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Abstract. We associate to each complex simple Lie algebra g a hierarchy of evolution
equations; in the simplest case g = sl(2) they are the modified KdV equations. These
new equations are related to the two-dimensional Toda lattice equations associated
with g in the same way that the modified KdV equations are related to the
sinh-Gordon equation.

1. Introduction
Recently there has been considerable interest in the 'two-dimensional (periodic)
Toda lattice' (2DTL) equations (see [5], [6], [10], [11], [13], [14]). These are the
equations:

(1.1) H>,,X, = exp (H-,-1 - wi) -exp (w, - wi+l)

for n unknown functions W\(x, t),..., wn(x, t) with £ w, = 0 (the subscripts are read
mod n, so that Wo= wn, wn+i = wi). If we consider solutions that depend only on
the variable r = x + t, then (1.1) reduces to the usual (one-dimensional) periodic
Toda lattice.

Now, as Bogoyavlensky [3] pointed out in the one-dimensional case, we can
form an equation resembling (1.1) from any (complex) simple Lie algebra g: (1.1)
is the case g = sl(«). I refer to [11], [14] and § 5 below for the exact definition of
these 'generalized' 2DTL equations, but the main clue is that the expressions
Wj-Wj+i occurring in the exponents in (1.1) remind us of the simple roots (and
minus the maximal root) for sl(«). The papers [5], [11] and [14] find 'zero curvature
representations' (see [19])

(1.2) [d-U,d,-V] = 0 (d = d/dx,d, = d/dt)

for these generalized equations; moreover, [14] indicates a construction of an
infinite number of local conservation laws for the equations (in the case g = sl(«)
that had been done before in [6] and [13]). However, the paper [14] does not deter-
mine which of the conservation laws are non-trivial, surely a serious omission, since
it leaves open the possibility that only a finite number, or even none of them are.
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In [10], B. A. Kupershmidt and I made a more careful study of the formal
properties of the 2DTL equations, but only in the case g = sl(«) (actually we also
treated the equations of [14] corresponding to the root systems Ck, BCk, though
we did not realize that this is what they were until we saw a preprint of [14]). We
determined which of the conservation laws for (1.1) are non-trivial, and also showed
that to each conservation law there corresponds a symmetry of (1.1); the symmetries
are evolution equations for the variables M; = dWi, and they can be interpreted as
the Hamiltonian flows corresponding to the conserved quantities of (1.1). The term
'symmetry' means, intuitively speaking, that the flows of the evolution equations
leave invariant the space of solutions of (1.1).

The purpose of the present paper is to extend to the case of a general simple
Lie algebra g everything that is done in [10] in the case g = sl(n). The main results
are set out in (1.3) below. Recall that, if g is a simple Lie algebra of rank /, the
invariant polynomials on g form a polynomial algebra with / homogeneous gen-
erators of degrees du ..., dh say. The largest of the d, is called the Coxeter number
of g, and is denoted by h. The numbers m, = d, — 1 are called the exponents of g.
For the reader's convenience the values of dt for the various simple Lie algebras
are tabulated in the appendix below.

(1.3) THEOREM. The 2DTL equation associated with a simple Lie algebra g has
(i) a non-trivial conserved density of each degree congruent mod h to one of the dt;
(ii) a non-trivial symmetry of each degree congruent mod h to one of the m, = d{< — 1.

The meaning of the term 'degree' in these statements will become clear in the
course of the paper. As examples, we see from the table in the appendix that for

g = sl(n)(An_1)

we have a conserved density of each degree not congruent to 1 mod n, while for
Ci we have one of every even degree. Naturally, this agrees with the results obtained
by a different method in [10].

The symmetries of the 2DTL equation are what I call the 'modified Lax equations'
associated with g; for g = sl(«) they are indeed the equations studied under that
name in [9]; for g = sl(2) they are the well known modified KdV equations. Although
the modified Lax equations are our main object of study, they do not appear in
the paper until § 4. §§2 and 3 study what, for want' of a better name, I call the
'general zero curvature equations' associated with g: the modified Lax equations
are 'specializations' or 'reductions' of these. Let me explain that further. The U
and V in equation (1.2) can be thought of as functions of x and t with values in
g which, moreover, depend on a 'spectral' parameter A. In this paper U will always
have the form

U = -u(x,

where F e g is a (constant) semi-simple element; and V will depend polynomially
on A (except in § 5). In the 'general' equations of §§ 2 and 3, no restriction is placed
on u except that it must take values in the image of ad F; but in the modified Lax
equations, the values of u are required to lie in a certain Cartan subalgebra of g.
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Many of the properties of the modified Lax equations are inherited immediately
from those of the general equations, and I think the theory becomes clearer if we
discuss these first (they are a little easier). The idea of specialization is discussed
in considerable detail in [9], § 3.

For brevity, in the proofs of the basic results in § 3 I have used the ugly device
of choosing a faithful representation of g, so that the U and V in (1.2) become
matrices of functions. The advantage of this is that any equation of the form (1.2)
(with U = —u+AF) can then be rewritten as a Lax equation

d,L = [P, L]

with L a first-order matrix differential operator (in the case where V is polynomial
in A, P will be a differential operator too). Thus we can read off many results about
our equation (1.2) from known facts about Lax equations. In §§ 2,4 and 5, however,
we proceed 'intrinsically' (that is, without using a representation of g). It would
probably be enlightening to formulate all the proofs in intrinsic terms, but I leave
that for another occasion.

