξk) > x
)

≈ 1 − E

[
exp

(
−bα

∫ ∞

0
(x − σB(s) − µs)−α ds

)

× 1
(

max
t≥0

(σB(t) + µt) ≤ x − b
)]

, (27)

where µ, σ 2, α, and b are defined as in (19). We expect (27) to give reasonable approximations
over spatial scales of order 1/|µ| when µ is small and negative and the perturbations are roughly
of order |µ|(2−α)/α .

The remainder of this section is devoted to a discussion of how to compute the expectation
appearing in (27). We start by noting that, since

w(y) := P
(

max
t≥0

(σB(t) + µt) ≤ −y − b
)

= 1 − exp

(
−2µ(y + b)

σ 2

)

is known in closed form for y ≤ −b (and µ negative), the key is to compute

E

[
exp

(
−bα

∫ ∞

0
|W(s)|−α ds

) ∣∣∣∣ W(0) = −x, max
t≥0

W(t) ≤ −b

]
, (28)

where W = (W(t) : t ≥ 0) is Brownian motion with drift µ and variance parameter σ 2. The
process W , conditioned on max{W(t) : t ≥ 0} ≤ −b, is itself a diffusion. To (nonrigorously)
compute the generator of the conditioned process Y , let

Ã = µ
d

dx
+ σ 2

2

d2

dx2

be the generator of Brownian motion with drift µ and variance parameter σ 2, and observe that,
for y < −b and any function f with minimal measurability conditions, we have

E[f (Y (h)) | Y (0) = y]
= E

[
f (W(h))

∣∣∣ W(0) = y, max
t≥0

W(t) ≤ −b
]

≈ 1

w(y)
E[f (W(h))w(W(h)) | W(0) = y]

= 1

w(y)
[f (y)w(y) + (Ãf w)(y)h + o(h)].
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This suggests that the generator A of the conditioned process Y is given by

(Af )(y) = µ
d

dy
(f (y)w(y)) + σ 2

2

d2

dy2 (f (y)w(y))

= (Ãf )(y) + σ 2 w′(y)

w(y)
f ′(y)

=
[
µ + 2µ

exp(2µ(y + b)/σ 2) − 1

]
f ′(y) + σ 2

2
f ′′(y)

for y < −b and f twice continuously differentiable; a related (nonrigorous) computation can
be found on pp. 271–272 of Karlin and Taylor (1981). Note that the drift decreases to −∞ as
y approaches −b, making −b an inaccessible boundary for Y (as expected). To make the above
computation rigorous, a ‘change-of-measure’ argument, based on Girsanov’s formula, can be
applied, as in Glynn and Thorisson (2001).

Given the above calculation, to compute (28) we now must find v(−x), given by

v(y) = E

[
exp

(
−bα

∫ ∞

0
|Y (t)|−α dt

) ∣∣∣∣ Y (0) = y

]
.

The function v(·) can be found by solving an appropriate differential equation.

Proposition 1. Suppose that there exists a twice-continuously differentiable, positive, decreas-
ing function v defined on [−∞, −b), with v(−∞) = 1, satisfying

[
µ + 2µ

exp(2µ(y + b)/σ 2) − 1

]
v′(y) + σ 2

2
v′′(y) − bα|y|−αv(y) = 0 (y < −b).

Then

v(y) = E

[
exp

(
−bα

∫ ∞

0
|Y (t)|−α dt

) ∣∣∣∣ Y (0) = y

]
(y < −b).

Proof. The process Y satisfies the stochastic differential equation

dY (t) =
[
µ + 2µ

exp(2µ(Y (t) + b)/σ 2) − 1

]
dt + σ 2

2
dB(t).

