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THE TRANSLATION PLANES OF DEMPWOLFF
N. L. JOHNSON

1. Introduction. In [2], Dempwolff constructs three translation
planes of order 16 using sharply 2-transitive sets of permutations in Sys.
Thatis, if 4 CS,acting on A isa sharply 2-transitive set of permutations
then an affine plane of order » may be defined as follows: The set of
points = {(x,y)|x,y € A} and thelines = {(x,y)|y = xgforfixedy €7},
{(x, )|x = c}, {(x,9)]y = ¢} forc € A.

Let 7 be a vector space of dimension k over F = GF(p"). A translation
plane may be defined by finding a set M of p*” — 1 linear transformations
such that xy=! is fixed point free on V — { O} for all x # y in M.

Notice that if we allow V7 to act on itself (v i u + v) then MV is a
sharply 2-transitive set on 1 if and only if xy—! is fixed point free on
V — {0} forallx  yin M. If V,is 4-dimensional over GF(2), |M| = 15.
Note GL(V,) = Ay in this case. Aided by a computer program, Demp-
wolff [2] determined three sets M in GL(V4) which give rise to distinct
translation planes. One of these planes admits the group Z; X (Z3; X 4.)
- Z, as a collineation group. In [1], Dempwolff constructed an infinite
class of translation planes (orders 2¢", » odd) which contain the order 16
plane mentioned above. Both the manner of construction and the col-
lineation groups of the resulting planes are of interest.

In Section 2, we generalize Dempwolff’s construction and in Section 3
consider the planes so constructed. In particular, Dempwolff’s class men-
tioned above may be constructed by the derivation of a particular class
of Knuth semifield planes.

2. The Dempwolff construction and generalization.

(2.1) Definition. Let V be a 2k-dimensional vector space over F =
GF(p7),paprime. Let %, K be subgroups of GL(V) andleth € GLy(V).
Let h¥ = {g~'hg|lg € ¥} and assume ¥ normalizes K. If (k¢ \U K)V is
sharply 2-transitive on V' then a translation plane = may be defined:
The points of 7 = V @ V and the lines { (x, ¥)|x = ¢}, {(x, ¥)|y = ¢}
and { (x, y)|y = xg; ¢ € h? U K}. = is said to be of type (h, ¥, K).

If = is of type (h, ¥, K) we define the action of 4 on = by
(x, 3) & (xg, g)
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forg € 9 .Since g € ¥ mapsy = xkontoy = x(g~'kg), ¥ is a collinea-
tion group of = which fixes the net 4 g+ whose lines consist of x = ¢,
y =c¢,y = xkfor k € KV. We shall use K+ to denote K \U {O}.

(2.2) Notes. (a) If we define a multiplication in a type (h, ¥, K)
translation plane we have y = xk = x - k for all 2 € h¥ U K where &
depends only on k. We shall call K+ a subquasifield if K+ is a subquasifield
of a quasifield coordinatizing .

(b) If K* is a subquasifield then it is also a subnearfield since K is a
subgroup of GL (V). If K* is a field of matrices then K+ is also a subfield
of a corresponding quasifield of 7. Let mx+ denote the nearfield subplane
coordinatized by K+ if K* is a subquasifield.

(c) Any type (k, %, K) plane = admits the collineation group & which
fixes the net 4 x+ and acts transitively on the lines through (0, 0) of
xm—Ng+ (y=xh¥forg € G).

(d) Any generalized Hall plane of type ¢ (see [6]) or semitransitive
plane (see [4]) is of type (h, &, K) for certain k, & and K.

Conversely, we have:

(2.3) THEOREM. Let  be a translation plane of type (h, 9, K) where K+
is a subquasifield. If G centralizes K and leaves wx+ invariant then w is a
semitransitive plane.

Proof. If ¥ centralizes K then ¥ fixes A x+ componentwise. If &
leaves mg+ invariant then = is semitransitive (see Jha's definition [4]).

(2.4) COROLLARY. Let 7 be a translation plane of type (h, G, K) where
kern # GF(2). Assume K+ is a subquasifield and G centralizes K. Either
Tx+ is not tnvariant by G or K+ is a field of order N/ order w so that wx+ is a
Desarguesian Baer subplane.

Proof. If kern # GF(2) and the order of 7 is 16, then 7 is Desarguesian,
Hall or a semifield plane (see [7]). In this case only the Hall plane is of
type (h, 9, K).

If the order of ©# # 16, then by [4] 7 is derivable and mg+ is a Desar-
guesian Baer subplane.