The construction of the conservation laws that we use here is superficially different
from the one suggested in [14]. However, the equivalence of the two constructions
is proved in [18] (in the wider context of matrix Lax equations).

The exponents of g, which play such a prominent role in (1.3), can be defined
in several different ways: the definition I gave above is close to the original one,
which was in terms of the cohomology of a group with Lie algebra g. For the
purposes of the present paper it would be more appropriate to adopt the definition
given in [4], in terms of the eigenvalues of a Coxeter transformation (the equivalence
of the two definitions is proved in [4], p. 121). The definition using the invariant
polynomials suggests that (1.3) probably has a nice interpretation in terms of the
formalism of Adler [2] or Reiman and Semenov-Tian-Shansky [15], but I shall not
try to discuss that here.

I have tried to make the paper reasonably self-contained, except for some of the
proofs: the proofs of the results on the modified Lax equations in § 3 depend on
facts proved in [17] and [9], § 7; and in § 5, on the 2DTL equations, I have referred
to [10] for the proofs, since the generalization from sl(n) to g presents no new
features here. Also, I have assumed known the most basic facts about simple Lie
algebras (they can be learned, for example, from [16]).

This paper is a continuation of work begun in collaboration with Boris Kuper-
shmidt. I am indebted to him for introducing me to the 2DTL equations, and for
sharing with me his ideas on these matters.

Most of the results to be found below are also announced in the paper [21] of
Drinfel'd & Sokolov (which appeared after the present manuscript was submitted
for publication). I have added a 'postscript' at the end of this paper with the aim
of clarifying the relationship between my work and [21].

2. The general zero curvature equations: results
Let g be a simple Lie algebra over C, F e g a regular semi-simple element. 'Regular'
means that F lies in a unique Cartan subalgebra: this assumption is not essential
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(see remark (3.13) below). We denote by h the Cartan subalgebra containing F.
Let R c J)* be the set of roots of (g, h), and for each a eR let Ea be a non-zero
element of the corresponding (one-dimensional) root space: then we have the direct
sum decomposition

(2.1) g = h © I CEa.
aeR

Let ua, a € R, be differentially independent variables; we denote by B the algebra
CCHL'*] of differential polynomials in the ua, with the usual derivation d denned by

We make B into a graded algebra by giving each ua degree 1 and making d increase
degree by 1: thus

Set g = B® g. Then g is a Lie algebra over B, and 5 has an obvious extension to
g with d(l®g) = O. We also extend the grading to g by letting the elements of g
have degree zero.

The algebra g can be thought of concretely in various ways: if {Y,} is any basis
for g, then g consists of formal sums £/i Yi, fceB (we write /, Y, instead of /,; ® Y,).
Thus in the case g = sl(n), an element of g is simply a matrix (of trace zero) with
entries in B. If we think of the ua as maps from A to C (where A could be an
open set in C2, or the circle, or other possibilities depending on the context), then
the elements of g will be maps from A to g.

Now set

u=Y.uaEaGQ;

thus u can be thought of as a 'general' map into the subspace of g spanned by the
Ea (which can also be described as the image of ad F). Let A be a formal parameter
commuting with everything else. We set

U = -u+\F.

The equations we are going to construct will be evolution equations for the variables
ua(a eR), and will be represented in the form

(2.2) [d-U,d,~V] = 0,

where V is a polynomial in A (with coefficients in g). Equation (2.2) is equivalent
to

(2.3) d,u = -dV + [U, V].

For this to reduce to an evolution equation for the ua, we have to choose V so
that the right-hand side of (2.3) (like the left-hand side) is independent of A and
lies in the image of ad F. The possible choices of V are obtained using the next
lemma.

(2.4) LEMMA. For each v0 e h, there is a unique formal series V of the form

(2.5) y = I«*A"', i>,6 9,
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such that
(i) Vj is homogeneous of degree i;
(ii) dT = [U,r].

Granting the lemma, which will be proved in § 3, the equations (2.3) are constructed
as follows: for each r > 1, set

Thus

v+ v- = x'r,
so that we have

-dV + [U, V] = dV--[U, V-l
In this equality the left-hand side clearly does not involve any negative powers of
A, and the right-hand side does not involve any positive powers. Hence the
expression must be independent of A; picking out the terms of order zero, we
obtain our equations (2.3) in two alternative forms
(2.6) ~d,u=dvr + [u, vr] = [F, ur+1].

The second form shows that the right-hand side does indeed lie in Im ad F, as
required. Thus, for each i?oeh and each integer r > l , (2.6) defines a system of
evolution equations for the ua; these are our 'general zero curvature equations'.
Algebraically, we regard the d, in (2.6) as defining an evolutionary (commuting
with d) derivation of the algebra B. We shall write d,(v0, r) when it is necessary to
specify a particular equation. Note that the derivation d,(v0, r) increases degree by
r: we shall sometimes (as in (1.3)) refer to the corresponding evolution equation
as having degree r.

We set

/ = dim h = rank g.

