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On Varieties of Lie Algebras of Maximal
Class

Tatyana Barron, Dmitry Kerner, and Marina Tvalavadze

Abstract. We study complex projective varieties that parametrize (finite-dimensional) filiform Lie al-
gebras over C, using equations derived by Millionshchikov. In the infinite-dimensional case we con-
centrate our attention on N-graded Lie algebras of maximal class. As shown by A. Fialowski there are
only three isomorphism types of N-graded Lie algebras L =

⊕∞
i=1 Li of maximal class generated by

L1 and L2, L = 〈L1, L2〉. Vergne described the structure of these algebras with the property L = 〈L1〉.
In this paper we study those generated by the first and q-th components where q > 2, L = 〈L1, Lq〉.
Under some technical condition, there can only be one isomorphism type of such algebras. For q = 3
we fully classify them. This gives a partial answer to a question posed by Millionshchikov.

1 Introduction

Much effort has been made to understand the algebraic varieties that parametrize Lie
algebras, in particular nilpotent Lie algebras. The long list of literature on this subject
includes, in particular, [V, KN, Ha, ENR].

A filiform Lie algebra is a nilpotent Lie algebra of maximal class of nilpotency. A
generalization of this concept, called a Lie algebra of maximal class, and varieties of
such algebras were studied in [M1].

A Lie algebra g is called residually nilpotent if
⋂∞

i=1 gi = {0}, where g1 = g and
{gi} is the lower central series of g. A residually nilpotent Lie algebra g is called a Lie
algebra of maximal class if Σi(dim gi/gi+1 − 1) = 1. In the finite-dimensional case
these are exactly filiform Lie algebras.

An explicit system of quadratic equations that describes a variety of filiform Lie
algebras or of Lie algebras of maximal class is provided in [M1]; this is one of the
main results of the paper. We use this system to study the topology of the varieties of
n-dimensional filiform complex Lie algebras (Section 2).

In Section 3 and in Appendix B we study central extensions of N-graded filiform
Lie algebras with lacunas in grading. Although neither finite-dimensional filiform Lie
algebras nor infinite-dimensional Lie algebras of maximal class have been classified
up to an isomorphism, they have been extensively studied for the last few decades. In
[M1] Millionshchikov conjectured the existence of only three isomorphism types of
Lie algebras of maximal class generated by the first and the q-th graded components
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(i.e., with lacunas in grading from 2 to q− 1). Using the results on central extensions
from Subsections 3.1 and 3.2 we prove Theorem 3.9 and also classify N-graded Lie
algebras of maximal class generated by the first and third graded components. Our
results coincide with the computer calculations of Vaughan-Lee, who investigated the
cases q = 3, 4.

Our main results are Theorems 2.2, 2.4, 3.9, and 3.27.

2 Topology of Parameter Spaces

In this section all Lie algebras are finite-dimensional over C.
Equations of the affine variety of n-dimensional filiform complex Lie algebras are

given in [M1, equations (19), (28)–(30)]. We are going to consider instead complex
projective varieties Mn that are obtained from the varieties in [M1, Theorem 4.3] by
removing the Abelian Lie algebra, projectivizing, and “dropping” the variables that
do not appear in the equation; see a precise explanation below.

2.1 General Properties of Mn

The parameter space for n ≥ 9 is defined by the following system of quadratic equa-
tions on the variables x j,s, s = 0, . . . , n− 5, j = 2, . . . , [n−1]

2 , (Theorem 4.3 [M1]):

• for n odd:

Mn =
{

F j,q,r = 0 for 2 ≤ j < q, j + 2q + r + 1 ≤ n, r ≥ 0
}

• for n even:

Mn =
{

F j,q,r = 0 for 2 ≤ j < q, j + 2q + r + 1 < n, r ≥ 0
}

∩
{

F j,q,r + (−1)
n
2− j−qx−1G j,q,r = 0 for 2 ≤ j < q, j + 2q + 1 + r = n, r ≥ 0}

∩
{

x−1G j,q,−1 = 0 for 2 ≤ j < q, j + 2q = n
}
,

where polynomials F j,q,r and G j,q,r are as follows:

F j,q,r =

r∑
t=0

[ j+q−1
2 ]∑

l= j

q+[ j+t
2 ]∑

m=q+1

(−1)l− j+m−q

(
q− l− 1

l− j

)(
j + q−m + t − 1

m− q− 1

)
xl,t xm,r−t

+
r∑

t=0

[ j+q
2 ]∑

l= j

q+[ j+t
2 ]∑

m=q

(−1)l− j+m−q

(
q− l
l− j

)(
j + q−m + t

m− q

)
xl,t xm,r−t

+
r∑

t=0

q+[ j+t
2 ]∑

m= j

(−1)m− j+1

(
2q−m + t

m− j

)
xq,t xm,r−t ,

G j,q,r =

[ j+q−1
2 ]∑

l= j

(−1)l

(
q− l− 1

l− j

)
xl,r+1 +

[ j+q
2 ]∑

l= j

(−1)l

(
q− l
l− j

)
xl,r+1 − (−1)qxq,r+1.
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The variable x−1 is denoted by x in [M1]. Our notation emphasizes the weight. The
quadratic polynomials F j,q,r are weighted homogeneous; they contain only mono-
mials of the form xa1,t xa2,r−t . The linear forms G j,q,r contain only monomials of the
form xa,r+1. Thus, for n odd, or for n even and x−1 = 0, the variables xa,t with
t > n− 9 do not participate in the defining equations. Moreover, even for t ≤ n− 9,
many of xa,t do not appear in the defining equations. We shall always consider the
“minimal” version of Mn, inside the projective space spanned by those xa,t that do
appear. Adding more variables that do not participate in the equations means taking
the cone over the “minimal” Mn.

The group C∗ acts on Mn by weighted homogeneous scaling(
x−1, {x∗,0}, {x∗,1}, . . . , {x∗,n−5}

)
→(

λ−1x−1, {x∗,0}, λ{x∗,1}, . . . , λn−5{x∗,n−5}
)
,

λ ∈ C∗. This is seen directly; the defining equations are equivariant. The points of
each C∗ orbit correspond to isomorphic Lie algebras, as the action is induced by the
rescaling of the generators, ei → λi−1ei .

Accordingly, the set of homogeneous coordinates splits into the subsets {x∗,s}s,
coordinates of the same C∗-weights. The loci Mn ∩ {x∗,i = 0 for i 6= j} are invariant
under this C∗ action. The parameter space gets decomposed into ‘elementary pieces’
as described in the proposition below.

Proposition 2.1 Let n ≥ 9.

(i) For n odd, the open dense part Mn \ {x∗,0 = 0} deforms (homotopically) to Mn ∩
{x∗,i = 0 for i > 0}. For n even, Mn \ {x−1 = 0} deforms (homotopically) to
Mn ∩ {x∗,i = 0 for i ≥ 0}, which is a point. In both cases the open dense part
Mn \ {x∗,n−5 = 0} deforms (homotopically) to Mn ∩ {x∗,i = 0 for i < n− 5}.

(ii) The topological Euler characteristic of Mn can be computed as

χ(Mn) =
n−5∑
j=−1

χ
(

Mn ∩ {x∗,i = 0 for i 6= j}
)
.

(iii) For n odd, Mn ∩
{

x∗,i = 0 for 0 ≤ i ≤ n−9
2

}
is isomorphic to the projective space

with homogeneous coordinates

{x j,k}
n−9

2 +1≤k≤n−5

2≤ j≤ n−1
2

.

(iv) Mn ∩ {x∗,i = 0 for i 6= [ n−9
2 ]} = {F2,3,2[ n−9

2 ] = 0} ⊂ P({x j,[ n−9
2 ]} j=2...[ n−1

2 ]).

(v) For n > 10, Mn ∩ {x∗,i = 0 for i 6= [ n−9
2 ] − 1} = {F2,3,n−11 = 0 = F2,4,n−11}

for n odd and {F2,3,n−12 = 0 = F2,4,n−12 = F3,4,n−12} for n even.

Proof (i): The case of odd n. Suppose at least one of x∗,0 is not zero. Consider the
flow (x∗,0, λx∗,1, . . . , λn−5x∗,n−5), for λ ∈ C∗. This is a continuous flow for λ ∈ C,
well-defined on Mn \ {x∗,0 = 0}. It provides the homotopy from Mn \ {x∗,0 = 0},
for λ = 1, to Mn ∩ {x∗,i = 0 for i > 0}, for λ = 0. The other statements in (i) are
proved similarly.
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(ii): Suppose n is odd (the proof for n even is similar). We shall use (i) and similar
statements:

• (Mn ∩ {x∗,0 = 0})− {x∗,1 = 0} deforms homotopically to

Mn ∩ {x∗,i = 0 for i 6= 1},

• (Mn ∩ {x∗,0 = 0, x∗,1 = 0})− {x∗,2 = 0} deforms homotopically to

Mn ∩ {x∗,i = 0 for i 6= 2},

etc.

By the additivity of the Euler characteristic,

χ(Mn) = χ(Mn ∩ {x∗,0 = 0}) + χ(Mn\{x∗,0 = 0})
= χ(Mn ∩ {x∗,0 = 0 = x∗,1})

+ χ((Mn ∩ {x∗,0 = 0})\{x∗,1 = 0}) + χ(Mn ∩ {x∗,i = 0 for i > 0})

=
n−5∑
j=0

χ(Mn ∩ {x∗,i = 0 for i 6= j})

(iii): The polynomial F j,q,r consists of monomials x∗,t x∗,r−t , hence if x∗,i = 0
for 0 ≤ i ≤

[
n−9

2

]
and r ≤ n − 9, then all the relevant polynomials vanish. So,

Mn ∩ {x∗,i = 0 for 0 ≤ i ≤ [ n−9
2 ]} is the projective space, spanned by the remaining

coordinates.
(iv) and (v) follow by direct check of the defining equations.

2.2 The Parameter Space for n = 9, 10, 11

In this subsection we quickly discuss M9, after which we compute Betti numbers
of the components of Mn for n = 10, 11 and discuss geometric structure of these
components. Some facts that we use are summarized in Appendix A.

2.2.1 n = 9

The subvariety M9 ⊂ P2 is defined by the equation

(2.1) 2x2,0x4,0 − 3x2
3,0 + x3,0x4,0 = 0,

where x2,0, x3,0, x4,0 are the coefficients that appear in the deformation cocycle.
Remark: (2.1) is consistent with the first equation in [M1, (22)]. In the notation

of [M1], this is the equation F2,3,0 = 0.
This subvariety (an algebraic curve of degree 2) is smooth. (Its singular locus

is x2,0 = 0 = x4,0 = x3,0 i.e., it is empty.) By the genus formula the genus is
(2− 1)(2− 2)/2 = 0, thus M9 is isomorphic to P1.
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2.2.2 n = 10

The subvariety M10 ⊂ P(x−1, {x j,s}) is defined by

F2,3,0 : 2x2,0x4,0 − 3x2
3,0 + x3,0x4,0 = 0

F2,3,1 + xG2,3,1 : − 2x2,0x4,1 + 7x3,0x3,1 − x3,0x4,1 − 3x4,0x2,1 − 3x4,0x3,1

+ x−1(2x2,2 + x3,2) = 0

x−1G2,4,−1 : x−1(2x2,0 − x3,0 − x4,0) = 0,

where xi, j are the coefficients that appear in the deformation cocycle.

Denote by M(0)
10 the component of M10 that corresponds to x−1 = 0. Its equations

are

2x2,0x4,0 − 3x2
3,0 + x3,0x4,0 = 0

−2x2,0x4,1 + 7x3,0x3,1 − x3,0x4,1 − 3x4,0x2,1 − 3x4,0x3,1 = 0.

Note: the first equation is the same as (2.1), and the second equation (F2,3,1 = 0 in
notations of [M1]) coincides with the third equation of [M1, Example 4.6].

To simplify the formulas we make a linear change of coordinates:

z0,0 = 2x2,0 + x3,0, z1,0 = x3,0, z2,0 = x4,0,

z0,1 = 3(x2,1 + x3,1), z1,1 = x3,1, z2,1 = x4,1.

In the new coordinates, M(0)
10 is defined as

{x−1 = z0,0z2,0 − 3z2
1,0 = 0 = −z0,0z2,1 + 7z1,0z1,1 − z2,0z0,1} ⊂ P6

x−1,z∗,∗ .

Denote by M(1)
10 the component of M10 that corresponds to x−1 6= 0. For it we get

the system

2x2,0x4,0 − 3x2
3,0 + x3,0x4,0 = 0

−2x2,0x4,1 + 7x3,0x3,1 − x3,0x4,1 − 3x4,0x2,1 − 3x4,0x3,1 + x−1(2x2,2 + x3,2) = 0

2x2,0 − x3,0 − x4,0 = 0.