Itô’s formula then ensures that

d

(
exp

(
−bα

∫ t

0
|Y (s)|−α ds

)
v(Y (t))

)

= exp

(
−bα

∫ t

0
|Y (s)|−α ds

)
((Av)(Y (t)) − bα|Y (t)|−αv(Y (t))) dt

+ exp

(
−bα

∫ t

0
|Y (s)|−α ds

)
v′(Y (t))σ dB(t)

= exp

(
−bα

∫ t

0
|Y (s)|−α ds

)
v′(Y (t))σ dB(t),

where the second equality relies on the fact that v satisfies the stated differential equation. If

Tn = inf

{
t ≥ 0 : Y (t) ≤ −n or Y (t) ≥ −b − 1

n

}
,

https://doi.org/10.1239/aap/1127483741 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1127483741


Maximum of a perturbed random walk 677

the boundedness of v′ on [−n, −b − 1/n] implies that the optional sampling theorem may be
applied at time Tn to the stochastic integral, yielding the equality

v(y) = E

[
exp

(
−bα

∫ Tn

0
|Y (s)|−α ds

)
v(Y (Tn))

∣∣∣∣ Y (0) = y

]
. (29)

Since W(t) → −∞ a.s. and the conditioning event {max{W(t) : t ≥ 0} ≤ −b} has positive
probability, it follows that Y (t) → −∞ a.s. as t → ∞. The path continuity of Y therefore
permits us to conclude that Y (Tn) → −∞ a.s., meaning that v(Y (Tn)) → 1. The positive
and decreasing nature of v implies that v(Y (Tn)) is bounded in absolute value by 1. Thus, the
bounded convergence theorem applied to (29) yields the desired conclusion.

The authors are unaware of any closed-form solution to the differential equation. Conse-
quently, it must be solved numerically. An alternative is to develop asymptotics for the solution.

Theorem 5. Suppose that µ < 0 and α > 2. Then

1 − E exp

(
−bα

∫ ∞

0
(x − σB(s) − µs)−α ds

)
1
(

max
t≥0

(σB(t) + µt) ≤ x − b
)

= bα

|µ|αx1−α + bα σ 2

2µ2 x−α + o(x−α)

as x → ∞.

Proof. The scaling properties of Brownian motion imply that

E exp

(
−bα

∫ ∞

0
(x − σB(s) − µs)−α ds

)
1
(

max
t≥0

(σB(t) + µt) ≤ x − b
)

= E exp(−bαx1−αJ (x))I (x),

where

J (x) =
∫ ∞

0
(1 − σx−1/2B(r) − µr)−α dr,

I (x) = 1
(

max
r≥0

(σx−1/2B(r) + µr) ≤ 1 − b

x

)
.

On {I (x) = 1}, we can express the integrand of J (x) as

(1 − σx−1/2B(r) − µr)−α = (1 − µr)−α + α(1 − µr)−α−1σB(r)x−1/2

+ 1
2α(α + 1)(1 − µr − ζ(r, x))−α−2σ 2B2(r)x−1,

where ζ is some function of r and x such that |ζ(r, x)| ≤ σx−1/2|B(r)|. In fact,

(1 − µr − ξ(r, x)) ≥ (1 − µr) ∧ ((1 − µr) − x−1/2σB(r))

≥ (1 − µr) ∧ (1 − µr(1 − x−1/2) − x−1/2R)

= (1 − µr(1 − x−1/2) − x−1/2R),
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where R = max{σB(r) + µr : r ≥ 0}. It follows that if L = sup{t ≥ 0 : |σB(t)| > 1
2 |µ|t}

then, for x ≥ 1, we have

x

∣∣∣∣J (x) −
∫ ∞

0
(1 − µr)−α dr − σx−1/2α

∫ ∞

0
(1 − µr)−α−1B(r) dr

∣∣∣∣I (x)

≤ α(α + 1)

2
σ 2

∫ ∞

0
(1 − µr − ζ(r, x))−α−2B2(r) drI (x) 1

(
R >

x1/2

2

)

+ α(α + 1)

2
σ 2

∫ ∞

0

(
1

2
− µr

)−α−2

B2(r) drI (x) 1
(

R ≤ x1/2

2

)

≤ α(α + 1)

2
σ 2

∫ L

0
(1 − µr − ζ(r, x))−α−2B2(r) drI (x) 1

(
R >

x1/2

2

)

+ α(α + 1)

2
σ 2

∫ ∞

L

(
1 − µr

2

)−α−2

B2(r) dr

+ α(α + 1)

2
σ 2

∫ ∞

0

(
1

2
− µr

)−α−2

B2(r) dr

≤ α(α + 1)

2
σ 22α+2b−α−2Rα+2

∫ L

0
B2(r) dr

+ α(α + 1)σ 2
∫ ∞

0

(
1

2
− µr

2

)−α−2

B2(r) dr. (30)

Here, we have used the fact that (1 − µr − σx−1/2B(r))−α−2 ≤ (x/b)α+2 when I (x) = 1
to obtain the third inequality above.