(2.7) PROPOSITION, (i) / / vo^O, then d,(v0, r)^0 for all r > l ; that is, all the
equations constructed above are non-trivial.

(ii) For fixed r, as v0 runs over a basis for b, the right-hand sides of the I equations
corresponding to d,(vo, r) are linearly independent.

Briefly, we have constructed / essentially different equations of each degree.
Let K denote the Killing form:

K(X, F) = tr(adXad Y).

We also denote by K the obvious extension to a bilinear map from g x g to B. For
r > l , w e set

(2.8) Hr = Hr(v0) = r-1K(vr+l,F)eB.

(The factor r"1 is inserted to improve (2.11) below.) Note that Hr is homogeneous
of degree r + 1.

(2.9) PROPOSITION. The elements Hr(v0) (r> 1, any choice of voei)) are conserved
densities for all the zero curvature equations (that is, dtHr e SB for all the d,).
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(2.10) PROPOSITION. These conserved densities are all non-trivial {that is, Hrs£dB);
as v0 varies over a basis for h, the I conserved densities of each degree r are linearly
independent as elements of B/dB.

Briefly, the equations have / essentially different common conserved densities of
each degree r > 2.

The reader may wonder why we do not assert that the elements K(v\,F) are
conserved densities: the reason is that K{v\, F) = 0. That is easily checked using
the first three equations in (3.1) below and the ad-invariance of K.

Finally, we look at the Hamiltonian form of (2.6).

(2.11) PROPOSITION. The equation (2.6) can be written in the Hamiltonian form

d,{v0, r)ua = -{a, F) r+\ aeR,
8u-a

where Hr+\ = Hr+x(v0). (We use ( , ) to denote the natural pairing between h and
h*, and S/Sua is the formal variational derivative

Thus the skew matrix defining the Hamiltonian structure (see, for example, [9],
§ 4) is a direct sum of multiples of the matrix

0
- 1 0

(one for each positive root).
Combining (2.9) and (2.11), we have the following.

(2.12) PROPOSITION. The derivations d,(r, v0) for different choices of> > 1 and tioel)
all commute with each other.

(2.13) Remark. Of course, it is not essential to coordinatize Im adF by the root
spaces (or at all); a different choice of coordinates would correspond simply to a
linear change of the variables ua.

(2.14) Remark. We are taking g to be complex only for simplicity: everything
would go through equally well in the real case.

(2.15) Remark. More important, the assumption that the variables ua are differen-
tially independent is also not essential: we can consider 'specializations' of our
general equations in which the ua are differential polynomials in some smaller
number of other variables. The modified Lax equations in § 4 are of this kind. The
construction of the equations and conservation laws goes through just as above;
but the problem is that some of the equations may turn out to be inconsistent, and
some of the conserved densities trivial. § 4 is devoted to finding out which these
are for the modified Lax equations.
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3. The general zero curvature equations: proofs
We begin with the basic lemma (2.4). Writing out the condition (ii) in (2.4) in
long-hand, we obtain the equations

[F,vo] = (

(3.1)

We have to show that these equations determine the D, successively. Since F is
semi-simple, we have the decomposition

(3.2) g = KeradF©ImadF,

and since F is regular,

We shall for the moment refer to the components of an element D € § with respect
to the splitting (3.2) as the 'diagonal' and 'off-diagonal' parts of v (since that is
what they are in the case g = sl(n), F = {diagonal matrix with distinct entries}). It
is trivial to check that

(i) ad F acts as an isomorphism on Im ad F;
(ii) bearing in mind that welmadF, the diagonal part of [u, v] depends only

on the off-diagonal part of v.
Now, the first equation in (3.1) shows that v0 e rj; taking the diagonal part of the

second equation and using (ii) above gives 8v0 = 0, that is, v0 e h. We fix v0 e h.
Suppose inductively that from the first / equations in (3.1) we have determined
V\,..., Vi^i and the off-diagonal part of vt. We split the next equation du,- + • • • in
(3.1) into its diagonal and off-diagonal parts. Using (i) and (ii) above, this determines
the off-diagonal part of vi+\ and the diagonal part of du,. To obtain the diagonal
part of Vi, we have to 'integrate'; the homogeneity property (i) in (2.4) forces us
to choose the 'constants of integration' to be zero, giving a unique Vj. Continuing
inductively, we obtain unique solutions for all the «,-, given u0 s b-

(3.3) Remark. The argument shows a little more than was stated in two respects.
First, we showed that any series Y satisfying (ii) in (2.4) must in fact have leading
term v0 lying in h. Secondly, note that if we tried to determine the polynomial V
of degree r in (2.2) directly from the requirement that the right-hand side of (2.3)
should have order zero in A, that would amount to repeating the first r or so steps
of the above argument. Thus we have shown that all possible equations (2.2) with
V polynomial in A arise from the construction given just after (2.4).

There is, however, still a serious gap in the argument given above: since 3: B -*• B
is far from being surjective, it is not clear that the 'integrations' required to obtain
the diagonal parts of the v( can be performed without going outside B. Thus so far
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we have shown only that we can find unique u, lying in B®g, where B is (say) the
algebra (containing B) with surjective derivation constructed in [17]. Happily, in
this paper we shall not have to deal with B, because of the next proposition.