As before, we change the coordinates:

z0,0 = 2x2,0 + x3,0, z1,0 = x3,0, z2,0 = x4,0, z0,1 = 3(x2,1 + x3,1),

z1,1 = x3,1, z2,1 = x4,1, z0,2 = x3,2, z1,2 = 2x2,2 + x3,2.

Then the equations become

{z0,0z2,0 − 3z2
1,0 = 0 = −z0,0z2,1 + 7z1,0z1,1 − z2,0z0,1 + x−1z1,2

= z0,0 − 2z1,0 − z2,0} ⊂ P7
x−1,z∗,∗ .

We eliminate z0,0 using the linear equation to get the equivalent presentation

(2.2) M(1)
10 = {(3z1,0 + z2,0)(z1,0 − z2,0) = 0,

(2z1,0 + z2,0)z2,1 = 7z1,0z1,1 − z2,0z0,1 + x−1z1,2} ⊂ P6.
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Theorem 2.2 (i) M(0)
10 ⊂ P6 is a subvariety of dimension 3; its singular locus is

the plane

{x−1 = z0,0 = 0 = z1,0 = z2,0} ⊂ P6.

The singularities of M(0)
10 are resolved in one blowup, and the resolution M̃(0)

10 is a projec-
tive bundle over P1. More explicitly,

M̃(0)
10 = P(T∗P2 ⊕ OP2 (−1))|C2 ,

where T∗P2 is the cotangent bundle of the plane and |C2 denotes the restriction of the
bundle onto a smooth conic C2 ⊂ P2.

M(0)
10 admits an algebraic cell structure, M(0)

10 = C3 ∪ (2C2) ∪ C1 ∪ C0. In particular,
its odd homologies vanish, while the even homologies are:

H0(M(0)
10 ,Z) = Z = H6(M(0)

10 ,Z), H2(M(0)
10 ,Z) = Z, H4(M(0)

10 ,Z) = Z⊕2.

(ii) M(1)
10 is isomorphic to the union of two quadric 3-folds in P5, intersecting along

{z0,0 = 0 = z1,0 = z2,0 = x−1z1,2}. Each quadric is the cone over a smooth quadric
surface in P3.

Proof (i): We consider everything inside the hyperplane {x−1 = 0} = P5 ⊂ P6.
The singular locus of M(0)

10 is defined by the maximal minors of the Jacobian matrix
(the matrix of all the partials of the defining equations):(

z2,0 −6z1,0 z0,0 0 0 0
−z2,1 7z1,1 −z0,1 −z2,0 7z1,0 −z0,0

)
Thus this singular locus is Z := {z0,0 = 0 = z1,0 = z2,0}. (We consider the singular
locus as a set, omitting the multplicities.) Note that the singular locus is of codimen-
sion one in M(0)

10 ; i.e., the variety is not normal. To compute the normalization, i.e.,

the normal variety M̃(0)
10 with the finite surjective birational morphism, M̃(0)

10 → M(0)
10 ,

we blowup along the singular locus:

M̃(0)
10 := BlZM(0)

10 =
{

(z0,0, z1,0, z2,0) ∼ (σ0, σ1, σ2), σ0σ2 = 3σ2
1 ,

− σ0z2,1 + 7σ1z1,1 − σ2z0,1 = 0
}
⊂ P5

z∗,∗ × P2
σ∗

By construction, M̃(0)
10 has two natural projections: M̃(0)

10
πσ→ P2

σ∗ and M̃(0)
10

πz→ M(0)
10 .

Consider the fibres of πz. If (z0,0, z1,0, z2,0) 6= (0, 0, 0), then the condition
(z0,0, z1,0, z2,0) ∼ (σ0, σ1, σ2) determines the point (σ0, σ1, σ2) ∈ P2

σ∗ uniquely. If
(z0,0, z1,0, z2,0) = (0, 0, 0) then (z0,1, z1,1, z2,1) 6= (0, 0, 0), and therefore there are
two equations on (σ0, σ1, σ2), linear and quadratic. Geometrically, for a fixed triple
(z0,1, z1,1, z2,1) we have a line and a conic in the plane P2

σ∗ ; they intersect in two points
(counted with multiplicity). Therefore the projection πz is finite and is a 2:1 cover
over the singular locus.

Consider the projection πσ . For a fixed point (σ0, σ1, σ2) ∈ P2
σ∗ the conditions

on z∗,∗ are linear and linearly independent. Therefore this projection equips M̃(0)
10

with the structure of P2 bundle over its image, the conic {σ0σ2 = 3σ2
1} ⊂ P2

σ∗ . In
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particular, it follows that M̃(0)
10 is smooth, hence the map M̃(0)

10
πz→ M(0)

10 is not only a

normalization but also a resolution of singularities. Finally note that πσ(M̃(0)
10 ) ⊂ P2

is a smooth conic C ⊂ P2
σ , therefore M̃(0)

10 is a P2 bundle over P1.
It remains to understand the P2 bundle structure. First, consider the particular

locus in M̃(0)
10 , where z0,0 = z1,0 = z2,0 = 0. We claim that

M̃(0)
10 |z0,0=z1,0=z2,0=0 = PT∗P2 |C .

Indeed, after rescaling the coordinates (z2,1, z1,1, z0,1), we get the defining equation
{(σ0, σ1, σ2)×(z2,1, z1,1, z0,1) = 0} ⊂ P2

z×P2
σ . Geometrically, this can be interpreted

as the variety of pairs: a point in P2
σ and the lines passing through this point. (Recall

that a line in P2 is defined by a 1-form.) The set of lines passing through a point,
i.e., the set of non-zero 1-forms up to scaling, is naturally the projectivization of the

cotangent space to P2
σ at this point. Therefore M̃(0)

10 |z0,0=z1,0=z2,0=0 = PT∗P2 |C .
As the other extremal case, consider the locus z2,1 = z1,1 = z0,1 = 0. Then

(z0,0, z1,0, z2,0) 6= (0, 0, 0) and the fibre over (σ0, σ1, σ2) is one point: the projec-
tivization of the tautological bundle, OP2 (−1).

Finally, for any fixed point σ ∈ P2
σ the remaining equations are linear.

Hence each fibre over σ is the span of PT∗P2,σ and POP2 (−1)σ , i.e., each fibre is
P(T∗P2,σ ⊕ OP2 (−1)σ). As this identification is canonical, we get the statement.

(ii): Follows from the presentation in equation (2.2).

Remark 2.3 Singular points of M(0)
10 : as mentioned above, the singular points of

M(0)
10 are

[z0 : z1 : z2 : z3 : z4 : z5]

such that z0 = z1 = z2 = 0 and z3, z4 and z5 are any (but not all zero at the same
time). This means that x2,0 = x3,0 = x4,0 = 0 and x2,1, x3,1, x4,1 take any values (not
all zeros). Therefore, the deformation cocycle Ψ of m0(10) (see definition of m0(n)
in Section 3) is of the form

Ψ = x2,1Ψ2,1 + x3,1Ψ3,1 + x4,1Ψ4,1,

where Ψ2,1, Ψ3,1 and Ψ4,1 are closed cocycles from H2
+(m0(10),m0(10)) defined in

[M1, p. 183] by explicit formulas. Then, for i, j > 1 Ψ(ei , e j) = αi jei+ j+1 for ap-
propriate scalars αi j , and the cocycle vanishes on the remaining vector pairs. Let us
re-name basis elements as follows

f1 = e1, fi+1 = ei , i = 2, . . . , 10.

This is an N-graded basis for a filiform Lie algebra g corresponding to Ψ. Indeed,

[ fi , f j] = [ei−1, e j−1] = αi−1, j−1ei+ j−1 = αi−1, j−1 fi+ j ,

where i, j > 1 and
[ f1, fi] = [e1, ei−1] = ei = fi+1,

where i > 1. As shown in Section 3, g must be one of the following algebras: m3
0,1(11)

(the central extension of m3
0(10)), m3

0,3(11) (the third central extension of m3
0(8)),

m3
0,5(11) (the fifth central extension of m3

0(6)).
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2.3 n = 11

The equations of M11 are [M1]:

F2,3,0 : 2x2,0x4,0 − 3x2
3,0 + x3,0x4,0 = 0,

F2,3,1 : − 2x2,0x4,1 + 7x3,0x3,1 − x3,0x4,1 − 3x4,0x2,1 − 3x4,0x3,1 = 0,

F2,4,0 : − 2x2,0x5,0 + 4x3,0x4,0 − 6x2
4,0 + x3,0x5,0 + x4,0x5,0 = 0,

F2,3,2 : − 2x2,0x4,2 + 8x3,0x3,2 − x3,0x4,2 − 4x4,0x2,2 − 6x4,0x3,2

+ 2x5,0x2,2 + x5,0x3,2 − 3x2,1x4,1 + 4x2
3,1 − 3x3,1x4,1 = 0.

As was pointed out earlier, our expressions for F2,3,0 and F2,3,1 are consistent with
[M1]. Our equation F2,4,0 = 0 is the same as the corresponding equation in [M1,
Example 4.6]. Our equation F2,3,2 = 0 differs from that in [M1, Example 4.6] by the
coefficient at the x2,2x4,0 term, but we checked our calculation several times and are
confident that our coefficient is correct.

Apply the following change of variables:

z0,0 = 2x2,0 + x3,0, z1,0 = x3,0, z2,0 = x4,0, z3,0 = x5,0 − 6x4,0,

z0,1 = 3(x2,1 + x3,1), z1,1 = x3,1, z2,1 = x4,1,

z0,2 = 2x2,2 + x3,2, z1,2 = x3,2, z2,2 = x4,2.

Then we get the following equations:

F1 : z0,0z2,0 − 3z2
1,0 = 0,

F2 : − z0,0z2,1 + 7z1,0z1,1 − z2,0z0,1 = 0,

F3 : z3,0(2z1,0 − z0,0 + z2,0) + z2,0(16z1,0 − 6z0,0) = 0

F4 : − z0,0z2,2 − z0,1z2,1 + 4z2
1,1 + 8z1,0z1,2 + 4z2,0(z0,2 − z1,2) + z3,0z0,2 = 0.

Theorem 2.4 (i) The parameter space has two irreducible components, X and Y ,
both of dimension five, as a set M11 = X ∪ Y .

(ii) The component X = {z0,0 = 0 = z1,0 = z2,0 = 4z2
1,1 − z0,1z2,1 + z3,0z0,2} ⊂ P9

enters with generic multiplicity 2. The singular locus of (reduced) X is

Sing(X) = {z0,0 = 0 = z1,0 = z2,0 = z1,1 = z0,1 = z2,1 = z3,0 = z0,2} = P1
z1,2z2,2

.

X admits the algebraic cell structure: C5 ∪ C4 ∪ C3 ∪ C2 ∪ C1 ∪ C0. In particular, its
odd cohomologies vanish, while all the even cohomologies are Z.

(iii) The component Y is reduced, it is the topological closure of the affine part of
M11 in C9 = {z0,0 6= 0} ⊂ P9. (Thus, the defining equations of Y ∩ C9 are obtained
from the equations above by setting z0,0 = 1.) The affine part Y ∩ {z0,0 6= 0} is smooth.
The intersection with the infinite hyperplane Y ∩ {z0,0 = 0} is defined, as a set, by
{z0,0 = 0 = z1,0 = z3,0 = z0,1 = z2

1,1 + z0,2(z0,2 − z1,2)}.
The affine part, Y ∩ {z0,0 6= 0} ⊂ C9, is isomorphic to the C4-bundle over the line

with two punctures, C1
z1,0
\ {(z1,0 + 1)(3z1,0 − 1) = 0}.

Also, H2i(Y,Z) = Z, for 0 ≤ 2i ≤ 10 and H9(Y,Z) = Z⊕2; all the other cohomolo-
gies vanish.

https://doi.org/10.4153/CJM-2014-008-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-008-x


On Varieties of Lie Algebras of Maximal Class 63

Proof (i) Consider the part of M11 at infinity, M11 ∩ {z0,0 = 0}. We get (omitting
multiplicities) z0,0 = 0 = z1,0 = z2,0z0,1. Hence this part splits; by direct check we get
two components:

M11 ∩ {z0,0 = 0} =
{

z0,0 = 0 = z1,0 = z2,0 = 4z2
1,1 − z0,1z2,1 + z3,0z0,2

}
∪
{

z0,0 = 0 = z1,0 = z3,0 = z0,1 = z2
1,1 + z2,0(z0,2 − z1,2)

}
Note that neither of them lies inside the other, e.g., they are distinguished by z2,0 = 0
and z0,1 = 0. By direct check, the first component is of codimension 4, the second
is of codimension 5. Note that the whole space, M11 is defined by four equations,
therefore at each point of M11 the (local) codimension is at most 4. Therefore, the
first component is an honest component of M11 (we call it X), while the second com-
ponent belongs to the intersection of Y with the infinite hyperplane z0,0 = 0.