Recall that, for w ≥ 0, we have

1 − w ≤ e−w ≤ 1 − w + 1
2w2.

Since J (x) ≥ 0 on {I (x) = 1}, we have

xα|1 − exp(−bαx1−αJ (x)) − bαx1−αJ (x)| ≤ 1
2b2αx2−αJ 2(x). (31)

Because L and R have exponential tails (for L see Robbins et al. (1968), and for R see Harrison
(1985)), evidently Rα+2

∫ ∞
0 B2(r) 1(L > r) dr is integrable. The dominated convergence

theorem, together with (30) and (31), shows that

xα(1 − E exp(−bαx1−αJ (x))I (x)) = bαx E J (x)I (x) + o(1)

as x → ∞.
A path-by-path application of the dominated convergence theorem, taking advantage of the

bound (30), yields

xJ (x)I (x) = x

∫ ∞

0
(1 − µr)−α dr + σx−1/2α

∫ ∞

0
(1 − µr)−α−1B(r) dr

+ α(α + 1)

2
σ 2

∫ ∞

0
(1 − µr)−α−2B2(r) dr + o(1) a.s. (32)

as x → ∞. The integrability of Rα+2
∫ L

0 B2(r) dr allows us to again apply the dominated
convergence theorem, this time to pass expectations through (32). This proves the theorem.
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Table 1: Estimates of P(M∞ > u) with exponentially distributed perturbations.

u P(M∞ > u) Approximation Relative error (%) L R

0.125 0.980 0.9997 2.1 0.980 0.980
0.25 0.980 0.9997 2.0 0.979 0.980
0.5 0.979 0.9996 2.1 0.979 0.980
2.5 0.979 0.999 2.0 0.979 0.980
5 0.979 0.999 2.0 0.978 0.979

50 0.970 0.990 2.1 0.969 0.970
500 0.885 0.903 2.0 0.884 0.885

Table 2: Estimates of P(M∞ > u) with Pareto-distributed perturbations.

u P(M∞ > u) Approximation Relative error (%) L R

2 0.9491 0.9992 5.3 0.9480 0.9503
100 0.9021 0.9489 5.2 0.9011 0.9032
400 0.7698 0.8101 5.2 0.7689 0.7707

1000 0.5613 0.5904 5.2 0.5606 0.5620
2000 0.3308 0.3482 5.3 0.3304 0.3312
4000 0.1158 0.1213 4.7 0.1157 0.1159

6. Numerical results

In this section, we present some experimental results to accompany our theoretical limiting
results obtained above. We restrict the analysis to the infinite-horizon case. In particular, we
compare the approximations suggested for the tail distribution of the all-time maximum of the
perturbed random walk, through (26) and (27), to the values obtained through simulation. We
respectively consider a light-tailed and a Pareto-tailed perturbation. For both cases, we assume
the original random walk to be the difference of two exponentially distributed random variables,
as in the M/M/1 setting (such that E X1 = µ < 0).

So, for the light-tailed perturbation we consider an exponentially distributed random variable.
This clearly satisfies Assumption 3 with γ = β = 1. For the simulation, we take µ = 2.
Having Theorem 3 in mind, we let E ξ1 = (|µ| log(1/|µ|))−1. The results are based on 10 000
replications and are reported in Table 1. The last two columns represent the 95% confidence
interval around the simulated value. We observe that the relative error is almost constant,
independent of the values of u. It will improve as the mean random walk comes closer to 0.

For the heavy-tailed perturbation, we take a Pareto perturbation as defined in Assumption 3,
with α = 3 and b = 2

3 . We let µ = 5 and, to use Theorem 4, we set E ξ = |µ|2/3. The results
are based on 5000 replications and are reported in Table 2. The relative error is around 5%,
independent of the threshold u, and will become smaller as µ comes closer to 0.
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