(2.5) THEOREM. Let V be a vector space of dimension s over F = GF(pT =
q). Let K\J {0} = K* be a field = GF(p™) where K C GL(s, q). Then
the net N g+ in @ = V ® V whose components are y = xg, x = 0 for
¢ € K* is a Desarguesian net. N g+ is a replaceable net if and only if

K¥ =/

Proof. V is a vector space over K* of dimension rs/m so = has dimension
2™m over K. Let

tvo = { (Vay, Voh)|y, b € K+ for all Vo € V).
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Then clearly

Uvoev Tyo = (X = 0) UgeK+ y = Xg.

For A x+ to be replaceable, |7y, = p’* = p*™ Thus, p™ = p’*% In this
context we may overcome the restriction on the kern in (2.4).

(2.6) THEOREM. Let 7 be a translation plane of order # 16 and of type
(h, G, K). Let K+ be a field of matrices and assume G centralizes K and
leaves g+ invariant. Then NV g+ is a derivable net and wg+ 1s a Baer subplane.

Proof. Choosing coordinates within 74+, we have that K* is a subfield
of the (left) quasifield Q coordinatizing = and Q is a right vector space
over K+ (since A g+ is a Desarguesian net by (2.5)). From here we can
use Jha's results to obtain the result. Actually, he used kern # GF(2)
to obtain that K+ is a subfield under the assumptions that it was a
subquasifield.

On the other hand, if 4 x+ is derivable:

(2.7) THEOREM. Let 7 be a translation plane of type (h, 9, K) where K+
is a field of order \/order = and G centralizes K. If G does not leave
invariant then w1s a Hall plane.

Proof. Clearly 9 C GL(2, K*) acting on any component of A g..

Let ¢ ¢ % of order p where the characteristic of 7 is . Then ¢ fixes
pointwise a 1-space over Kt on each of x = 0,y = 0 and y = x. Thus,
o fixes a 2-space F(s) over K+ pointwise. Clearly, F(o) = wy, for some
7o in 7' (see (2.5)). Thus, F(0) is a Baer subplane in .4 g.. Clearly,
each Sylow p-subgroup S must also fix a Baer subplane F(S) in A k-
pointwise. 7 is of order ¢%** and ¥ acts transitively on the ¢*(¢g"* — 1)
components of 7 — A g+ (see (2.2) (a)). Thus, ¢* | |S| so there must be
exactly ¢* + 1 Sylow p-subgroups corresponding to the ¢* + 1 Baer
subplanes of A4 g+ which are also subspaces. Since % C GL(2, K+),
clearly SL(2, K+) € % . If the order of = is not 16, = is Hall by [3]. If
the order of = is 16, 7 is Hall or one of the planes constructed by Demp-
wolff (see [7]). However, since ¥ fixes 4 x+ componentwise this latter
possibility cannot occur.

(2.8) THEOREM. Let m be a translation plane of type (h, G, K) where
K, % c GL (2k, p7). If K+ is a field of matrices of order p*" centralized by
G and G is the full normalizer of a Sylow p-subgroup within GL(2, K+),

then w 1s a plane derived from a semifield plane of Knuth type I1.

Proof. By (2.4) there is a % -invariant Baer subplane F(S) which is
pointwise fixed by a Sylow p-subgroup S. F(S) X = € and F(S) N\ ¥V
= (7 are l-spaces over K. By appropriate basis choice on X = &, &
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has the form

e ]

(recall ¥ is the full normalizer of S and we may choose S = {[I a] ‘

L

ac # ﬁ,a,b,céK!

0 I
a € K} on X = 0). Thus, % contains the subgroups

{Iﬁé; (LEK—@)}:”H
and
Jla O]

l@ I aEK—ﬁ}z"H.

Considering the action on 7, A and “H both fix 2-spaces over K point-
wise. (*H and S both fix the same Baer subplane of 4% pointwise.)
By [6], # may be derived from a semifield plane coordinatized by a semi-
field which is of dimension 2 over its right and middle nuclei simul-
taneously. That is, the right equals the middle nucleus. So, 7 is of Knuth
type II (see [5] and Knuth [8]; also see (3.4) (1) and (2)).

(2.9) COROLLARY. Let 7 be a translation plane of type (h, 9, K) where
K+ is a field of matrices of order p*' centralizedby G, G, K C GL(2k,p"),
and G s generated by Baer collineations. Then = is either Hall or a derived
semifield plane of Knuth type I1.

Proof. By (2.4), we may assume ¥ C GL(2, K*) normalizes a Sylow
p-subgroup. So, on X = O,

vy Jhom mnec-{f

f[l (L:'[ | {[a ﬁ]
e 1B \le 1
If ¢ ¢ % fixes a Baer subplane pointwise then g must fix pointwise an

l-space over Koneachof X = #, V = O,and V = X. lfon X = O
this /-space is not F(S) N\ X = ¢, we may choose it to be | (k, O)|h € K}.