(ii) To check the generic multiplicity of X, fix some generic values of z0,2, z1,2,
z2,2, z3,0, z0,1, z1,1 and let z0,0, z1,0, z2,0 vary near zero, while z2,1 varies near a root of
4z2

1,1 − z0,1z2,1 + z3,0z0,2 = 0. This corresponds to the transverse intersection of the
generic point of X by a linear space of the complementary dimension. The generic
multiplicity of X is the multiplicity of this local intersection, i.e., (algebraically) the
length of the Artinian ring C{z0,0, z1,0, z2,0, z2,1}/〈F1, F2, F3, F4〉. Note that for the
generic values of z0,2, z1,2, z2,2, z3,0, z1,1, the variable z2,1 enters linearly in equation F4,
hence can be eliminated. Similarly, the variable z0,0 can be eliminated using F3, while
z2,0 can be eliminated using F2. Thus the ring C{z0,0, z1,0, z2,0, z2,1}/〈F1, F2, F3, F4〉 is
isomorphic to C{z1,0}/Q, where the expansion of Q in z1,0 begins with a quadratic
term. Hence the intersection multiplicity (i.e., the length of this ring) is two.

To understand the cell structure, consider the affine part, X ∩ {z3,0 6= 0}, and the
part at infinity, X ∩ {z3,0 = 0}. By direct check: X ∩ {z3,0 6= 0} ≈ C5

z0,1z1,1z2,1z1,2z2,2
.

Continue to “cut” the infinite part:

X ∩ {z3,0 = 0} = X ∩ {z3,0 = 0 = z0,1}︸ ︷︷ ︸
P3

z1,1z2,1z1,2z2,2

∐
X ∩ {z3,0 = 0, z0,1 6= 0}︸ ︷︷ ︸

C4
z0,1z1,1z1,2z2,2

.

Finally, we use the standard cell decomposition P3 = C3
∐

C2
∐

C1
∐

C0. This gives
the algebraic cell decomposition of X.

(iii) The defining equations of the affine part of Y |z0,0 6=0 are

z2,0 = 3z2
1,0, z2,1 = 7z1,0z1,1 − z2,0z0,1,

z3,0(2z1,0 − 1 + z2,0) + 3z2
1,0(16z1,0 − 6) = 0,

z2,2 = −z0,1z2,1 + 4z2
1,1 + 8z1,0z1,2 + 4z2,0(z0,2 − z1,2) + z3,0z0,2.

Therefore Y projects isomorphically onto

{z3,0(2z1,0 − 1 + 3z2
1,0) + 3z2

1,0(16z1,0 − 6) = 0} ⊂ C6
z1,0z3,0z0,1z1,1z0,2z1,2

.

Note that the defining equation does not contain variables z0,1z1,1z0,2z1,2, so this is
a C4 bundle over the curve {z3,0(2z1,0 − 1 + 3z2

1,0) + 3z2
1,0(16z1,0 − 6) = 0} ⊂

C2
z1,0z3,0

. Finally, this curve projects isomorphically onto C1
z1,0

outside the locus
(3z1,0 − 1)(z1,0 + 1) = 0, i.e., with two points punctured.
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Finally, we use Section A.3 for the pair:

Y |z0,0=0 ⊂ Y : · · · → Hi(Y |z0,0=0,Z)→ Hi(Y,Z)→ Hi(Y,Y |z0,0=0,Z)→ · · · .

Note that Y \ Y |z0,0=0 is smooth of real dimension 10, thus by Proposition A.5,
Hi(Y,Y |z0,0=0,Z) = H10−i(Y \ Y |z0,0=0,Z). As established above, the homo-
topy type of Y \ Y |z0,0=0 is that of C1 with two punctured points. Therefore,
Hi(Y |z0,0=0,Z)

∼−→Hi(Y,Z) for i < 8 and

0→ H9(Y,Z)→ H1(C1 \ {2 pts},Z)→ H8(Y |z0,0=0,Z)→ H8(Y,Z)→ 0

As shown above, Y |z0,0=0 is a singular quadric in P5, and its cell structure is C4 ∪
C3 ∪ C2 ∪ C1 ∪ C0. In particular, all its even cohomologies are Z, while all the odd
cohomologies vanish. Note also that H8(Y,Z) contains (at least) one factor of Z,
being a projective hypersurface. Therefore, from H8(Y |z0,0=0,Z) → H8(Y,Z) → 0,
we get H8(Y,Z) = Z, and the last map is an isomorphism. Thus, 0 → H9(Y,Z) →
H1(C1 \ {2pts},Z)→ 0, proving the statement.

A remark about the first component of M11

The component X of M11 contains the Z-graded algebra g of type m0,1(11) defined
in [M2, p. 268], which would correspond to z3 = z4 = z5 = z7 = z8 = z9 = 0 but
z6 6= 0. Besides, X also contains algebras corresponding to z7 = z8 = z9 = z6 = 0.
The corresponding deformation cocycle is

Ψ(ei , e j) = αi jei+ j+1,

where i, j > 1, αi j are scalars. Besides, Ψ vanishes on the other pairs of vectors from
the standard basis {e1, e2, . . . , e11} of m0(11). Renaming basis elements f1 = e1 and
fi+1 = ei where i = 2, . . . , 11, we obtain an N-graded basis for g corresponding to
Ψ. As would follow from results of Section 3, g should be of one of the following
types: m3

0,2(12) (the second central extension of m3
0(10)), m3

0,3(12) (the third central
extension of m3

0(9)), m3
0,5(12) (the fifth central extension of m3

0(7)), m3
0,6(12) (the

sixth central extension of m3
0(6)).

There are also algebras in X corresponding to z3 = z4 = z5 = z6 = 0. In this
case, the deformation cocycle is Ψ(ei , e j) = αi jei+ j+2 for i, j > 1, and it equals zero
on the remaining vector-pairs. Changing notation of the basis elements of m0(11):
f1 = e1, fi+2 = ei , i = 2, . . . , 11, we obtain an N-graded basis for g corresponding to
Ψ. Thus, g is obtained by taking one-dimensional central extensions of m4

0(8). There-
fore, X contains algebras of the following types: m4

0,1(13) (one-dimensional central
extension of m4

0(12)), m4
0,3(13) (the third central extension of m4

0(10)), m4
0,5(13) (the

fifth central extension of m4
0(8)).

3 Structure of N-graded Filiform Lie Algebras

The classification of nilpotent Lie algebras is a difficult problem widely discussed in
literature. Nilpotent Lie algebras up to dimension 5 are well known. In [CGS] the au-
thors gave a full classification of 6-dimensional nilpotent Lie algebras over arbitrary
fields. In higher dimensions, there are infinite families of pairwise nonisomorphic
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nilpotent Lie algebras. In dimension 7 each infinite family can be parameterized
by a single parameter. Many papers on classification of 7-dimensional nilpotent Lie
algebras have been published, but the most complete list of such Lie algebras was
obtained by Ming-Peng Gong (see [G]).

In this section we are concerned with those nilpotent Lie algebras whose nil-index
is n−1 for a given dimension n over an algebraically closed field F of zero characteristic.
Such Lie algebras will be called filiform. An infinite-dimensional analog of a filiform
Lie algebra is a so-called Lie algebra of maximal class (or of coclass 1). Namely, a
residually nilpotent Lie algebra is called a Lie algebra of maximal class (or coclass 1)
if
∑

i≥1(dim gi/gi+1 − 1) = 1, where {gi} is the lower central series of g. In [V]
M. Vergne has shown that an arbitrary filiform Lie algebra is isomorphic to some
deformation of the graded filiform Lie algebra m0(n) defined by its basis e1, . . . , en

and nontrivial Lie products: [e1, ei] = ei+1, i = 2, . . . , n− 1.

Example 3.1 Let m0 be a linear space with a basis {e1, e2, . . . }. Define the Lie
product on m0 by [e1, ei] = ei+1 for i > 1, and let the other products be zero. Note
that we can introduce two types of N-gradings:

Type 1: m0 =
⊕

i≥1 Li , where L1 = span{e1, e2} and Li = span{ei+1}.
Type 2: m0 =

⊕
i≥1 L̃i , where L̃1 = span{e1} and L̃i = span{ei}.

In the case of infinite-dimensional N-graded Lie algebras of maximal class, Vergne
proved the following theorem.

Theorem 3.2 Let L =
⊕

i∈N Li be an infinite-dimensional N-graded Lie algebra of
maximal class and suppose L = 〈L1〉. Then L ∼= m0 (with Type 1 grading).

By taking quotients of m0 we obtain finite-dimensional filiform Lie algebras
m0(n) = m0/In where In = span{en+1, en+2, . . . }. We next introduce other im-
portant examples of infinite-dimensional Lie algebras of maximal class.

Example 3.3 The Lie algebra m2 is defined by its basis {e1, e2, . . . } with multipli-
cation table as follows

[e1, ei] = ei+1, i ≥ 2, [e2, ei] = ei+2, i ≥ 3,

with the remaining products all zero.

Example 3.4 The Lie algebra W (the Witt algebra) is defined by its basis
{e1, e2, . . . } with multiplication table as follows

[ei , e j] = ( j − i)ei+ j , i, j ≥ 1.

In [F] the classification of N-graded Lie algebras of maximal class L =
⊕

i∈N Li

generated by L1, L2 was obtained. Namely, the following theorem holds.

Theorem 3.5 Let L =
⊕

i∈N Li be an infinite-dimensional N-graded Lie algebra of
maximal class and suppose L = 〈L1, L2〉. Then one of the following holds:

(i) L ∼= m0;
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(ii) L ∼= m2;
(iii) L ∼= W .

(Note that this result was also obtained 14 years later in [SZ], and it also follows
from [M2, Theorem 5.17] 2004.)

Let us now consider N-graded Lie algebras of maximal class that are generated by
graded components of degrees 1 and q where q > 2. Hence,

g =
∞⊕

i=1,q
gi .

We give some examples of such algebras below.

Example 3.6 The Lie algebra mq
0 is defined by its basis e1, eq, . . . with multiplica-

tion table as follows
[e1, ei] = ei+1, i ≥ q,

and the remaining products are zero. The basis as above will be called the standard
basis for mq

0.

By taking quotients of mq
0 we obtain finite-dimensional filiform Lie algebras

mq
0(n) = mq

0/In, where In = span{en+1, en+2, . . . } also generated by components
of degrees 1 and q.

Example 3.7 The Lie algebra mq has the basis e1, eq, . . . and the following multi-
plication table:

[e1, ei] = ei+1, i ≥ q,

[eq, ei] = eq+i , i ≥ q + 1,

with the other products zero.

Example 3.8 The Lie algebra W q is given by its basis e1, eq, . . . with the following
multiplication table:

[ei , e j] = ( j − i)ei+ j ,

with the remaining products all zero.

Notice that W q is a nonsolvable Lie algebra of maximal class. It is not known
yet whether there are nonsolvable Lie algebras of maximal class other than algebras
described in the preceding example. The isomorphism classes of solvable Lie algebras
of maximal class were given in [B] (see also [L]).

Here is the main conjecture.

Conjecture Let g be an N-graded Lie algebra of maximal class generated by graded
components of degrees 1 and q. Then g is isomorphic (as a graded algebra) to one of the
following three algebras: mq

0, mq, W q.

Later we will see that this conjecture is actually equivalent to the conjecture from
[M1, p. 190].

For q > 2, we show the following theorem.
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Theorem 3.9 Let g be an N-graded Lie algebra of maximal class generated by nonzero
graded components g1 and gq, where q > 2, and let gq+2 6= {0}. If

[gq, gq+1] = · · · = [g2q, g2q+1] = 0,

then g ∼= mq
0.

In some sense this result is similar to Theorem 3.2. If g is generated by two graded
components as above, then under some technical condition there can only be one
isomorphism type.

Besides, we prove the conjecture for q = 3 using some general results on central
extensions of mq

0(n) obtained in Subsections 3.1 and 3.2.

3.1 Central Extensions

Let L be a Lie algebra and V a vector space with a skew-symmetric bilinear form
θ : L× L 7→ V , i.e., θ(x, x) = 0 for all x ∈ L. Then θ, as above, satisfying

θ([x, y], z) + θ([z, x], y) + θ([y, z], x) = 0,

where x, y, z ∈ L, is said to be a cocycle. If θ : L×L 7→ V is a cocycle, then Lθ = L⊕V
with the product defined by

[x + v, y + w]′ = [x, y] + θ(x, y)

is a Lie algebra. Then Lθ is said to be a central extension of L by V . Note that V is
central in Lθ. If both L and Lθ = L⊕V are filiform, then θ 6= 0. Otherwise, L2

θ = L2

and
Lθ/L2

θ = (L⊕V )/L2 = L/L2 ⊕V.

