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Abstract. Let {Xn, n ≥ 1} be an asymptotically almost negatively associated
(AANA) sequence of random variables. Some complete convergence and
Marcinkiewicz–Zygmund type strong laws of large numbers for an AANA sequence
of random variables are obtained. The results obtained generalize the results of Kim,
Ko and Lee (Kim, T. S., Ko, M. H. and Lee, I. H. 2004. On the strong laws for
asymptotically almost negatively associated random variables. Rocky Mountain J. of
Math. 34, 979–989.).
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1. Introduction. Let {X, Xn, n ≥ 1} be a sequence of independent identically
distributed (i.i.d.) random variables. The Marcinkiewicz–Zygmund strong laws of large
numbers (SLLNs) provides

1
n1/α

n∑
i=1

(Xi − EXi) → 0 a.s. for 1 ≤ α < 2,

and

1
n1/α

n∑
i=1

Xi → 0 a.s. for 0 < α < 1,

if and only if E|X |α < ∞. The case α = 1 is due to Kolmogorov.
As for asymptotically almost negatively associated (AANA) random variables,

Chandra and Ghosal [2, 3] gave the following definition.

DEFINITION [2, 3]. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to
be asymptotically almost negatively associated (AANA) if there is a non-negative
sequence q(m) → 0 such that

Cov(f (Xm), g(Xm+1, . . . , Xm+k))

≤ q(m)(Var(f (Xm))Var(g(Xm+1, . . . , Xm+k)))1/2 (1.1)
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for all m, k ≥ 1 and for all coordinatewise increasing continuous functions f and g
whenever the right-hand side of (1.1) is finite.

In 2004, Kim, Ko and Lee established the Marcinkiewicz–Zygmund type SLLNs
for an AANA sequence of random variables. We can see the following theorems.

THEOREM A. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be a sequence of real numbers with
supn≥1

∑n
i=1 |ani| < ∞, and let {X, Xn, n ≥ 1} be a sequence of identically distributed

AANA random variables with EX = 0 and E|X |t < ∞, for 0 < t < 2. Let
∑∞

k=1 q2(k) <

∞. Then,

1
n1/t

n∑
i=1

aniXi → 0 a.s. for 0 < t < 2.

THEOREM B. Let {X, Xn, n ≥ 1} be a sequence of identically distributed AANA
random variables. Let

∑∞
k=1 q2(k) < ∞. If E|X |t < ∞, for 0 < t < 2, then

1
n1/t

n∑
i=1

(Xi − EXi) → 0 a.s. for 1 ≤ t < 2

and

1
n1/t

n∑
i=1

Xi → 0 a.s. for 0 < t < 1.

The main purpose of this paper is to establish some complete convergence and
Marcinkiewicz–Zygmund type SLLNs for an AANA sequence of random variables.
The results obtained generalize the results of [8].

2. Main Results. Throughout this paper, C will represent a positive constant
though its value may change from one appearance to the next, and an = O(bn) will
mean an ≤ Cbn. Also, an � bn will mean an = O(bn).

In order to prove our results, we need the concept of complete convergence, the
concept of the Hsu–Robbins–Erdös law of large numbers (see [6] and [7]) and the
following lemmas.

DEFINITION 2.1. [7] Let {X, Xn, n ≥ 1} be a random variables sequence, for any
ε > 0, if ∞∑

n=1

P(|Xn − X | > ε) < ∞,

holds, then we call {Xn, n ≥ 1} complete convergence to X.

Let {X, Xn, n ≥ 1} be a sequence of i.i.d. random variables and denote Sn =∑n
i=1 Xi. The Hsu–Robbins–Erdös law of large numbers (see [6] and [7]) states

that

∀ε > 0,

∞∑
n=1

P(|Sn| > εn) < ∞,

is equivalent to EX = 0 and EX2 < ∞.
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This is a fundamental theorem in probability theory and has been intensively
investigated by many authors in the past decades. One of the most important results
is Baum and Katz’s [1] law of large numbers, which states that, for p < 2 and
r ≥ p,

∀ε > 0,

∞∑
n=1

n
r
p −2P

(|Sn| > εn
1
p
)

< ∞,

if and only if E|X |r < ∞, r ≥ 1 and EX = 0.

There have been many extensions in various directions. Two of them are [4, 5] and
[9].

The following Lemma can be obtained easily from the definition of AANA random
variables.

LEMMA 2.1. Let {Xn, n ≥ 1} be a sequence of AANA random variables. Then
{fn(Xn), n ≥ 1} is still a sequence of AANA random variables, where fn(·), n = 1, 2, . . . ,

are non-decreasing functions.