(3.4) PROPOSITION. The elements vt satisfying (3.1) do indeed lie in B® g.

To prove this (and the other statements in § 2) we shall rewrite the equations (2.2)
in the form of matrix Lax equations, and then appeal to results proved in [17] and
[9]. To do that, we fix some faithful representation of g by N x N matrices, so we
have an inclusion of Lie algebras p: g -* Q\(N). We shall identify g with the subalgebra
p(g) of gl(7V) and suppress p from the notation. Thus F, for example, is now some
semi-simple (that is, diagonalizable) NxN matrix, and the vt are NxN matrices
with entries in B. The matrix F may not be invertible, but we can make it so by
adding on a multiple of the identity: we suppose that this has been done without
changing the notation. We observe that adding a multiple of the identity to F
clearly does not change equations (3.1).

Now, the equations (2.2) can be viewed as the integrability condition for the
system

(3.5)

This can be rewritten in the form

,L<li = ,
(3.6)

where we have set

(3.7)
1=0

The integrability condition for this is the Lax equation

This suggests the next proposition.

(3.8) PROPOSITION. The zero curvature equation (2.2) is equivalent to the matrix
Lax equation

where P+ and L are given by (3.7). More generally, the equation

ar=[u,r]
in (2.4) for the series

is equivalent to the equation
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for the formal pseudo-differential operator

P=l ViL
r-\

I leave it to the reader to construct a rigorous proof. Of course, the value of r in
the last statement is immaterial, since P commutes with L if and only if PLq does
(for any q).

From the point of view of the matrix Lax equations, the operator L in (3.7) is
a complicated-looking specialization (since u is constrained to take values in g).
However, as explained in [9], § 3, this does not affect the truth of the results from
[17] that we are going to use.

Now let us prove (3.4). By (3.8), we have to show that all the entries in the
coefficients of P lie in B (rather than B). By [17], (5.10), that will be so provided
the leading coefficient of P, which is v0F~r, lies in the centre of the centralizer (in
gl(AO) of the leading coefficient of L, which is F"1. Of course, the centralizer of
F"1 is the same as that of F. Let E = ©£"" be the weight space decomposition of
the space E = C^ of our representation of g; that is, each X e b acts on E" as the
scalar (<o, X), &>eb*. By definition, the weights a) are distinct elements of h*;
however, it may happen that the values of two weights coincide on the element F.
We suppose first that this does not happen (so we are excluding elements F lying
in a finite set of hyperplanes in h). Then the E" are precisely the eigenspaces of
F. Thus the centralizer of F in gl(Af) consists of the maps that preserve each £"";
and its centre consists of the maps that act as scalars on each Em. But all the
elements of b, hence also the matrix v0F~r, clearly have this property. That
completes the proof of (3.4) for most choices of F.

The argument seems to break down if two weights coincide on F ; however, the
result remains true. We can easily see that as follows. The entries in the u, are
polynomials in the «„'' and (perhaps) some other elements involving 'integrations'
introduced to form the algebra B (see [17]). We consider how these polynomials
change as F varies in b- From a glance at (3.1) it is clear that each coefficient is a
rational function on h (with denominator non-vanishing if F is regular). Now,
suppose some entry in a vt were to contain a monomial that is not in B. The
argument given above shows that the coefficient of this term vanishes on a dense
open set in b- Hence it vanishes identically.

Next we prove the non-triviality of our equations.

(3.9) LEMMA. The equation

dv + [u,v] = 0

has no non-zero solution v e g which is homogeneous of positive degree.
Proof. The term dv involves a higher derivative of at least one ua than the other
term [u, v]. (The assumption of homogeneity is made just to exclude the obvious
constant solutions v e h.) •

Proof of proposition (2.7). (i) Suppose one of the equations (2.6) was trivial, that is,

dVr + [u, Vr] = 0.
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Then by (3.9), vr = 0. Working bur way up the equations (3.1), we find that v0 = 0.
(ii) This follows at once from (i), since a linear combination of equa-

tions of the same degree comes from the corresponding linear combination of the
elements Vo- d

Now the conservation laws. From [17], we know that as P varies over the operators
in (3.8) obtained from various choices of v0 and r, the elements t r resPeB are
conserved densities for all our equations. Clearly

res P = Vr+iF.

Now, the restriction to g of the form (X, Y)>-»tr XY is a non-zero multiple cK of
the Killing form on g: to simplify the notation we shall assume that c = 1 (the
reader will easily check that c cancels out of our final formulae). Thus we have

tr res P = K(vr+1, F) = rHr.

Hence (2.9) follows.
Next, let 8: B -> fi^B) be the universal derivation (total variation operator): thus

tfiB) is the free B-module on the symbols Swi'' (/ s 0), and S is given by

8f=l1Xn8ulJ\ feB.

The derivation 3 is extended to ft1 (2?) so as to commute with S. -For more details
see [12] or [9], § 7.

(3.10) LEMMA. We have

SHr = K(Su,vr) moddn^B)

(where Hr is given by (2.8)).