Then
dim Lθ/L2

θ = dim L/L2 + dim V ≥ 3,

since dim L/L2 = 2 (this fact holds for any filiform Lie algebra). Therefore, Lθ cannot
be filiform, a contradiction. Furthermore, if Lθ = L⊕V is a one-dimensional filiform
central extension of a filiform L, i.e., dim V = 1, then Lθ is generated by L. Indeed,
since dim V = 1, V = span {w}, w 6= 0. As noted above, θ 6= 0, i.e., there are two
x, y ∈ L such that θ(x, y) 6= 0. Thus, [x, y]′ = [x, y] + θ(x, y) = [x, y] + αw for
some α 6= 0. Hence, w = α−1[x, y]′ − α−1[x, y] ∈ 〈L〉, and, therefore, V ⊆ 〈L〉.

Let g be an N-graded filiform Lie algebra generated by nonzero g1 and gq, q > 2.
Then g = g1 ⊕ gq ⊕ · · · ⊕ gn for some n. Without any loss of generality we assume
that gn 6= {0}, otherwise, we discard it.

Lemma 3.10 Let g be an N-graded filiform Lie algebra generated by nonzero g1 and
gq. Additionally, assume that g2+q 6= {0}. Then every gi , i = 1, q, . . . , n is a nonzero
component of dimension one.

Proof We first want to prove that if gi 6= {0}, then dim gi = 1. Since g = 〈g1, gq〉,
g2+q = [g1, [g1, gq]] 6= 0. Hence, [g1, gq] 6= 0 and g1+q = [g1, gq] 6= {0}. Then we
can write g as

g = g1 ⊕ gq ⊕ gq+1 ⊕ gq+2 ⊕ gi1 ⊕ · · · ⊕ gis ,
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where gi1 , . . . , gis are the remaining nonzero graded components. Hence, dim g ≥
4 + s (the total number of nonzero components). Since g is filiform, its nil-index
m = dim g − 1 ≥ 3 + s. Directly computing components of the lower central series
of g we obtain the following:

g2 ⊆ gq+1 + · · · + gis ,

g3 ⊆ gq+2 + · · · + gis ,

g4 ⊆ gi1 + · · · + gis ,

...

g3+r ⊆ gir + · · · + gis ,

...

g3+s−1 ⊆ gis−1 + gis ,

g3+s ⊆ gis ,

g4+s = {0}.

This means that nil-index m ≤ 3 + s. Therefore, m = dim g− 1 = 3 + s, and dim g =
4+ s. Since there are exactly 4+ s nonzero graded components, each component must
be one-dimensional. Since dim g/g2 = 2 and dim gi/gi+1 = 1, i ≥ 2, all inclusions
above become equalities.

We next show that there is no ‘gap’ in the grading from q + 1 to n. This means
that all gi , i = q + 1, . . . , n must be nonzero. Assume the contrary; i.e., there exists s,
q < s < n such that gs = {0}. Let s be the smallest number satisfying this condition.
Clearly, s > 2 + q. Let gs+t , t ≥ 1, s + t ≤ n be the first nonzero component following
gs−1. Consider g̃ = g/ J, where J =

⊕
j>s+t g j is the ideal of g. Then g̃ is also filiform,

and

g̃ = g̃1 ⊕ g̃q ⊕ · · · ⊕ g̃s−1 ⊕ g̃s+t ,

where g̃i = gi + J, dim g̃i = dim gi = 1. Besides, g̃ is also generated by g̃1 and g̃q.
We next choose a basis: e1, eq, . . . , es−1, es+t such that [e1, eq] = eq+1, and [e1, eq+1] =
eq+2. Since g̃s = {0}, [e1, es−1] = 0. It is known that a filiform Lie algebra g̃ has
an adapted basis: f1, f2, . . . , fk, k = s − q + 2 = dim g̃ such that [ f1, fi] = fi+1,
i = 2, . . . , k− 1, and [ fi , f j] ∈ span{ fi+ j , . . . , fk}. Moreover,

g̃/g̃2 = span{ f1, f2} + g̃2 = span{e1, eq} + g̃2,

...

g̃i/g̃i+1 = span{ fi+1} + g̃i+1 = span{eq+i−1} + g̃i+1,

...

g̃s−q/g̃s−q+1 = span{ fs−q+1} + g̃s−q+1 = span{es−1} + g̃s−q+1,

g̃s−q+1/g̃s−q+2 = span{ fs−q+2} = span{es+t}
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Therefore, e1 = λ1 f1 +λ2 f2 + h, where h ∈ span{ f3, . . . , fk} and es−1 = µ fk−1 +β fk,
µ 6= 0, k = s− q + 2. Then

0 = [e1, es−1] = [λ1 f1 + λ2 f2 + h, µ fk−1 + β fk] = λ1µ[ f1, fk−1] = λ1µ fk.

Since µ 6= 0 we have that λ1 = 0. Hence, e1 = λ2 f2 + h. Write eq+1 = γ f3 + h′,
γ 6= 0, h′ ∈ span{ f4, . . . , fk}, and eq+2 = δ f4 + h′′, δ 6= 0, h′′ ∈ span{ f5, . . . , fk}.
Therefore,

eq+2 = [e1, eq+1] = [λ2 f2 + h, γ f3 + h′] = λ2γ f5 + h̄,

where h̄ ∈ span{ f6, . . . , fk}. Comparing with eq+2 = δ f4 + h′′ we obtain that δ = 0,
a contradiction. This means that there cannot be any ‘gap’ in the grading of g. The
proof is complete.

Lemma 3.11 Let g be an N-graded filiform Lie algebra generated by nonzero g1, gq,
and let g2+q 6= {0}. Then there is a basis for g : e1, eq, . . . , en such that gi = span{ei}
and [e1, ei] = ei+1, i = q, . . . , n− 1.

Proof As follows from the previous lemma, each component is of dimension one.
Therefore, it suffices to show that [g1, gi] 6= 0 for any i = 1, q, . . . , n − 1. We know
that [g1, gq] 6= 0, [g1, gq+1] 6= 0. Assume that there exists i, n > i > q + 1 such that
[g1, gi] = 0. Consider g̃ = g/ J, where J =

⊕
j>i+1 g j . Then

g̃ = g̃1 ⊕ g̃q ⊕ · · · ⊕ g̃i ⊕ g̃i+1,

where g̃l = gl + J, l = 1, q, . . . , i + 1. Then g̃i−q+1 = g̃i ⊕ g̃i+1 and g̃i−q+2 =
[g̃, g̃i ⊕ g̃i+1] = {0}. This means that dim g̃i−q+1/g̃i−q+2 = 2. This contradicts the
fact that g̃ is filiform. Therefore, [g1, gi] 6= 0 for any i = 1, q, . . . , n − 1. It is now
easy to see that we can choose a required basis for g.

The following corollaries are immediate consequences of the above lemmas.

Corollary 3.12 Let g be an N-graded filiform Lie algebra generated by nonzero g1, gq,
and let g2+q 6= {0}. If n < 2q + 1, then g ∼= mq

0(n).

Corollary 3.13 Let g be an N-graded Lie algebra of maximal class generated by both
graded components g1 and gq, and let gq+2 6= {0}. Then each graded component is one-
dimensional. Moreover, there exists a basis e1, eq, . . . for g such that gi = span{ei} and
[e1, ei] = ei+1, i > 1.

Definition 3.14 Let g be an N-graded filiform Lie algebra as above. Any basis
{e1, eq, . . . , en} of g satisfying gi = span{ei}, and [e1, ei] = ei+1, i > 1, will be called
canonical.

3.2 Central Extensions of mq
0(n)

In this section we discuss one-dimensional N-graded filiform central extensions of
mq

0(n). The following lemma is similar to [M2, Corollary 5.3]. As was noted earlier
if g is an N-graded one-dimensional filiform central extension of mq

0(n), then g is
generated by g1 and gq, since mq

0(n) = 〈g1, gq〉 (see the beginning of Subsection 3.1).
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Lemma 3.15 Let g be a one-dimensional N-graded filiform central extension of
mq

0(n).

(i) If n = 2k + 1, then g ∼= mq
0(2k + 2).

(ii) If n = 2k, then either g ∼= mq
0(2k + 1) or g ∼= mq

0,1(2k + 1) defined by the basis
e1, eq, . . . , e2k, e2k+1 and structure relations:

[e1, ei] = ei+1, i = q, . . . , 2k and [er, e2k+1−r] = (−1)r−ke2k+1, r = q, . . . , k.

Proof First we consider the case of odd n = 2k+1. If k < q, then n = 2k+1 < 2q+1
and n + 1 = 2k + 2 < 2q + 1. By Corollary 3.12, g ∼= mq

0(2k + 2). Now let k ≥ q. Let
us choose the standard basis for mq

0(2k + 1):

e1, eq, . . . , e2k+1,

where [ei , e j] = λi jei+ j , λ1i = 1, i ≥ q and λi j = 0, i, j ≥ q. Let g de-
note an N-graded one-dimensional filiform central extension of mq

0(2k + 1). By
Lemma 3.11, the standard basis can be extended to the following canonical basis
e1, eq, . . . , e2k+1, e2k+2 of g such that

[ei , e2k+2−i] = λi,2k+2−ie2k+2, i = q, . . . , k.

Note that if i + j < 2k + 2, then the products [ei , e j] are exactly the same as in
mq

0(2k + 1). Let us find unknown structure constants λi,2k+2−i , i = q, . . . , k. We
know that J(e1, er, e2k+1−r) = 0, where r = q, . . . , k and J( ) is the Jacobian. This
equation can be rewritten in terms of λ’s as follows:

(3.1) λ1rλ1+r,2k+1−r + λr,2k+1−rλ2k+1,1 + λ2k+1−r,1λ2k+2−r,r = 0.

Note that λ1r = 1, λ2k+1−r,1 = −1, and λr,2k+1−r = 0. Therefore, (3.1) becomes

λ1+r,2k+1−r + λr,2k+2−r = 0, r = q, . . . , k,

and λk+1,k+1 = 0. Clearly, this system has a unique solution: λr,2k+2−r = 0, r =
q, . . . , k. Thus, mq

0(2k + 2) is the only central extension of mq
0(2k + 1).

Let us now assume that n = 2k. If k < q, then 2k < 2q and 2k + 1 < 2q + 1.
By Corollary 3.12, g ∼= mq

0(2k + 1). Now let k ≥ q. Choose the standard basis for
mq

0(2k):

e1, eq, . . . , e2k,

where [ei , e j] = λi jei+ j , λ1i = 1, i ≥ q, and λi j = 0, i, j ≥ q. Let g be an N-graded
one-dimensional filiform central extension of mq

0(2k). By Lemma 3.11, the stan-
dard basis can be extended to the canonical basis e1, eq, . . . , e2k+1, e2k+2 of g such that
where [er, e2k+1−r] = λr,2k+1−re2k+1, r = q, . . . , k, and the remaining products are
exactly the same as in mq

0(2k). Let us find unknown structure constants λr,2k+1−r,
r = q, . . . , k. Since g is a Lie algebra, we have that for every r = q, . . . , k,

J(e1, er, e2k−r) = 0.

Therefore,

λ1rλ1+r,2k−r + λr,2k−rλ2k,1 + λ2k−r,1λ2k+1−r,r = 0,
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where λ1r = 1, λ2k,1 = λ2k−r,1 = −1, and λr,2k−r = 0. Equivalently,

λ1+r,2k−r + λr,2k+1−r = 0.

Set λk,k+1 = β. Then λr,2k+1−r = (−1)k−rβ. For β = 0, g is isomorphic to mq
0(2k+1).

Assume that β 6= 0. Then introducing a new N-graded basis {e′1, e′q, . . . , e′2k+1} such
that e′1 = e1, e′i = β−1ei , i = q, . . . , 2k+1, we obtain the following structure relations
for g:

[e′1, e
′
i] = e′i+1, i = q, . . . , 2k,

[e′r, e
′
2k+1−r] = (−1)r−ke′2k+1.

This is a Lie algebra, since J(ei , e j , er) = 0 for any admissible i < j < r. Indeed, if
i+ j+r < 2k+1, then J(ei , e j , er) = 0, since mq

0(2k) is a Lie algebra. If i+ j+r = 2k+1,
then the following two cases occur.

Case 1: i ≥ q. Since q > 1 we have that i + j < j + r < i + r < 2k + 1. Consequently,
λi j = λ jr = λir = 0. Thus,

J(ei , e j , er) = (λi jλi+ j,r + λ jrλ j+r,i + λriλr+i, j)ei+ j+r = 0.

Case 2: i = 1. Then j + r = 2k, r = 2k− j. Then

J(e1, e j , e2k− j) = λ1 jλ1+ j,2k− j + λ j,2k− jλ2k,1 + λ2k− j,1λ2k+1− j, j

= λ1+ j,2k− j + λ j,2k+1− j = 0.

The proof is complete.

Definition 3.16 The basis e1, . . . , e2k+1 for mq
0,1(2k + 1) with multiplication table

as in Lemma 3.15 will be called the standard basis.