Thatis, g = [([) (c)] (forc ¢ K)on X = . Notice the /-spaces over K+

on X = 0 and # F(X) N\ X = O are in an orbit under S. Thus, if
g € 9 fixes an l-space pointwise, g' fixes { (h, O)|h € K} pointwise for
[ € S. The point of this is that any element of ¥ may be written as a
product of elements that pointwise fix either F(S) N X = & or

l

(lEK-—@"

aEK—@}.
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{(h, O)|h € K} on X = €. That is, a typical element has the form

LAl Sl Al 7]

Since S <1 ¥, the elements of % may be written in the form

ool lo o1le 7]

fora,b,c € K+.
Originally, K € %. Thinking of 9 C GL(2, K*) we have

{[d d]ldEK}gg'

Thus,
-1l )
dl Lo 11lo »
ifand onlyif a = & and ¢ = b = d. In other words, for each element of

the form [é 2] in 9 there is a corresponding element of the form

d 0 .
[0 I] . Thus, ¥ contains

d—l
so 9 is the full normalizer of S within GL(2, K*).

{6 2Jecx-o.

3. The Dempwolff planes of order 2, » odd, and other con-
structions.

(3.1) The Dempwolff Planes. In [1], Dempwolff constructs an infinite

class of translation planes of type (k, &, K): Let V be 4-dimensional over
F = GF(27) where r is odd. Let

_ ﬁj]
k‘[]’ I

where

=03

Let Dyryy be a dihedral group of order 2(2” + 1) in GL(2, 27) containing j
and let ¢o-,; denote the cyclic stem. Let Z(GL(2, 27)) denote the center
of GL(2,27). Let

K = Z(GL(Q, 27)) CQoryl.
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Dempwolff takes

o=l o llecxpils 7]

G C GL(4, 2") centralizes K and K is a field of order 2%. Also ¥ is
the full normalizer within GL(2, K*+) of
pe ﬁ] |
l[a L1 € K! '
Therefore, by (2.5) the Dempwolff planes may be derived from a semi-
field plane of Knuth type II. However, (2.6) does not adequately describe
the corresponding semifields nor does it specify the kernel (kern) of .
We shall give an alternate proof that (h, &, K) defined above does
give rise to a sharply 2-transitive set (h¥ \U K)V. In the process we

extend Dempwolff’s construction so as to obtain all of the derived Knuth
type Il planes of maximal kern.

aEK}.

(3.2) LEMMA. Let P = GF(p") and assume x* + fx — g is 1rreducible
over P for fixed f, g ¢ P. Then

l

a,BEPI

I[ a g8 ]

Usg, o+ pf

is a field of order p?'.
Proof. Note

PSR
Bg a+ Bf
if and only if

ala + Bf) — B¢ =
if and only if

(@B=1)* + (@B )f —¢ =0 forB#0.
This set of matrices is additive and multiplicative, so (3.2) is proved.

(3.3) The Knuth Semifields of Types I-1V. Let (9, +) = (GF(¢?), +)
andt € ¥ — (GF(q) = F). Definet-a = tafora € F,

(ta +8) - (1B + 7v) = (ta) - (t8) + t(8°8 + av) + &y

where ¢ is an automorphism of F. If f # 0, o, g are chosen so that y°+!

I
o
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+ fy — ¢ = 0 has no solutions in F, then each of the multiplications |
through IV gives rise to a semi-field (9, +, -):
I (ta) - (1B) = ta’B""Yf + a’B~%g,
L (ta) - (1B) = ta’Bf + a’Bg,
1. (ta) - (1B) = tap’~Yf + a8,
IV. (te) - (18) = taff + a"~'Bg.
(3.4) Notes (see [8]). (1) Any semifield (¥, +. -) such that
(fa +8) - B+ v) = (ta) - (8B) + t(8°B + ay) + &

for a, 8, 8, v in Fis of type II if and only if the right (nucleus) associator
= middle (nucleus) associator = F.

Proof. (&) That is,

(ta) - (1B) = ((tar) - )B = (a"'t) - (#B) = a}(¢- (B))
= a1 ((t - 1)B) taff + a"'Bg.

(2) Also, [8] shows that if (¢, +, -) is a semifield which is 2-dimensional
over F such that a(bc) = (ab)c whenever any pair of elements of a, b, ¢
are in F then thereisat € 4 — Fsuch that af = ta® for some automor-
phism ¢ of %. So if F is the right and middle nucleus any such semifield
2-dimensional over F is of type 11.

(3) Let P be the fixed field of ¢ and (¥, +, *) a semifield of type II.
Then tP + P = {ip + 6|p, 6 ¢ P} = kernel = left (nucleus) associator
of (9, +, ).