LEMMA 2.2. [4, 5] Let {Xn, n ≥ 1} be a sequence of AANA random variables with
EXk = 0 and EX2

k < ∞, k ≥ 1. Let A2 = ∑n−1
m=1 q2(m) and σ 2

k = EX2
k , k ≥ 1. Then, for

ε > 0,

P

(
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2ε−2(A + (1 + A2)1/2)2

n∑
k=1

σ 2
k .

THEOREM 2.1. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be a sequence of real numbers with∑n
i=1 a2

ni = O(n). Let {Xi, i ≥ 1} be an AANA sequence of random variables with EXi = 0.
Let

∑∞
k=1 q2(k) < ∞. If E|X |t < ∞, for 0 < t < 2 and P(|Xi| > x) ≤ P(|X | > x),

x > 0. Then

∀ε > 0,

∞∑
n=1

n−1P

(
max
1≤k≤n

1

n
1
t

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣ > ε

)
< ∞. (2.1)

Proof of Theorem 2.1. Without loss of generality, we can assume that ani ≥ 0 for
1 ≤ i ≤ n, n ≥ 1.

For any i ≥ 1, define X (n)
i = XiI(|Xi| ≤ n

1
t ) + n

1
t I(Xi > n

1
t ) − n

1
t I(Xi < −n

1
t ),

T (n)
j = 1

n
1
t

∑j
i=1(aniX

(n)
i − EaniX

(n)
i ), then ∀ε > 0,

P

(
max
1≤k≤n

1

n
1
t

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣ > ε

)

≤ P
(

max
1≤j≤n

∣∣Xj
∣∣ > n

1
t

)
+ P

(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε − max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniX (n)
i

∣∣∣∣∣
)

. (2.2)

By
∑n

i=1 a2
ni = O(n) and Cauchy’s inequality

1
n

n∑
i=1

|ani| ≤
(

1
n

n∑
i=1

a2
ni

)1/2

,
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we have
n∑

i=1

|ani| = O(n).

First, we show that

max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniX (n)
i

∣∣∣∣∣ → 0 as n → ∞. (2.3)

In fact, (i) when t ≥ 1, by EXi = 0, E|X |t < ∞, for 0 < t < 2, P(|Xi| > x) ≤ P(|X | >

x), x > 0 and
∑n

i=1 |ani| = O(n), then

max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniX (n)
i

∣∣∣∣∣
= max

1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

aniE
[
XiI

(|Xi| ≤ n
1
t
) + n

1
t I

(|Xi| > n
1
t
) − n

1
t I

(|Xi| < −n
1
t
)]∣∣∣∣∣

≤ max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniXiI
(|Xi| ≤ n

1
t
)∣∣∣∣∣ +

n∑
j=1

anjP
(|Xj| > n

1
t
)

≤ max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniXiI
(|Xi| > n

1
t
)∣∣∣∣∣ +

n∑
j=1

anjP
(|Xj| > n

1
t
)

� n

n
1
t

E|X |I(|X | > n
1
t
) +

n∑
j=1

anjP
(|Xj| > n

1
t
)

≤ n

n
1
t

(
n

1
t
)1−tE|X |tI(|X | > n

1
t
) + nP

(|X | > n
1
t
)

≤ E|X |tI(|X | > n
1
t
) + nP

(|X | > n
1
t
)

→ 0 as n → ∞.

(ii) When 0 < t < 1, by EXi = 0, E|X |t < ∞, for 0 < t < 2, P(|Xi| > x) ≤ P(|X | > x),
x > 0 and

∑n
i=1 |ani| = O(n), then

max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EaniX (n)
i

∣∣∣∣∣
= max

1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

aniE
[
XiI

(|Xi| ≤ n
1
t
) + n

1
t I

(|Xi| > n
1
t
) − n

1
t I

(|Xi| < −n
1
t
)]∣∣∣∣∣

≤ max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

aniEXiI
(|Xi| ≤ n

1
t
)∣∣∣∣∣ +

n∑
j=1

anjP
(|Xj| > n

1
t
)

� n

n
1
t

E|X |I(|X | ≤ n
1
t
) +

n∑
j=1

anjP
(|Xj| > n

1
t
)

= n

n
1
t

n∑
k=1

E|X |I(k − 1 < |X |t ≤ k
) + nP

(|X | > n
1
t
)
.
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Using E|X |t < ∞, we have

∞∑
k=1

k

k
1
t

E|X |I(k − 1 < |X |t ≤ k)

≤
∞∑

k=1

k

k
1
t

k
1
t P(k − 1 < |X |t ≤ k)

≤
∞∑

k=1

kP(k − 1 < |X |t ≤ k)

≤ E|X |t + 1 < ∞.