Lemma 3.17 Let g be a one-dimensional N-graded filiform central extension
of mq

0,1(2k + 1). Then g is isomorphic to mq
0,2(2k + 2), defined by its basis

e1, eq, . . . , e2k+1, e2k+2 and structure relations

[e1, ei] = ei+1, i = q, . . . , 2k + 1, [el, e2k+1−l] = (−1)l−ke2k+1, l = q, . . . , k,

[er, e2k+2−r] = (−1)r−k(k + 1− r)e2k+2, r = q, . . . , k + 1.

Proof First of all, we determine all N-graded one-dimensional central extensions
of mq

0,1(2k + 1) in the same way as we did in Lemma 3.15. Let e1, eq, . . . , e2k+1 de-
note the standard basis for mq

0,1(2k + 1). Then its one-dimensional N-graded fili-
form central extension g can be defined by the canonical basis: e1, eq, . . . , e2k+1, e2k+2

(see Lemma 3.11). Arguing in the same way as in Lemma 3.15 we obtain that
J(e1, er, e2k+1−r) = 0 and r = q, . . . , k is equivalent to

(3.2) λ1rλ1+r,2k+1−r + λr,2k+1−rλ2k+1,1 + λ2k+1−r,1λ2k+2−r,r = 0.

Note that in (3.2), λ1r = 1, λ2k+1,1 = −1, λ2k+1−r,1 = −1 and λr,2k+1−r = (−1)r−k.
Hence, (3.2) takes the form

λ1+r,2k+1−r + λr,2k+2−r = (−1)r−k.
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This yields λr,2k+2−r = (−1)r−k(k + 1− r). Therefore, g has the same multiplication
table as mq

0,2(2k + 2) does. We next show that mq
0,2(2k + 2) is indeed a Lie algebra.

Consider any i, j, r = 1, q, . . . , 2k + 2 such that i < j < r and i + j + r = 2k + 2. The
following two cases occur.

Case 1: i ≥ q. Then

i + j = 2k + 2− r < 2k + 2− q < 2k

since q > 2. Likewise, j + r < 2k and i + r < 2k. Thus, λi j = λ jr = λir = 0, and

J(ei , e j , er) = (λi jλi+ j,r + λ jrλ j+r,i + λriλr+i, j)ei+ j+r = 0.

Case 2: i = 1. Then j + r = 2k + 1, r = 2k + 1− j. Then

J(e1, e j , e2k+1− j) = λ1 jλ1+ j,2k+1− j + λ j,2k+1− jλ2k+1,1 + λ2k+1− j,1λ2k+2− j, j

= λ1+ j,2k+1− j + λ j,2k+2− j − (−1) j−k = 0.

Therefore, J(ei , e j , er) = 0 for any i, j, r = 1, q, . . . , 2k + 2. This means that
mq

0,2(2k + 2) is a Lie algebra. The proof is complete.

Definition 3.18 Let mq
0,3(2k + 3;β1) denote an algebra spanned by e1, eq, . . . ,

e2k+2, e2k+3 with the following structure relations:

[e1, ei] = ei+1, i = q, . . . , 2k + 2, [el, e2k+1−l] = (−1)l−ke2k+1, l = q, . . . , k,

[e j , e2k+2− j] = (−1) j−k(k + 1− j)e2k+2, j = q, . . . , k + 1,

[er, e2k+3−r] = (−1)r−k

((
k− r + 2

k− r

)
− β1

)
e2k+3, r = q, . . . , k + 1,

where β1 is any scalar.

Definition 3.19 We inductively define algebras of type mq
0,s(2k + s; β̄) where s ≥ 3,

β̄ = (β1, . . . , βl) and l =
[

s+1
2

]
−1. An algebra of type mq

0,3(2k+3;β1) was introduced

above. Assume that mq
0,s(2k + s; β̄) with a basis: e1, eq, . . . , e2k+s has been constructed.

(i) For an even s, mq
0,s+1(2k + s + 1; β̄′) = span{e1, eq, . . . , e2k+s, e2k+s+1}, where

β̄′ = (β1, . . . , βl, βl+1) (with additional parameter βl+1) and

[er, e2k+s+1−r] = (−1)k−r

((
k− r + s

k− r

)
+

l+1∑
i=1

(−1)i

(
k− r + s− i

k− r + i

)
βi

)
e2k+s+1,

r = q, . . . , k +
[ s + 1

2

]
.

(3.3)
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(ii) For an odd s, mq
0,s+1(2k + s + 1; β̄′) = span{e1, eq, . . . , e2k+s, e2k+s+1}, where

β̄′ = β̄ = (β1, . . . , βl) and

[er, e2k+s+1−r] = (−1)k−r

((
k− r + s

k− r

)
+

l∑
i=1

(−1)i

(
k− r + s− i

k− r + i

)
βi

)
e2k+s+1,

r = q, . . . , k +
[ s + 1

2

]
.

(3.4)

Additionally, [e1, e2k+s] = e2k+s+1, and if i + j ≤ 2k + s, then [ei , e j] remains the
same as in mq

0,s(2k + s; β̄).

The basis e1, . . . , e2k+s+1 for mq
0,s+1(2k + s + 1; β̄′) with the above multiplication

table will be called the standard basis.

Lemma 3.20 Let mq
0,s(2k + s; β̄) be a Lie algebra. Then mq

0,s(2k + s; β̄) is filiform.
If g is its one-dimensional N-graded filiform central extension, then g is isomorphic to
mq

0,s+1(2k + s + 1; β̄′) for some β̄′.

Proof By our assumption mq
0,s(2k + s; β̄) is a Lie algebra. As follows from Defini-

tion 3.19,
mq

0,s(2k + s; β̄) = g1 ⊕ gq ⊕ · · · ⊕ g2k+s,

where gi = span{ei} is an N-grading. Since [ei , ei] = ei+1, i = q, . . . , 2k + s − 1, we
have that

g2 = gq+1 ⊕ · · · ⊕ g2k+s, and gi = gq+i−1 ⊕ · · · ⊕ g2k+s,

where i > 2. Hence, dim g/g2 = 2 and dim gi/gi+1 = 1, which is a necessary and
sufficient condition for g to be filiform. It is also easy to see that mq

0,s(2k + s; β̄) is
generated by the first two graded components.

Let us now determine all N-graded one-dimensional filiform central extensions
of mq

0,s(2k + s; β̄). Let e1, eq, . . . , e2k+s be the standard basis for mq
0,s(2k + s; β̄). By

Lemma 3.11 its one-dimensional N-graded filiform central extension can be defined
by the following canonical basis:

e1, eq, . . . , e2k+2l−1, e2k+2l.

Since g is a Lie algebra, the Jacobian J(e1, er, e2k+s−r) = 0, r = q, . . . , k +
[

s
2

]
. Equiv-

alently,

(3.5) λ1rλ1+r,2k+s−r + λr,2k+s−rλ2k+s,1 + λ2k+s−r,1λ2k+s+1−r,r = 0

where λ1r = 1, λ2k+s,1 = λ2k+s−r,1 = −1. Therefore, it can be rewritten as

(3.6) λ1+r,2k+s−r + λr,2k+s+1−r = λr,2k+s−r.

Consider the following two cases.

Case 1: s = 2l + 1. Then the right side of (3.6) is

λr,2k+s−r = (−1)k−r

((
k− r + 2l

k− r

)
+

l∑
i=1

(−1)i

(
k− r + 2l− i

k− r + i

)
βi

)
,
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r = q, . . . , k + l. Since λk+l,k+l = 0, this system of linear equations has a unique
solution:
(3.7)

λr,2k+s+1−r = (−1)k−r

((
k− r + 2l + 1

k− r

)
+

l∑
i=1

(−1)i

(
k− r + 2l + 1− i

k− r + i

)
βi

)
,

r = q, . . . , k + l. These structure constants define mq
0,s+1(2k + s + 1; β̄′), where β̄′ = β̄.

Case 2: s = 2l. The right side of (3.6) is

λr,2k+s−r = (−1)k−r

((
k− r + 2l− 1

k− r

)
+

l−1∑
i=1

(−1)i

(
k− r + 2l− 1− i

k− r + i

)
βi

)
.

Introducing a new parameter βl = λk+l,k+l+1, we obtain

λr,2k+s+1−r = (−1)k−r

((
k− r + 2l

k− r

)
+

l∑
i=1

(−1)i

(
k− r + 2l− i

k− r + i

)
βi

)
,

which defines a Lie algebra of type mq
0,2k+s+1(2k + s + 1; β̄′), where β̄′ = (β̄, βl). This

proves the lemma.

Proposition 3.21 For any value of multiparameter β̄ = (β1, . . . , β[ s+1
2 ]−1), s =

1, . . . , q, mq
0,s(2k + s; β̄) is a Lie algebra.

(i) If s < q is odd, then mq
0,s(2k+s; β̄) has a unique N-graded one-dimensional central

extension which is mq
0,s+1(2k + s + 1; β̄) with the same multiparameter β̄.

(ii) If 0 < s < q is even, then mq
0,s(2k + s; β̄) has infinitely many non-isomorphic

N-graded one-dimensional central extensions. Each such extension is of the form
mq

0,s+1(2k+s+1; β̄′) with multiparameter β̄′ = (β̄, β[ s+1
2 ]). Moreover, for different

values of β[ s+1
2 ], we obtain non-isomorphic central extensions.

Proof Let us prove by induction on s that mq
0,s(2k+s; β̄), s = 1, . . . , q is a Lie algebra.

Lemma 3.17 is a basis for induction when s = 1. Assume that for some s < q mq
0,s(2k+

s; β̄) is a Lie algebra for any β̄. Consider ḡ = mq
0,s+1(2k + s + 1; β̄′). It follows from

Definition 3.19 that ḡ is obtained from an appropriate mq
0,s(2k + s; β̄) by extending its

standard basis and adding relations (3.3) or (3.4). Let e1, eq, . . . , e2k+s, e2k+s+1 be the
standard basis for ḡ. By our inductive assumption, J(ei , e j , ek) = 0 if i + j +r ≤ 2k+ s.
Hence, we only need to consider the case when i + j + r = 2k + s + 1, i < j < r.

If i ≥ q, then j + r ≤ 2k + (s− q) + 1 ≤ 2k, because s < q. Since

i + j < i + r < j + r ≤ 2k,

we have that λi, j = λi,r = λ j,r = 0. Therefore,

J(ei , e j , ek) = (λi, jλi+ j,k + λ j,kλ j+k,i + λk,iλk+i, j)ei+ j+k = 0.

If i = 1, then j + r = 2k + s. In this case, J(e1, e j , e2k+s− j) = 0 is equiva-
lent to (3.5), and as was already shown, (3.7) is a solution to (3.5). Consequently,
mq

0,2k+s+1(2k + s + 1; β̄′) is a Lie algebra for any values of β̄′.
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On the other hand, by Lemma 3.20 any one-dimensional filiform central exten-
sion mq

0,s(2k + s; β̄) must be of type mq
0,s+1(2k + s + 1; β̄′). For an odd s it is unique,

while for an even s there is one-parameter family of them.
Let s be a positive even integer such that 1 < s < q. It remains to show that for

different values of the parameter β[ s+1
2 ] we obtain non-isomorphic N-graded Lie alge-

bras. For this, we consider two one-dimensional central extensions of mq
0,s(2k + s; β̄)

corresponding to different values of β[ s+1
2 ]:

g1 = span{e1, eq, . . . , e2k+s, e2k+s+1},

[er, e2k+s+1−r] = ( fr,s + (−1)k−r+ s
2 β)e2k+s+1,

where

fr,s = (−1)k−r

((
k− r + s

k− r

)
+

s/2−1∑
i=1

(−1)i

(
k− r + s− i

k− r + i

)
βi

)
,

β is a particular value of β[ s+1
2 ], and

g2 = span{e′1, e′q, . . . , e′2k+s, e
′
2k+s+1},

[e′r, e
′
2k+s+1−r] = ( fr,s + (−1)k−r+ s

2 β′)e′2k+s+1,

where fr,s is as above and β′ is another value of β[ s+1
2 ] such that β 6= β′. Notice

that g1 and g2 have the same structure constants λi j whenever i + j ≤ 2k + s. Let
us now assume that g1

∼= g2 as N-graded algebras. This means that there exists a
graded isomorphism ϕ : g1 → g2 defined by ϕ(ei) = αie′i , where i = 1, q, . . . , 2k +
s + 1. Clearly, every αi is a nonzero scalar. Then ϕ([e1, ei]) = [ϕ(e1), ϕ(ei)], i =
1, q, . . . , 2k + s. Hence, αi+1 = α1 · αi , i = q, q + 1, . . . , 2k + s, which means that

(3.8) αi = α
i−q
1 · αq,

where i = q + 1, . . . , 2k + s + 1. Next, we can always choose i, j > 1, 2k < i + j ≤
2k + s such that λi j 6= 0. Then ϕ([ei , e j]) = [ϕ(ei), ϕ(e j)], λi jαi+ j = λi jαiα j ,
αi+ j = αiα j . Using (3.8) we get αq = α

q
1. It follows from multiplication tables of g1

and g2 that for r0 = k + s
2 we have

[er0 , e2k+s+1−r0 ] = βe2k+s+1, [e′r0
, e′2k+s+1−r0

] = β′e′2k+s+1.