Proof. From [9], § 7, we know that

SHr = S(r 1 t rresP) = trres(5L • Q) moddQ^B),

where Q = PL~ . Here we have

SL=F~1Su, res Q = vrF,

so (3.10) follows at once. •

Proof of proposition (2.11). We recall that the variational derivatives 8/8ua are
characterized by the formula

5/ = I — 8ua modSO'CB).
8ua

The root spaces CEa are orthogonal (with respect to K) to h, and also we have

K(Ea, Ee) = 0 unless a = - /8;

and we may assume the Ea chosen so that we have

(3.11) K(Ea,E-a) = l.

We have 5M = X 8uaEa; set

vr+i = Z vr+i,aEa + (component in £)), iv+i,a e B.
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Then from (3.10) (with /• +1 instead of r) we read off that

8Hr+\

8u~a

On the other hand, the second form of equation (2.6) can be written

-d,ua=(a,F)Vr+i,a,

since, of course, by definition

[F,Ea] = (a,F)Ea.

Proposition (2.11) now follows at once. •

It remains to prove the non-triviality of the conservation laws.

Proof of proposition (2.10). This follows immediately from (2.7) and (2.11), since
Hr+\ e dB implies SHr+i/Sua = 0 for all o; thus if the conserved density // r+1 were
trivial, the corresponding equation (2.6) would be too. •

(3.12) Remark. All the statements in § 2 would remain unaltered if we changed
K to be some non-zero multiple of the Killing form. (If that seems surprising, note
that because of (3.11), renormalizing K would entail a renormalization of the
variables ua.) This remark is useful in the case g = sl(n), where we normally take
the Ea to be the elementary matrices Eit and K(X, Y) = trXY (strictly speaking
the Killing form is In times this).

(3.13) Remark. All the theory would still go through if F were semi-simple but
not regular: we should still have the crucial splitting (3.2). We should have to
restrict u to lie in Im ad F, and also the elements v0 would have to lie in the centre
of Ker ad F, otherwise (3.4) would not be true.

4. The modified Lax equations
The modified Lax equations will have the form (2.3), but with a 'specialized' u; if
we think of u as a map into Im ad F, the specialization will consist in requiring u
to take values in a certain Cartan subalgebra hi (naturally, not the one containing
F, which we shall continue to denote by h). We begin by summarizing some facts
from the theory of simple Lie algebras that are perhaps not as well known as those
we have used so far.

So let hi <= g be a Cartan subalgebra. From now on a, Ea will denote roots and
root vectors with respect to hi (not h). We fix a set of simple roots ot\,..., a< for
(g, hi). This gives rise to a grading on g: to avoid confusion with the grading on g
introduced in § 2, we shall use the term height, rather than degree, to refer to this
new grading. It is defined as follows: each root a has a unique expression in the form

/
a = £ /!(«,-,

l

where the n, are integers (all of the same sign); the root vector Ea is defined to be
homogeneous of height £ «,. The elements of hi are defined to be homogeneous
of height zero. This makes g into a graded Lie algebra. There is a unique root i//
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of maximal height; its height is h — 1, where h is the Coxeter number of g (see [4],
p. 169, or [7], theorem 8.4, p. 1022).

We now define the element F € g by

(4.1) F = iEi
I

That is, F is the sum of the root vectors corresponding to the simple roots and to
minus the maximal root. These are precisely the roots whose heights are congruent
to 1 mod h; we shall want F to be homogeneous of height 1, so from now on,
although we really have a Z-grading on g, we shall disregard that and consider it
as a mod h grading. Kostant [7] calls the F in (4.1) a cyclic element of g. The
reason is that for g = sl(n), hi = {diagonal matrices} and the usual choice of simple
roots, we have

/0 1 0 • • • 0\
0 0 1 - • - 0

(4.2) F =
0 • • • • 0 1

\ l 0 • • • • 0/

(4.3) PROPOSITION (Kostant). The cyclic element F given by (4.1) is regular semi-
simple {for all Q).

For the proof, see [7], lemma 6.3, p. 1007 and corollary 6.4, p. 1009.
We denote by h the unique Cartan subalgebra containing F. (For g = sl(«), with

F given by (4.2), h consists of the circulant matrices. Note incidentally that the
relation between h and hi is symmetrical: if (as is done in [9]) we choose hi =
{circulants}, then we have

where w = exp (2ni/n), and h will be the diagonal matrices.)

(4.4) THEOREM (Kostant). (i) The Cartan subalgebra h has a basis consisting of
elements that are homogeneous in the mod h grading.

(ii) The heights m\,..., mh say, of the elements of this basis are the exponents
of g; thus we have mi = dt — 1, where the dt are given by the table in the appendix.

I refer to [7] for the proof (see especially theorem 6.7, p. 1014 and corollary 8.6,
p. 1026). I shall just make a few comments. Let Q e hi be the element defined by
(ah <?)= 1 for all simple roots a,; let P = exp(2m'/h • Q): thus P lies in (say) the
adjoint group of g. It is easy to see that an element Y e g is homogeneous of height
q (mod h) precisely when

Ad P(Y) = (o"Y,

where u> = exp (2m/h). In particular,

Ad P(F) = (oF,

from which it follows at once that Ad P preserves h, the centralizer of F. Part (i)
of (4.4) is now clear. In corollary 8.6 of [7], Kostant shows that the restriction of
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Ad P to h is a Coxeter transformation of b; part (ii) of (4.4) thus amounts to the
(now) standard fact that the eigenvalues of a Coxeter transformation are w m', where
m, runs over the exponents of g (see [4], p. 121).