By Kronecker’s lemma, we get

n

n
1
t

n∑
k=1

E|X |I(k − 1 < |X |t ≤ k) → 0, n → ∞,

so

max
1≤j≤n

1

n
1
t

∣∣∣∣∣
j∑

i=1

EX (n)
i

∣∣∣∣∣ → 0, n → ∞. (2.4)

Hence, from (i) and (ii), (2.3) is true.
From (2.2) and (2.3), it follows that for large enough n

P

(
max
1≤k≤n

1

n
1
t

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣ > ε

)
≤

n∑
j=1

P
(|Xj| > n

1
t
) + P

(
max
1≤j≤n

|T (n)
j | >

ε

2

)
.

Hence, we only need to prove that

I =:
∞∑

n=1

n−1
n∑

j=1

P
(|Xj| > n

1
t
)

< ∞,

II =:
∞∑

n=1

n−1P
(

max
1≤j≤n

∣∣T (n)
j

∣∣ >
ε

2

)
< ∞. (2.5)

From the fact that E|X |t < ∞ and P(|Xi| > x) ≤ P(|X | > x), x > 0, it easily follows
that

I =
∞∑

n=1

n−1
n∑

j=1

P
(|Xj| > n

1
t
)

�
∞∑

n=1

P
(|X | > n

1
t
)

≤ E|X |t + 1 < ∞. (2.6)

By Lemma 2.1, {aniX
(n)
i , i ≥ 1} is still a sequence of AANA random variables.

By Lemma 2.2 and E|X |t < ∞, 0 < t < 2 and P(|Xi| > x) ≤ P(|X | > x), x > 0, we
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have

II =
∞∑

n=1

n−1P
(

max
1≤j≤n

∣∣T (n)
j

∣∣ >
ε

2

)

�
∞∑

n=1

n−1 1

n
2
t

4
ε2

n∑
j=1

E
∣∣anjX

(n)
j

∣∣2

≤C
∞∑

n=1

n−1 1

n
2
t

n∑
i=1

a2
niE

∣∣XiI
(|Xi| ≤ n1/t)+n1/tI

(|Xi| > n1/t)−n1/tI
(|Xi| < −n1/t)∣∣2

≤ C
∞∑

n=1

n−1 1

n
2
t

n∑
i=1

a2
niEX2

i I
(|Xi| ≤ n

1
t
) + C

∞∑
n=1

n−1 1

n
2
t

n
2
t

n∑
j=1

a2
njP

(|Xj| > n
1
t
)

� C
∞∑

n=1

1

n
2
t

EX2I
(|X | ≤ n

1
t
) + C

∞∑
n=1

n−1nP
(|X | > n

1
t
)

= C
∞∑

n=1

1

n
2
t

n∑
k=1

EX2I
(
k − 1 < |X |t ≤ k

) + C
∞∑

n=1

P
(|X | > n

1
t
)

≤ C
∞∑

n=1

1

n
2
t

n∑
k=1

k2/tP
(
k − 1 < |X |t ≤ k

) + C
∞∑

n=1

P
(|X | > n

1
t
)

≤ C
∞∑

k=1

k2/tP
(
k − 1 < |X |t ≤ k

) ∞∑
n=k

1

n
2
t

+ C
∞∑

n=1

P
(|X | > n

1
t
)

≤ C
∞∑

k=1

kP(k − 1 < |X |t ≤ k) + C
∞∑

n=1

P
(|X | > n

1
t
)

≤ C(E|X |t + 1) < ∞. (2.7)

Proof of Theorem 2.1 is now complete.

COROLLARY 2.1. Under the conditions of Theorem 2.1 and let Tn = ∑n
i=1 aniXi,

lim
n→∞

|Tn|
n

1
t

= 0 a.s.

Proof. By (2.1), we have

∞ >

∞∑
n=1

n−1P
(

max
1≤j≤n

|Tj| > εn
1
t

)

=
∞∑

i=0

2i+1−1∑
n=2i

n−1P
(

max
1≤j≤n

|Tj| > εn
1
t

)

≥ 1
2

∞∑
i=1

P
(

max
1≤j≤2i

|Tj| > ε2
i+1

t

)
.
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By Borel–Cantelli lemma, we have

P
(

max
1≤j≤2i

|Tj| > ε2
i+1

t i.o.

)
= 0.

Hence

lim
i→∞

max1≤j≤2i |Tj|
2

i+1
t

= 0 a.s.

and using

max
2i−1≤n<2i

|Tn|
n

1
t

≤ 2
2
t
max1≤j≤2i |Tj|

2
i+1

t

,

we have

lim
n→∞

|Tn|
n

1
t

= 0 a.s.

Hence, we complete the proof of Corollary 2.1. �
REMARK 2.1. Theorem 2.1 and Corollary 2.1 generalise the results of [8].

REMARK 2.2. Let ani = 1, by Corollary 2.1, we can prove Theorem B.

REMARK 2.3. Corollary 2.1 is more generalised than Theorem A.
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