Therefore, ϕ([er0 , e2k+s+1−r0 ]) = [ϕ(er0 ), ϕ(e2k+s+1−r0 )], which means that

βα2k+s+1 = β′αr0α2k+s+1−r0 .

Using (3.8) we obtain βα2k+s+1
1 = β′α2k+s+1

1 , hence β = β′, which contradicts our
original assumption. Thus, ϕ is not an isomorphism. The proof is complete.

Remark 3.22 In order to simplify notation for the s-th central extension of mq
0(2k)

we will omit β̄ in mq
0,2k+s(2k + s; β̄) whenever the value of β̄ is not important and

denote it by mq
0,2k+s(2k + s).

We next focus on studying m-th filiform central extensions of mq
0(2k) where m >

q.
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Lemma 3.23 Let k > q, and let g = mq
0,q+s+1(2k + q + s + 1), s ≥ 1, be a Lie algebra.

If λq,2k+s = 0, then either λq,2k+s+1 = 0 or λq+1,2k+s−q + λq,2k+s−q = 0.

Proof Since k > q, 2k > 2q + 1 = q + (q + 1). It follows from Definition
3.19 that the product [eq, eq+1] in g must be the same as in mq

0(2k). Therefore,
[eq, eq+1] = λq,q+1e2q+1 = 0. Since mq

0,q+s+1(2k + q + s + 1) is a Lie algebra, we have
that J(eq, eq+1, e2k+s−q) = 0. Equivalently,

λq+1,2k+s−qλ2k+s+1,q + λ2k+s−q,qλ2k+s,q+1 = 0.

By Leibnitz rule for derivations (see the beginning of Subsection 3.3),

λq+1,2k+s + λq,2k+s+1 = λq,2k+s.

Hence, λq+1,2k+s = λq,2k+s − λq,2k+s+1 = −λq,2k+s+1. Thus, the above equation takes
the form

(λq+1,2k+s−q + λq,2k+s−q)λq,2k+s+1 = 0.

Hence, either λq+1,2k+s−q + λq,2k+s−q = 0 or λq,2k+s+1 = 0 as required.

Lemma 3.24 Let k > q. If both mq
0,q+1(2k + q + 1) and mq

0,q+2(2k + q + 2) are Lie
algebras, then

(i) λq,2k+1 = 0,
(ii) λq,2k+2 = 0 if k > q + 1.

Proof Since k > q, 2k > 2q + 1 = q + (q + 1), and similarly to Lemma 3.23 we can
show that [eq, eq+1] = λq,q+1e2q+1 = 0.

(i) By our assumption, mq
0,q+1(2k+q+1) is a Lie algebra. Thus, J(eq, eq+1, e2k−q) =

0. Equivalently,
λq+1,2k−qλ2k+1,q + λ2k−q,qλ2k,q+1 = 0.

It follows from the multiplication table of mq
0,q+1(2k + q + 1) that λ2k−q,q = 0 and

λq+1,2k−q = (−1)q+1−k 6= 0. Therefore, λq,2k+1 = 0. Notice that λq,2k+1 = 0 in
mq

0,q+2(2k + q + 2) as well.
(ii) Since λq,2k+1 = 0 we can use Lemma 3.23 for s = 1. Hence, either λq,2k+2 =

0 or λq+1,2k+1−q + λq,2k+1−q = 0. Recall that λq+1,2k+1−q = (−1)q+1−k(k − q) and
λq,2k+1−q = (−1)q−k. Hence, if k > q + 1, then λq+1,2k+1−q + λq,2k+1−q 6= 0. Thus,
λq,2k+2 = 0, as required.

3.3 Proof of Theorem 3.9

Let g = span{e1, . . . , en} be an N-graded Lie algebra such that

[e1, ei] = ei+1, i = 1, . . . , n− 1, [ei , e j] = λi jei+ j , i, j > 1.

The Leibnitz rule for derivation ad(e1) yields

(3.9) λi j = λi+1, j + λi, j+1.

Lemma 3.25 Let k > 2q. If g = mq
0,2q(2k + 2q) is a Lie algebra, then we have

λ2q−1,2k+1 = λ2q−2,2k+2 = · · · = λq,2k+q = 0.
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Proof By the previous lemma we have that λq,2k+1 = λq,2k+2 = 0, since k 6= q + 1.
Since k > 2q we have that

λq,q+1 = λq+1,q+2 = · · · = λ2q−1,2q = 0.

Indeed, since i+(i+1) = 2i+1 < 2k, where i = q, . . . , 2q−1, all products [ei , ei+1] =
λi,i+1e2i+1 in g must be the same as in mq

0(2k). Therefore, [ei , ei+1] = λi,i+1e2i+1 = 0,
where i = q, . . . , 2q− 1.

Let us now show that λq+2,2k+1 = λq+1,2k+2 = λq,2k+3 = 0. Indeed,

J
(

eq+1, eq+2, e2k−q

)
= 0.

Since λq+1,q+2 = 0, we have that

λq+2,2k−qλ2k+2,q+1 + λ2k−q,q+1λ2k+1,q+2 = 0,

where λq+2,2k−q = (−1)q+2−k(k− 1− q) and λq+1,2k−q = (−1)q+1−k. Hence,

(k− 1− q)λq+1,2k+2 + λq+2,2k+1 = 0.

Using relation (3.9), we have

λq+1,2k+2 + λq+2,2k+1 = λq+1,2k+1,

where λq+1,2k+1 = λq,2k+1 − λq,2k+2 = 0 (by (3.9) ).
Since k > 2q, k− 1− q 6= 1, we have that

λq+1,2k+2 = λq+2,2k+1 = 0.

Finally, λq+1,2k+2 = λq,2k+2 − λq,2k+3 (by (3.9) ). Hence, λq,2k+3 = 0.
Let us now use induction on s. Assume that

λq,2k+3 = · · · = λq,2k+s = 0,

λq+s−1,2k+1 = λq+s−2,2k+2 = · · · = λq+1,2k+s−1 = 0,

where 2 ≤ s < q.
We know that

q + s− 1 < q + s < 2k + 2− q− s.

Besides,

(q + s− 1) + (q + s) = 2q + 2s− 1 ≤ 4q− 1 < 2k.

Thus, λq+s−1,q+s = 0. Therefore, J(eq+s−1, eq+s, e2k+2−q−s) = 0 is equivalent to

λq+s,2k+2−q−sλ2k+2,q+s−1 + λ2k+2−q−s,q+s−1λ2k+1,q+s = 0.

Since λq+s,2k+2−q−s = (−1)q+s−k(k + 1 − q − s) and λq+s−1,2k+2−q−s = (−1)q+s−1−k,
we have that

(k + 1− q− s)λq+s−1,2k+2 + λq+s,2k+1 = 0.

By relation (3.9),

λq+s−1,2k+2 + λq+s,2k+1 = λq+s−1,2k+1,

where λq+s−1,2k+1 = 0 by inductive assumption. Since k > 2q, we have that
k + 1− q− s 6= 1 and λq+s−1,2k+2 = λq+s,2k+1 = 0. Next λq+s−1,2k+2 = λq+s−2,2k+2 −
λq+s−2,2k+3. Also, λq+s−2,2k+2 = 0 by inductive assumption. Thus, λq+s−2,2k+3 = 0.
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Likewise, λq+s−2,2k+3 = λq+s−3,2k+3 − λq+s−3,2k+4. Thus, λq+s−3,2k+4 = 0. After a
finite number of steps we get the following:

λq+1,2k+s = λq,2k+s − λq,2k+s+1.

Since λq+1,2k+s = λq,2k+s = 0, we have that λq,2k+s+1 = 0, as required. Therefore,

λq+s,2k+1 = λq+s−1,2k+2 = · · · = λq,2k+s+1 = 0.

Finally, for s = q− 1 we obtain

λ2q−1,2k+1 = λ2q−2,2k+2 = · · · = λq,2k+q = 0,

as required. The proof is complete.

Lemma 3.26 Let k > 2q. Then g = mq
0,2q−1(2k + 2q − 1; β̄), where β̄ =

(β1, . . . , βq−1), has no one-dimensional N-graded filiform central extensions.

Proof Assume that such a central extension exists. Then it must be of type
mq

0,2q(2k + 2q; β̄) and

[er, e2k+2q−r] =

(−1)k−r

((
k− r + 2q− 1

k− r

)
+

q−1∑
i=1

(−1)i

(
k− r + 2q− 1− i

k− r + i

)
βi

)
e2k+2q,

where r = q, . . . , k + q and the remaining products are the same as in mq
0,2q−1(2k +

2q− 1; β̄). Since k > 2q, we can apply Lemma 3.25. Hence, we have that

λq,2k+q = λq+1,2k+q−1 = · · · = λ2q−2,2k+2 = λ2q−1,2k+1 = 0.

Equivalently, we have q linear equations:(
k + q− 1

k− q

)
+

q−1∑
i=1

(−1)i

(
k + q− 1− i

k− q + i

)
βi = 0

(
k + q− 2

k− q− 1

)
+

q−1∑
i=1

(−1)i

(
k + q− 2− i

k− q− 1 + i

)
βi = 0

...(
k

k− 2q + 1

)
+

q−1∑
i=1

(−1)i

(
k− i

k− 2q + 1 + i

)
βi = 0

Consider the following matrix:

A =


( k

k−1

) ( k+1
k−2

)
. . .

(k+q−2
k−q+1

) (k+q−1
k−q

)(k−1
k−2

) ( k
k−3

)
. . .

(k+q−3
k−q

) ( k+q−2
k−q−1

)
...

...
. . .

...
...(k−q+1

k−q

) ( k−q+2
k−q−1

)
. . .

( k−1
k−2q+2

) ( k
k−2q+1

)

 .
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Dividing each row of A by its first entry (which is, of course, nonzero) we obtain the
following matrix:

B =


1 f1(x0) f2(x0) . . . fq−1(x0)
1 f1(x1) f2(x1) . . . fq−1(x1)
...

...
...

. . .
...

1 f1(xq−1) f2(xq−1) . . . fq−1(xq−1)

 ,

where

f1(x) = x(x + 2),

f2(x) = (x − 1)x(x + 2)(x + 3), . . . , fq−1(x) = (x − q + 2) · · · x(x + 2) · · · (x + q)

and
x0 = k− 1, x1 = k− 2, . . . , xq−1 = k− q.

We next want to prove that B is a nonsingular matrix. Let

y = f1(x), g2(y) = y(y − 3), . . . , gq−1(y) = y(y − 3) · · · (y + 2q− q2).

Then

B =


1 y0 g2(y0) . . . gq−1(y0)
1 y1 g2(y1) . . . gq−1(y1)
...

...
...

. . .
...

1 yq−1 g2(yq−1) . . . gq−1(yq−1)

 ,

where
y0 = x2

0 + 2x0, y1 = x2
1 + 2x1, . . . , yq−1 = x2

q−1 + 2xq−1.

Note that deg gi = i, i = 2, . . . , q−1. According to the statement on [SZ, p. 319], B is
a nonsingular matrix. Therefore, A is also non-singular. This implies that the above
system of linear equations is inconsistent. Hence, mq

0,2q(2k + 2q) is not a Lie algebra.
This implies that g has no one-dimensional N-graded filiform central extensions. The
proof is complete.

Let us now finish the proof of Theorem 3.9. Consider g =
⊕∞

i=1,q gi generated by
both g1 and gq that satisfies

(3.10) [gq, gq+1] = [gq+1, gq+2] = · · · = [g2q, g2q+1] = 0.

By Corollary 3.13, we can choose a basis for g : {e1, eq, eq+1, . . . }where [e1, ei] = ei+1,
and gi = span{ei}, i > 1. Hence, condition (3.10) is equivalent to

λq,q+1 = λq+1,q+2 = · · · = λ2q,2q+1 = 0,

where λi j are corresponding structure constants. Set r = 2q. By Corollary 3.12, g(r)
is isomorphic to mq

0(r). By Lemma 3.15 and condition (3.10) we have that

g(r + 1) ∼= mq
0(r + 1),

g(r + 2) ∼= mq
0(r + 2),

...

g(r + 2q + 2) ∼= mq
0(r + 2q + 2).
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Note that mq
0(r + 2q + 2) = mq

0(4q + 2) = mq
0(2(2q + 1)) = mq

0(2k), where k = 2q + 1.
Thus, g is obtained by taking one-dimensional central extensions of mq

0(2k), where
k > 2q. If g is not of type mq

0, then by taking one-dimensional central extensions at
some point we obtain mq

0,1(2l + 1) where l > 2q. Then the (2q−1)-st filiform central
extension will be of type mq

0,2q−1(2l + 2q − 1), l > 2q, and by Lemma 3.26 it has no

required central extensions, a contradiction. Therefore, g must be of type mq
0. The

proof is complete.

