New limit on a varying proton-to-electron mass ratio from high-resolution optical quasar spectra

A. L. Malec¹, R. Buning², M. T. Murphy¹, N. Milutinovic³, S. L. Ellison³, J. X. Prochaska⁴, L. Kaper^{2,5}, J. Tumlinson⁶, R. F. Carswell⁷ and W. Ubachs²

¹Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria 3122, Australia email: amalec@swin.edu.au

²Laser Centre, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

³Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada

 4 University of California Observatories – Lick Observatory, University of California, Santa Cruz, CA95064

 $^5 \, {\rm Astronomical \, Institute \, Anton \, Pannekoek, \, Universiteit van \, Amsterdam, \, 1098 \, {\rm SJ} \, {\rm Amsterdam, \, The \, Netherlands}$

 $^6\mathrm{Yale}$ Center for Astronomy and Astrophysics, Department of Physics, New Haven, CT 06520, USA

⁷Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK

Abstract. Molecular transitions recently discovered at redshift $z_{\rm abs} = 2.059$ toward the bright background quasar J2123-0050 are analysed to limit cosmological variation in the proton-toelectron mass ratio, $\mu \equiv m_{\rm p}/m_{\rm e}$. Observed with the Keck telescope, the optical spectrum has the highest resolving power and largest number (86) of H₂ transitions in such analyses so far. Also, (7) HD transitions are used for the first time to constrain μ -variation. These factors, and an analysis employing the fewest possible free parameters, strongly constrain μ 's relative deviation from the current laboratory value: $\Delta \mu/\mu = (+5.6 \pm 5.5_{\rm stat} \pm 2.7_{\rm sys}) \times 10^{-6}$. This is the first Keck result to complement recent constraints from three systems at $z_{\rm abs} > 2.5$ observed with the Very Large Telescope.

Keywords. line: profiles – techniques: spectroscopic – methods: data analysis – quasars: absorption lines