(4.5) LEMMA. We have hi <= Im ad F.

Proof. We recall that [Ea, E0] = 0 unless a +/3 is a root or zero. It follows that for
each simple root a,, we have

[F,E-ai] = [Eai,E_O|],

and these elements form a basis for hi. •

Now we are ready to study the modified Lax equations. Let u\,..., M< be differen-
tially independent variables; we set B = C[u\')], g = B®g. Thus on g we have a
Z x.Z/h bigrading: in the Z-grading (by 'degree'), degwi'* = 1+/ and deg F = 0
for Yeg; the mod h grading (by 'height') is extended to g by setting h t / = O for
feB. We fix any basis X\,..., Xt for hi, and we set

H=lHiX,ei)i, U = -u+\F.
I

(4.6) LEMMA. Let Y = £^ D,A "', t>, eq, be a series satisfying

(4.7) BV=[U,V\

with Vi Z-homogeneous (of degree i). 7/uoeh is Z/h-homogeneous of height q, then
Vt is ZI h-homogeneous of height q - i.

Proof. Extend the bigrading to formal series in A by giving A bidegree (1, -1), so
that U is bihomogeneous (of bidegree (1, 0)). Then it is clear that, if V satisfies
(4.7), each bihomogeneous component of Y does too. But we know from § 3 that
a Z-homogeneous solution of (4.7) is uniquely determined by its leading term
uo€ h. It follows that if v0 is Z//i-homogeneous of height q, so is Y. •

It is now easy to tackle the problem of consistency for our modified Lax equations

(4.8) -d,u = dvr + [w, vr] = [F, t>r+1].

The left-hand side of (4.8) lies in fji, so for consistency we need the right-hand
side to do the same: that is, to be Z/fc-homogeneous of height zero. In view of
(4.6) and the non-triviality assertion (2.7) (the proof of which was given in § 3
and is still valid), that will happen precisely when we choose v0 to be homogeneous
of height r (mod h), so that vr is homogeneous of height zero. Combining this with
(4.4), we obtain the following.

(4.9) THEOREM. The modified Lax equation (4.8) is non-trivial and consistent if
and only if we choose Vo 6 h to be homogeneous of height r. Thus we have one modified
Lax equation of each degree congruent to an exponent of Q modulo the Coxeter
number h.

From the table in the appendix, we see that in the case of D2k there is a repeated
exponent 2k —1. In that case the last statement in (4.9) naturally means that we
have two linearly independent equations of each degree congruent to 2k -1 mod h.
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Next we consider the conservation laws. The proof in § 3 that the elements

are conserved densities for all the equations is still valid: the problem is to determine
which of them are non-trivial. Using again the facts that

K(Ea, E0) = O unless a = -/8

and that

we see that only the component of height - 1 in vr+i contributes anything to Hr:
this comes from the component of height r in v0. Thus to obtain non-trivial
conservation laws, we may restrict ourselves to choosing v0 to be homogeneous of
height r.

(4.10) THEOREM. / / ttoeh is (non-zero and) homogeneous of height r, then the
conserved density

Hr = r1K(vr+1,F)

is non-trivial. Thus the modified Lax equations have a (common) non-trivial con-
served density of each degree congruent to one of the di = m,- +1 mod h.

(In the case D2k, this means that the equations have two conserved densities of
each degree congruent to 2k mod h, and these are linearly independent as elements
of B/dB.)

Theorem (4.10) will follow from the Hamiltonian form of the equations (see
(4.12) below). Lemma (3.8) is still valid in our present specialized situation, so we
can use it to read off the variational derivatives of the Hr. We choose v0 6 h
homogeneous of height r, so that vr e hi! let

i

Vr = I VrjXi, Vr,i £ B.
1

Then since

Su = YJ SuiXi,

(3.8) gives

^=t K(Xi,Xi)vr,i.
out /=i

Since the restriction of K to hi is non-degenerate, the matrix K(XhXj) is non-
singular: denote it by S \ so that we have

(4.11) (S-%i = K(Xi,Xi).

Then if vr (resp. SHr/Su) denotes the column vector with entries vr<i (resp. SHr/Sui),
we have

v - 5 ^
Su

On the other hand, since vr e E)i, we have

[M, vr] = 0,
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so that the modified Lax equation (4.8) simply takes the form

dtu = — dvr.

Thus we have proved the following.

(4.12) THEOREM. The modified Lax equation (4.8) can be written in the Hamiltonian
form

SHr
d,u = -Sd—,

Su

where the constant matrix S is given by (4.11) (and u is the column vector with
entries u\,..., ut).

Of course, by choosing {Xt} to be a iT-orthonormal basis for hi, we can make 5
the identity. As another example, if g = sl(n), hi = {diagonal matrices}, Xt = Eu-Enn

(1 < / < n -1) and K(X, Y) = tr XY (see remark 3.12), then we have

t r * ? = 2 , tr X, AT, = 1 (/#/),
so that

where E is the matrix with every entry equal to 1. Thus

S = ld-n~1E,

confirming the result stated in [10], (2.11), where it was obtained by a more
roundabout method.