3.4 The Case of q = 3

The purpose of this section is to prove the following theorem.

Theorem 3.27 Let g =
⊕

i∈N gi be an infinite-dimensional N-graded Lie algebra of
maximal class and suppose g = 〈g1, g3〉. Then one of the following holds:

(i) g ∼= m3
0;

(ii) g ∼= m3;
(iii) g ∼= W 3.

The proof of this theorem will follow from the series of lemmas below.
Let g be an N-graded Lie algebra of maximal class generated by both g1 and g3 (not

generated by g1 or g3 only). Hence, it has the following N-grading: g =
⊕∞

i=1,3 gi . At

the beginning of Section 3 we introduced Lie algebras of types mq
0, mq, and W q. For

q = 3 we will show that these are the only N-graded Lie algebras of maximal class
generated by g1 and g3.

Recall that, by definition, m3(l) = span{e1, e3, . . . , el} such that [e1, ei] = e1+i ,
i = 3, . . . , l − 1 and [e3, e j] = e3+ j , j = 4, . . . , l − 3. We can assume that l ≥ 7 and
write l = 6 + n, where n ≥ 1.

Lemma 3.28 Let g be a filiform Lie algebra of type m3(6 + n), where n ≥ 1. Then
g is isomorphic to m3

0,n(6 + n; β̄) (n-th filiform central extension of m3
0(6)), where β̄ =

(0, . . . , 0).

Proof Let us compare the multiplication tables of both algebras. First, m3
0,n(6 +

n; β̄) = span{e1, e3, . . . , e6+n} where β̄ = (0, . . . , 0) has the following multiplication
table:

[er, e6+l−r] = (−1)3−r

(
3− r + l− 1

3− r

)
e6+l, r = 3, . . . , 3 + l/2, l = 1, . . . , n.

If r = 3, then the above binomial coefficient is 1. If r > 3, then it is zero. Therefore,
the multiplication table of m3

0,n(6 + n; β̄) for β̄ = (0, . . . , 0) is exactly the same as
that of m3(6 + n). Hence, they are isomorphic.

Lemma 3.29 If n = 2l+1, then m3(6+2l+1) has a unique one-dimensional N-graded
filiform central extension that is m3(6 + 2l + 2). If n = 2l, then m3(6 + 2l) has a one-
parameter family of N-graded filiform central extensions of type m3

0,2l+1(6 + 2l + 1; β̄′)

where β̄′ = (0, . . . , 0, βl), βl is a scalar.
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Proof If n = 2l + 1, then m3(6 + 2l + 1) is isomorphic to m3
0,2l+1(6 + 2l + 1; β̄),

β̄ = (0, . . . , 0). By Lemma 3.20, it has a unique one-dimensional N-graded filiform
central extension that is m3

0,2l+2(6 + 2l + 2; β̄), β̄ = (0, . . . , 0) and, therefore, is iso-

morphic to m3(6 + 2l + 2). If n = 2l, then m3(6 + 2l) is isomorphic to m3
0,2l(6 + 2l; β̄),

β̄ = (0, . . . , 0). By Lemma 3.20, it has a one-parameter family of the required central
extensions m3

0,2l+1(6 + 2l + 1; β̄′), β̄′ = (0, . . . , 0, βl).

Lemma 3.30 Let g = m3
0,2l+1(6 + 2l + 1; β̄′) (where l ≥ 3, β̄′ = (0, . . . , 0, βl),

βl 6= 0) be a Lie algebra. Then it has no one-dimensional N-graded filiform central
extensions.

Proof Assume the contrary, that is, a one-dimensional N-graded filiform central
extension of g exists. Then by Lemma 3.20 it must be m3

0,2l+2(6 + 2l + 2; β̄′), where

β̄′ = (0, . . . , 0, βl), and

[er, e6+2l+2−r] = (−1)3−r

((
3− r + 2l + 1

3− r

)
+ (−1)l

(
3− r + 2l + 1− l

3− r + l

)
βl

)
e8+2l.

The corresponding structure constants are

λr,8+2l−r = (−1)3−r
((3− r + 2l + 1

3− r

)
+ (−1)l(3− r + l + 1)βl

)
.

This means that if r = 3, then λ3,5+2l = 1 + (−1)l(l + 1)βl. If r > 3, then λr,8+2l−r =
(−1)3−r+l(3 − r + l + 1)βl. Since m3

0,2l+2(8 + 2l; β̄′) is a Lie algebra, J(e3, e j , ek) = 0
where 3 + j + k = 8 + 2l and 3 < j < k. In terms of structure constants this can be
rewritten as:

λ3, jλ3+ j,k + λ j,kλ5+2l,3 + λk,3λk+3, j = 0.

Note that

3 + j < 3 + k < j + k = 5 + 2l < 6 + 2l.

Hence, the Lie products [e3, e j], [e3, ek], and [e j , ek] are the same as in m3
0,2l(6+2l; β̄),

where β̄ = (0, . . . , 0), which is isomorphic to m3(6 + 2l). Thus, λ3, j = λ3,k = 1 and
λ j,k = 0, since both j, k > 3. The above equation takes the form λk,3+ j = λ j,k+3.
Since βl 6= 0, (−1)3−k+l(3 − k + l + 1) = (−1)3− j+l(3 − j + l + 1). Since j + k =
5 + 2l, an odd number, one of j, k is even while the other one is odd. Therefore,
(3 − k + l + 1) = −(3 − j + l + 1), k + j = 8 + 2l, a contradiction. The lemma is
proved.

Remark 3.31 It follows from the above lemmas that m3 is the only infinite-dimen-
sional Lie algebra that can be obtained by taking one-dimensional N-graded filiform
central extensions of m3(n), n ≥ 12.

Next we will be interested in one-dimensional N-graded filiform central exten-
sions of W 3(n). Recall that W q(n) is defined by its basis {e1, eq, . . . , en} and relations
[ei , e j] = ( j − i)ei+ j whenever i + j ≤ n, and the products equal to 0, otherwise.
By setting y1 = e1 and yi = 60(i − 2)!ei q ≤ i ≤ n, we have that [y1, yi] = yi+1,
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i = q, . . . , n− 1, and [yi , y j] = λi, j yi+ j , i + j ≤ n, where

(3.11) λi, j =
60(i − 2)!( j − 2)!( j − i)

(i + j − 2)!
.

Lemma 3.32 A Lie algebra of type W 3(n), n ≥ 14, has a unique one-dimensional
N-graded filiform central extension that is isomorphic to W 3(n + 1).

Proof First of all, we note that W 3(n + 1) is a required central extension of W 3(n).
We only need to show that it is unique. Choose a basis for W 3(n): {e1, e3, . . . , en}
with [e1, ei] = ei+1, i = 1, . . . , n − 1, and [ei , e j] = λi, jei+ j , i + j ≤ n. If we set
I = span{e7, . . . en}, then I is an ideal of W 3(n) and W 3(n)/I is isomorphic to m3

0(6).
Therefore, W 3(n) is obtained from m3

0(6) by taking one-dimensional N-graded fili-
form central extensions. Let n = 6 + r, where r ≥ 1. Then W 3(6 + r) ∼= m3

0,r(6 + r; β̄),

where β̄ = (β1, . . . , βl), l =
[

r+1
2

]
− 1. If r is odd, then by Lemma 3.20 it has a

unique one-dimensional N-graded filiform central extension. If r is even, then by
Lemma 3.20 a one-dimensional N-graded filiform central extension of m3

0,r(6 + r; β̄)

is m3
0,r+1(6 + r + 1; β̄′), where β̄′ = (β1, . . . , βl, βl+1). Set βl+1 = t . To show the

uniqueness we express t in terms of structure constants of m3
0,r(6 + r; β̄) that are all

known. As follows from (3.3), we have that

[es, e7+r−s] = (−1)3−s

(
3− s + r

3− s

)
+

l∑
i=1

(−1)3+i−s

(
3− s + r − i

3− s + i

)
βi + (−1)3−s+lt.

Hence,

(3.12) λs,7+r−s = (−1)3−s+lt + As,

where As depends on parameters of m3
0,r(6 + r; β̄), s = 3, . . . , r/3 + 3. Since

m3
0,r+1(6 + r + 1; β̄′) must be a Lie algebra, the Jacobi identity J(e3, e4, er) = 0 yields

(3.13) λ3,4λ7,r + λ4,rλ4+r,3 + λr,3λr+3,4 = 0,

where λ3,4 = 1, and λ4,r, λr,3 are known, since 3 + r < 4 + r < 7 + r. Applying (3.12),
λ7,r = (−1)l−4t + A7, λ3,4+r = (−1)lt + A3 and λ4,r+3 = (−1)l−1t + A4. Therefore,
(3.13) gives rise to a linear equation in t . Applying (3.11), the coefficient of t in this
equation is

1 + λr,3 − λ4,r = 1 + 60
14− r − r2

(r − 1)r(r + 1)(r + 2)
.

When r ≥ 8 it is nonzero. Thus, t is uniquely determined from (3.13). This com-
pletes the proof.

Remark 3.33 It follows from the above lemmas that W 3 is the only infinite-
dimensional Lie algebra that can be obtained by taking one-dimensional N-graded
filiform central extensions of W 3(n), n ≥ 14.

Remark 3.34 As follows from Lemma 3.26, m3
0 is the only infinite-dimensional

Lie algebra that can be obtained by considering one-dimensional N-graded filiform
central extensions of m3

0(2k) with k > 6.
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Further we have to consider the remaining cases: k = 3, 4, 5 or 6. We first deal
with cases when k = 4, 5, or 6.

Lemma 3.35 Let k = 4. Then m3
0 is the only infinite-dimensional Lie algebra ob-

tained by taking one-dimensional N-graded filiform central extensions of m3
0(8).

Proof Consider g = m3
0(8). By Lemma 3.15 its one-dimensional N-graded filiform

central extension is either m3
0(9) or m3

0,1(9). If it is m3
0(9), then applying the same

lemma again, its one-dimensional N-graded filiform central extension must be of
type m3

0(10) = m3
0(2 · 5), which leads to the case k = 5, which will be covered in the

next lemma. Without loss of generality we assume that the second possibility holds.
It follows from Lemma 3.24(i), that λ3,9 = 0 in m3

0,4(12). Using formulas (3.3) and
(3.4), we obtain

λ3,9 = (−1)3−4

((
4− 3 + 3

4− 3

)
−
(

4− 3 + 2

4− 3 + 1

)
β1

)
= 0.

Hence, β1 = 4
3 . Next the Jacobi identity J(e3, e4, e7) = 0 in m3

0,6(14) is equivalent to

(3.14) λ3,4λ7,7 + λ4,7λ11,3 + λ7,3λ10,4 = 0,

where

λ7,7 = 0, λ4,7 = (−1)4−4

((
4− 4 + 2

4− 4

)
− β1

)
= −1

3
, λ3,7 = −2,

λ3,11 = −
(

6

1

)
+

(
5

2

)
β1 −

(
4

3

)
β2 = −6 + 10β1 − 4β2,

λ4,10 =

(
5

0

)
−
(

4

1

)
β1 +

(
3

2

)
β2 = 1− 4β1 + 3β2.

Hence, (3.14) gives rise to− 1
3 (6−10β1+4β2)+2(−1+4β1−3β2) = 0. Thus, β2 = 50

33 .
In m3

0,7(15) we consider the Jacobi identity J(e3, e4, e8) = 0, which is equivalent to

(3.15) −λ4,8λ3,12 + λ3,8λ4,11 = 0,

where λ3,8 = − 5
3 , λ4,8 = − 5

3 , λ4,11 = 1−5β1 + 6β2−β3, λ3,12 = −7 + 15β1−10β2 +
β3. Then (3.15) implies that β3 = 92

33 . In m3
0,8(16) we consider the Jacobi identity

J(e3, e5, e8) = 0, which is equivalent to

(3.16) −λ5,8λ3,13 + λ3,8λ5,11 = 0,

where λ5,8 = − 2
11 , λ3,13 = −8 + 21β1 − 20β2 + 5β3 = 40

11 , λ5,11 = 40
11 . Substituting

these values into (3.16) we obtain that the left side of it is nonzero, a contradiction.
The proof is complete.

Lemma 3.36 Let k = 5. Then m3
0 is the only infinite-dimensional Lie algebra ob-

tained by taking one-dimensional N-graded filiform central extensions of m3
0(10).