Proof of theorem 4.10. By (4.12), if the conserved density H, were trivial, so would
be the corresponding equation; but we already know that it is not. •

5. The two-dimensional Toda lattice equations
We retain the notation of § 4. By definition, the 2DTL equation associated with g
is the zero curvature equation

(5.1) d,u = -dV + [U,Vl

where now V is supposed to be a multiple of A ~*: V = v\ ~1 (the idea of considering
such equations is suggested by the AKNS representation [1] for the sinh-Gordon
equation, which is our equation (1.1) in the case n = 2).

As we shall see in a moment, that forces v to lie, not in our algebra B®Q, but
in a larger one B®Q, where B is an algebra obtained from B by adjoining
exponentials of integrals of the «,. We shall write A for the set of roots occurring
in the sum (4.1); that is, A consists of the simple roots and minus the maximal
root. Since U is homogeneous of height zero (recall that A has height -1), for
consistency of (5.1) we should take V to have height zero too, so that v must have
height - 1 ; thus v takes the form

v= X vaE-a, vaeB
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(the algebra B is yet to be determined). A short calculation shows that (5.1) then
takes the form

d,u= I [{a,u)va-dva]E-a\~
l

For consistency, we require the terms involving A"1 to vanish; let us introduce
'potential' variables »v, with dwt = «,, and set w = £ wtXi e jji, so that dw = u. Then
the vanishing of the terms involving A"1 above gives

va = ca exp (a, w), a&A, ca constants.

If a, p e A, then a - /3 is never a root, from which we find

[F,v] = lva[Ea,E-a].

Thus we obtain our 2DTL equation in the form

(5.2) d,u = d,dw = X ca exp {a, w)[Ea, E-a].

The Hamiltonian form of the equation is perhaps more easily understood. Set

(5.3) H = ~K(F, v) = -Z ca exp (a, w)
azA

(we assume as usual that K(Ea, E-a) = 1).

(5.4) PROPOSITION. The 2DTL equation (5.2) can be written in the form

8H
d,dw=S ,

Sw

where S is given by (4.11), H by (5.3), and w, SH/Sw are column vectors.

Proof. We have

K(Xh [Ea, £_„]) = K([Xh Ea], E-a) = K((a, X,)Em E-a) = (a, X,),

so that from (5.2) we obtain

K(Xh d,u) = X (S-%d,Uj = I ca exp (a, w)(a, X,).
j as A

But this last expression is clearly equal to —SH/Swt, so (5.4) follows. •
It is usual (as we did in the introduction) to set all the constants ca equal to 1. Let
us note, however, that if instead we set c_^ = 0 for tp the maximal root and ca = 1
for a simple, then we obtain the two-dimensional versions of the 'tied' (non-
periodic) finite Toda lattice studied, for example, in [8].

Now we can state the main facts about the 2DTL equations.

(5.5) THEOREM, (i) The modified Lax equations of § 4 are all symmetries of the
2DTL equation in the sense explained in [10].

(ii) The conserved densities for the modified Lax equations are also conserved
densities for the 2DTL equation.

Combining this with what was proved in §4, we obtain theorem (1.3) in the
introduction.

I shall not comment on the proof of (5.5), since it is exactly the same as in the
case Q = sl(n), which is explained in detail in [10].
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Appendix
The table below (which I extracted from [4]) gives the values of d\ dt for the
various simple Lie algebras. The exponents are given by m, = d{•.. — 1 and the largest
dt is the Coxeter number h.

Lie algebra

A,_,(/a:2)
B,,C,(lz2)

Dt (/>3)
E6

E-,
Eg

FA

G2

2,3,4,
2,4, 6,
2,4, 6,
2, 5, 6,
2,6,8,
2,8,12
2,6,8,
2,6

du

• • • J

8,9
10,

1 14
12

,/
,2/
,21-
,12
12,

18

,d,

- 2 ; /

14,18
, 20, 24, 30

Postscript
In [21] Drinfel'd & Sokolov associate a hierarchy of 'modified KdV equations to
each of the class of Lie algebras variously called in the literature affine, Euclidean,
Kac-Moody, contragredient or loop algebras. The list of these can be found (for
example) on p. 503 of Helgason's book [22]. Among them are the loop algebras
g®C[A, A"1] (g simple, finite dimensional) that we have been working with in this
paper: the others can be described as the 'twisted loop algebras', L(Q, V) (see (P2)
below), where v is an (outer) automorphism coming from a symmetry of the Dynkin
diagram of g. I want to describe the construction of [21], and explain why in the
untwisted case it is the same as the one given above.