Proof Consider g = m3
0(10). By Lemma 3.15, its one-dimensional N-graded fili-

form central extension is either m3
0(11) or m3

0,1(11). If it is m3
0(11), then applying the

same lemma again, its one-dimensional N-graded filiform central extension must be
of type m3

0(12) = m3
0(2 · 6), which leads to the case k = 6 covered in the next lemma.
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Without loss of generality we assume that the second possibility holds. It follows
from Lemma 3.24, that λ3,11 = 0 in m3

0,4(14) and λ3,12 = 0 in m3
0,5(15). Using

formulas (3.3), (3.4), we obtain

λ3,11 = (−1)3−5

((
5− 3 + 3

5− 3

)
−
(

5− 3 + 2

5− 3 + 1

)
β1

)
= 10− 4β1 = 0.

Hence, β1 = 5
2 . Next,

λ3,12 = (−1)3−5

((
5− 3 + 4

5− 3

)
−
(

5− 3 + 3

5− 3 + 1

)
β1 + β2

)
= 15− 10β1 + β2 = 0.

Hence, β2 = 10. The Jacobi identity J(e3, e5, e8) = 0 implies

(3.17) λ3,5λ8,8 + λ5,8λ13,3 + λ8,3λ11,5 = 0

where

λ8,8 = 0, λ5,8 = (−1)5−5

((
0 + 2

0

)
− β1

)
= −3

2
, λ3,8 = 1,

λ3,13 =

(
7

2

)
−
(

6

3

)
β1 +

(
5

4

)
β2 = 21− 20β1 + 5β2 = 21,

and λ5,11 = (−1)0
((0+5

0

)
−
(0+4

1

)
β1 +

(3
2

)
β2

)
= 1 − 4β1 + 3β2 = 21. However, the

left side of (3.17) does not equal to 0, a contradiction. This completes the proof.

Lemma 3.37 Let k = 6. Then m3
0 is the only infinite-dimensional Lie algebra ob-

tained by taking one-dimensional N-graded filiform central extensions of m3
0(12).

Proof Consider g = m3
0(12). By Lemma 3.15 its one-dimensional N-graded fili-

form central extension is either m3
0(13) or m3

0,1(13). If it is m3
0(13), then applying the

same lemma again, its one-dimensional N-graded filiform central extension must be
of type m3

0(14) = m3
0(2 · 7), which leads to the case k > 6 covered in Remark 3.34.

Without loss of generality we assume that the second possibility holds. It follows
from Lemma 3.24, that λ3,13 = 0 in m3

0,4(16) and λ3,14 = 0 in m3
0,5(17). It follows

from the proof of Lemma 3.25 that in this case λ3,2·6+3 = λ3,15 is also zero. Using
formulas (3.3), (3.4), we obtain

λ3,13 = (−1)3−6

((
6− 3 + 3

6− 3

)
−
(

6− 3 + 2

6− 3 + 1

)
β1

)
= −

(
6

3

)
+

(
5

4

)
β1 = 0,

λ3,14 = (−1)3−6

((
6− 3 + 4

6− 3

)
−
(

6− 3 + 3

6− 3 + 1

)
β1 + β2

)
= −

(
7

3

)
+

(
6

4

)
β1 − β2 = 0,

λ3,15 = (−1)3−6

((
6− 3 + 5

6− 3

)
−
(

6− 3 + 4

6− 3 + 1

)
β1 +

(
6− 3 + 3

6− 3 + 2

)
β2

)
= −

(
8

3

)
+

(
7

4

)
β1 − 6β2 = 0.

However, this system of 3 linear equations in 2 variables is inconsistent. The proof is
complete.
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Finally we study one-dimensional N-graded filiform central extensions of m3
0(6).

By Lemma 3.15 its one-dimensional N-graded filiform central extension is either
m3

0(7) or m3
0,1(7). If it is m3

0(7), then applying the same lemma again, its one-
dimensional N-graded filiform central extension must be of type m3

0(8) = m3
0(2 · 4),

which leads to the case k = 4 covered in Lemma 3.35. Without loss of generality
we assume that the second possibility holds. Taking one-dimensional filiform central
extensions of m3

0(6), in ten steps we obtain m3
0,10(16;β1, β2, β3, β4). Since it must be

a Lie algebra, we have that J(e3, e4, e5) = 0, J(e3, e5, e6) = 0 and also J(e3, e4, e8) = 0.
Rewriting these identities in terms of structure constants, and then using formulas
(3.3), (3.4) to express each structure constant in terms of β1, β2, β3, and β4, we ob-
tain the following relations:

(3.18) β2 =
4β2

1

3(1 + β1)
, β3 =

5β1β2 − 10β2
2

3− 4β2 − 2β1
, β4 =

−5β2
2 + 6β2β3 + 4β1β3

2β1 + β2
.

Considering the Jacobi identity J(e3, e4, e9) = 0, we obtain

(3.19) β4 + (β3 − 3β2 + β1)(−1 + 8β1 − 21β2 + 20β3 − 5β4)

+ (3β2 − 4β1 + 1)(β1 − 6β2 + 10β3 − 4β4) = 0.

Using (3.18), equation (3.19) can be rewritten as the following equation in one vari-
able β1:

245β10
1 + 238β9

1 − 606β8
1 + 270β7

1 − 27β6
1 = 0

that has the following roots: β1 = 0, 3
5 ,

1
7 , and −6±3

√
11

7 . If β1 = 3
5 or −6±3

√
11

7 ,
then it is easy to check that J(e3, e5, e8) 6= 0. If β1 = 0, then m3

0,9(15;β1, β2, β3, β4)
is isomorphic to m3(15), and, by Remark 3.31, leads to infinite-dimensional Lie al-
gebra m3. If β1 = 1

7 , then m3
0,9(15;β1, β2, β3, β4) is isomorphic to W 3(15), and by

Lemma 3.32, it leads to W 3.

Appendix A

Here we recall some facts about topology of varieties that are relevant to proofs in
Section 2.

A.1 The Case of Smooth Varieties

Let Xd ⊂ Pn be a smooth complex projective hypersurface of degree d, i.e., the set
of points satisfying { fd(x0, . . . , xn) = 0}, where fd is a homogeneous polynomial
of degree d, defining Xd. (This in particular implies that fd is an irreducible poly-
nomial, Xd is an irreducible algebraic variety.) Any two such hypersurfaces (of the
same degree) are diffeomorphic as smooth manifolds. In particular, their topological
invariants (and some of their geometric invariants) are determined by the pair (d, n).

Proposition A.1 ([D, Ch. 5]) The integral homologies are torsion free and satisfy
H2i+1(Xd,Z) = 0 for 2i + 1 6= n − 1, H2i(Xd,Z) = Z for 2n − 2 ≥ 2i ≥ 0 and
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2i 6= n− 1 and

bn−1(Xd) =
(1− d)n+1 − 1

d
+

{
−1 for n even,

2 for n odd.

The topological Euler characteristic is χ(Xd) = (1−d)n+1−1
d + n + 1.

Example A.2 For n = 2 we get a smooth plane curve of (topological) genus g =(d−1
2

)
and with topological Euler characteristic χ(Xd) = 2− 2g.

Let {Xi}i=1,...,k ⊂ Pn be some hypersurfaces. Assume that X :=
⋂k

i=1 Xi is a
complete intersection. Let d j denote the degree of X j .

As in the case of hypersurfaces, any two smooth complete intersections with the
same multi-degree (d1, . . . , dk) are diffeomorphic. So, the topological invariants
(and some geometric invariants too) are completely determined by the numbers
(d1, . . . , dk, n).

Proposition A.3 Let Xd ⊂ Pn be a smooth complete intersection of multidegree
d := (d1, . . . , dk). The integral homologies are torsion free and satisfy H2i+1(Xd,Z) = 0
for 2i + 1 6= n − k, H2i(Xd,Z) = Z for 2n − 2k ≥ 2i ≥ 0 and 2i 6= n − k and
rank(Hn−k(Xd,Z)) = χ(Xd)− (n− k) for (n− k) even, rank(Hn−k(Xd,Z)) = n− k +
1− χ(Xd) for (n− k) odd. Here, the topological Euler characteristic is

χ(Xd) =
( k∏

i=1
di

)
Coeffxn−k

(1 + x)n+1∏k
i=1(1 + dix)

.

References for this are [D, Ch. 5] and [Hi, Appendix 1]. The proof is based on
the Lefschetz hyperplane section theorem. The Euler characteristic can be obtained
e.g., as the top Chern class cn(TXd ) from the exact sequence 0 → TXd → TPn |Xd →
NXd/Pn → 0 and the fact that NXd/Pn =

⊕
OPn (di)|Xd .

Note that in these statements the varieties are assumed to be smooth. For singular
varieties the situation is more complicated and odd homologies can be nonzero.

A.2 Algebraic Cell Structure

Let X be a compact topological space and let X =
∐
σα be a cell decomposition (each

cell σα is homeomorphic to some Rk, the smaller cells are glued to the bigger ones by
the boundary maps).

Example A.4

(i) Sn = Rn ∪ R0.
(ii) For the complex projective space Pn we have the following cell decomposition:

Pn = Cn ∪ Cn−1 ∪ · · · ∪ C0 (see e.g., [GH, 1.5]).

If X is a complex algebraic variety (possibly singular), then it is natural to ask for
an algebraic cell structure, so that each cell, σα, is itself a subvariety of X, isomorphic

https://doi.org/10.4153/CJM-2014-008-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-008-x


On Varieties of Lie Algebras of Maximal Class 87

to Cn. For example, the cell structure of Pn is of this type. Though such an algebraic
cell decomposition is not always possible, it often occurs in our context.

Suppose a variety admits an algebraic cell decomposition X =
∐

(ki Ci); here ki

is the number of cells of the given dimension. This fixes the homology. Indeed, all
the cells are of even (real) dimensions. Thus all the boundary maps are zero. So,
H2i(X,Z) = Zki for 0 ≤ 2i ≤ dimR X and Hm(X,Z) = 0 for other m.

A.3 Exact Sequence of a Pair

For a pair of topological spaces, A ⊂ X, we have exact sequences

· · · → Hi(A,Z)→ Hi(X,Z)→ Hi(X,A,Z)→ Hi−1(A,Z) · · · ,
· · · → Hi(X,Z)→ Hi(A,Z)→ Hi+1(X,A,Z)→ · · · .

A.4 (Co)homology of Non-compact Spaces

Proposition A.5 ([FF, p.157]) Let X be a compact topological space, let A ⊂ X be its
closed subspace such that X \ A is smooth, orientable, without boundary, and of (real)
dimension n. Then Hi(X,A,Z)

∼−→ Hn−i(X \ A,Z)

(This follows from the definition of Borel-Moore homology, via compactification:
HBM

i (X \ A,Z) = Hi(X,A,Z) and the Poincaré duality for non-compact manifolds:

HBM
i (M,Z)

∼
−→ Hn−i(M,Z).)

Appendix B

Let us recall [M2, Proposition 5.16].

Proposition B.1 ([M2, Proposition 5.16]) Let 2k + 3 ≥ 9 then

H2
(2k+4)(m0,3(2k + 3)) = 0

and therefore m0,3(2k + 3) has no filiform central extensions.

In the above proposition, m0,3(2k + 3) denotes a (2k + 3)-dimensional N-graded
filiform Lie algebra with the basis e1, e2, . . . , e2k+3 and multiplication table

[e1, ei] = e1+i , i = 2, . . . , 2k + 2;

[el, e2k+1−l] = (−1)l+1e2k+1, l = 2, . . . , k;

[e j , e2k+2− j] = (−1) j+1(k− j + 1)e2k+2, j = 2, . . . , k;

[em, e2k+3−m] = (−1)m((m− 2)k− (m− 2)(m− 1)

2
)e2k+3, m = 3, . . . , k + 1.

In fact, this proposition holds true for any k > 3. If k = 3, then m0,3(9) does
have a filiform central extension that is m0,4(10) with the basis: e1, e2, . . . , e9, e10 and
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multiplication table:

[e1, ei] = e1+i , i = 2, . . . 9,

[e2, e5] = −e7, [e3, e4] = e7,

[e2, e6] = −2e8, [e3, e5] = e8,

[e3, e6] = −2e9, [e4, e5] = 3e9,

[e4, e6] = 3e10, [e3, e7] = −5e10,

[e2, e8] = 5e10.

In its turn, m0,4(10) has also filiform central extension, which is m0,5(11) =
span{e1, e2, . . . , e10, e11} with the following multiplication table:

[e1, ei] = e1+i , i = 2, . . . 10,

[e2, e5] = −e7, [e3, e4] = e7,

[e2, e6] = −2e8, [e3, e5] = e8,

[e3, e6] = −2e9, [e4, e5] = 3e9,

[e4, e6] = 3e10, [e3, e7] = −5e10

[e2, e8] = 5e10, [e3, e8] =
5

2
e11,

[e2, e9] =
5

2
e11, [e4, e7] = −15

2
e11,

[e5, e6] =
21

2
e11.

The latter algebra has no filiform central extensions.
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