So, let & be one of these loop algebras; recall that it is generated by elements
{«» fi, hi], 0 < / < / , satisfying relations similar to those for finite dimensional simple
Lie algebras (see [16], appendix to ch. 6). We equip 'S with its principal grading,
in which the <?,, ft and ht have heights 1,-1 and 0, respectively. Let hi <= <g be the
subspace of elements of height zero: it is spanned by the hh and is /-dimensional.
(The notation hi is chosen to conform with that of § 4 above.) Let u(x, t) be a map
with values in hi, and let A = I o e - Then the modified KdV equations of [21]
associated with <§ have the zero curvature representations

[d-U,d,-V] = 0,

where U = -u + A, and V is a sum of elements of non-negative height.
Now specialize to the 'untwisted' case

Then I claim that these equations are the same as the modified Lax equations
associated with g constructed in the present paper. The zero curvature representa-
tion for them in [21] is not quite the same as ours, but it is related to it by a very
simple 'gauge transformation' (inner automorphism of <§). To see that, recall (see
[22], p. 504) that if
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then hi and e\,..., et have the same meaningt as in § 4, and

(t// the maximal root). In the principal grading, A therefore has height h (the Coxeter
number). Let fi be a parameter with /u.h=A, and let %?c Q®C[/J., n~l] be the
subalgebra consisting of sums £ XJ/J. ' such that Xt e g has height i in the mod h
grading of § 4. Let <f> be the automorphism of Q®C[H, /J.'1] defined as follows: if
X £ g has height i (in the Z-grading), then

The following proposition is trivial.

(PI) PROPOSITION. We have an isomorphism of algebras

On the other hand, if F is as in § 4, we clearly have F/j.e§ and

and <f> leaves the elements of hi fixed. It follows easily that cf> throws our construction
(with our A replaced by n) onto that of [21]. Of course, the construction of [21]
has the advantage that it works equally well in the twisted case.

To conclude, I should like to make a few short remarks.
(1) The proper setting for the arguments of this paper seems to be the following.

Let o- be an automorphism of finite order m of a simple Lie algebra g, and let

be the corresponding mod m grading of g (that is, gf is the subspace on which <x
acts as <o\ a> a primitive m'th root of unity). Let

(P2) Us, tr) = \ I Xtk'\X, €Qimod m)
I ieZ J

be the corresponding twisted loop algebra. Let Feg i be a semi-simple element,
u(x, t) a map with values in gonlm adF, and set U — —u +\F. Then we can form
a hierarchy of evolution equations

[d-U,dt-V] = 0

just as in § 2: we shall have one equation for each element of the centre of the
centralizer of F in L(g, a). The equations of § 2 are the case when a is the identity;
the modified Lax equations are the case when a is the Coxeter transformation
(conjugation by the element denoted by P in § 4). The twisted loop algebra in that
case is the algebra ^ above. Note that Kac (see [23]) has shown that the classification
of automorphisms of finite order reduces to classifying the gradings on the 'standard'
loop algebras ^, which is trivial: however, I do not know how to classify the
automorphisms such that gi contains a (non-zero) semi-simple element.

(2) The question of the degrees of the MKdV equations of [21] and their
conservation laws takes the form: for what positive integers r does the centralizer

t More precisely, the e* corresponds to the E, of § 4.
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(which is commutative) of A in ^ contain non-zero elements of height r (in the
principal grading)? In the case

we have seen that these are the numbers congruent to an exponent of g modulo
the Coxeter number. In the twisted cases the numbers are listed in [21]; and Kac
has pointed out to me that they are also calculated (for a different reason) in his
paper ([23], p. 124). They are as follows: for the algebras A^-i and D?+u all odd
numbers; for the 'exceptional' algebras E™ and £>43), all numbers congruent to
±1 mod 6; and for A(%\, all odd numbers not divisible by 2/ +1 . It is amusing that
the numbers for A™ were obtained in [10], by regarding the MKdV equations for
A{2i as specializations of those for A2r, incidentally, the algebras A™ are the only
twisted algebras that can be treated in that way.

(3) The terminology 'modified Lax equations' will doubtless have led the reader
to suspect that there should also be for each simple Lie algebra g a hierarchy of
'Lax equations' related to the modified equations by a 'Miura transformation'. That
is indeed the case, and the present work was intended as a preliminary to the study
of such equations. However, the paper [21] shows that the situation is richer than
this, at least if one does not insist on the Lax equations having two Hamiltonian
structures: namely, Drinfel'd & Sokolov show how to construct a hierarchy of
'KdV equations for each affine algebra & and each vertex c of its Dynkin diagram
(see [22], p. 503). The MKdV and KdV equations are related by a Miura transforma-
tion of type corresponding to the semi-simple Lie algebra g whose Dynkin diagram
is obtained by removing c from that of 'S. In fact, the situation is richer still: one
can form equations related to the MKdV equations by 'degenerate' Miura transfor-
mations corresponding to the different parabolic subalgebras of g (the Miura
transformations of [21] correspond to the Borel subalgebras). Note that in the case

« = sl(n)®C[A,A"1]

(which was studied in [9]), because of the exceptional symmetry of the Dynkin
diagram one obtains the same equations for each vertex c: it is this that is responsible
for the 'Backlund transformations' of these equations (see [9], p. 407).

(4) The recent Japanese preprints [20] indicate that the affine algebras are central,
not only to the formal properties of integrable equations, but also to the study of
their solutions. It should be very interesting to combine the viewpoints of [20] and
[21]. For example, a cursory comparison suggests that the solutions of the KdV
equations of [21] corresponding to an affine algebra 'S and vertex c of its Dynkin
diagram should be obtained from a study of the irreducible representation of $
with highest weight dual to c. In any case, the main message of the papers [20]
and [21] seems to me very clear: the role of the affine algebras in the theory of
integrable evolution equations can scarcely be exaggerated.
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