(3.5) The Dertved Knuth Semafields of Type I-1V (see [5] (3.4)). Each of
the following multiplications of * of type 7 (with field addition) defines
a (right) quasifield which coordinatizes a translation plane derived from
a semifield plane of Knuth type z:

I. (ta +8)x (1B + v) = t(6 — a’B~Yf — af~1y)"" 18
+ (6 — a8 — aB~ )y + @B g, 0 # 1, # 0.

II. ((a +6) * (1B + v) = t(6 — a’B~°f — a8~ 1y)°~18
+ (6 —a’B7f — a7 ly) "y + a’Bg, 0 #£ 1,1 # 0.

II. (ta +6) x (1B +v) = t(6 — af~Y — af~ly) 18
+ (6 —ap7lf —afly) Ty + B, 0 # 1L f 0.

IV. (ta +8) % (B + v) = t(—af™f — af~ly)""'8
+ (5 - aﬁ_f - aﬁ—l’Y)"_l’Y + aq—lﬁ—agv a # lyj # 0

fora, 8,8,y € F=GF(q).

Also, (fa + 8) x v = tay + 6y where ¢ is an automorphism of F and
y*tt 4 fy —y # Oforallyin F.
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(3.6) Definition. Let (%, +, +) be a Knuth semifield of order ¢? and
type II. We shall say that (¥, +, -) is maximal if and only if tP + 7’
=~ GF(q). Thatis, P = GF/q) (see (3.4) (3)).

(Note that if [tP + P| > ¢q then (¢, +, ) is a field and ¢ = 1).
So (¥4, 4+, -) is maximal precisely when the kernel is maximal (in
terms of possible order).

(3.7) LEMMA. Let (9, +, ) be a maximal Knuth semifield of order q*
and type I1. Then y°+' + fy — g # 0 for ally in F (see (3.5)) if and only if
x? + fx — gisirreducible over P C F, P =~ GF~/q).

Proof. If P = GF(~/q) then ¢ = /g so y**! ¢ P. Hence (y°+! 4 g)f~!
isin P. If yo*' + fy — ¢ = 0 theny € P. In this case, y* = vy and y°t+!

=y

(3.8) THEOREM. Let m be a deriwved Knuth plane of maximal type 11. That
s, mw may be coordinatized by a derived semifield of maximal type. If the order
of mis g% and x* + fy — g is irreducible over P = GF(\/q) then = is a
translation plane of type (h, ¥, K) where

0 0 1 0
o o — =1 ll 8 ]
"=le o =1 oo [F T e atar

v = {[/ﬂ z]l‘“K} {[0 a*][“]" ”!

(3.9) COROLLARY. T'he Dempwolff planes w correspond to derived Knuth
planes of maximal type 11 where f = ¢ = 1. Thus x* + x + 1 is irreducible
over P and P = GF(27), r odd. That 1s,

(ta +8) * (B + v) = t(6 + "7+ a BT + af~'y) T8
+ (6 + VBT + afly) Ty + VBT
fora, B, 8, v € GFN/q = 27, r 0dd) defines the quasifields coordinatizing
the Dempwolff planes.

Proof. Let (¥, +, -) be the derived semifield of maximal Knuth type 11

as listed in (3.5) I11. Let P = GFN\/q), P € F = GF(g) and % of order

¢ Thus, ¢ = V/q.
By (3.7), x* 4+ fx — g is irreducible over P and by (3.2),

-

a,BEP}
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is a field of order (v/q)? = ¢q. We allow that F = P[m], m a root of
x? + fx — g. Also note that

(—(m +£)? = m? +2mf + 2 = —mf + ¢ + 2mf + *
=mf+g+f=m+Nf+g=—(—m+)f+¢
That is, —(m + f) = m¥? = m°. So
(mBr + B2)” = —(m + f)B1 + B2 = —mP1 — fB1 + B2
for 8; € P. By (3.5) 1I,
(ta +8) xt = t(8°' — af~!) + a’g = t(8° — ag) + a’g

(f € Pand 07! = ¢). Leta, 8 € F = ma; + as, mé1 + 62, ay, 6; € P,
respectively. So

(ta + 6) * ¢t

1 — af) + a’g = (—ma; — far + as)g
+ If(—mél - f&l + 62) — f(mal + 0(2)).

Now define & € GL(4,A/q) by xh = x x ¢ (where x € %) in terms of the
basis {1, m, t, tm} for & over P. If x = ta + & then

0O 0 1 0
0o 0 —f -1

0 —f 0
—fg —¢ 0 —f

X*t = (62v 517 az, al)k = (627 61, g, al)

in terms of {1, m, ¢, tm}.
{y = x * (fa + B) for a # 0} is an orbit under the group in the semi-
field plane

7= 1{(0,y) = & 38)a,8 € F—= {0} - {(x,y) = (x,xa + y)|a € F}.
And,
(te + B)x(mb + a) = t(may + az) (mb + @) + (mB1 + Bz) (mb + a)
= t(m o 4+ m(bas + ara) + asa) + m* (B1b) + m(bB: + B1a) + B
= t((=mf + y)ar + b + m(bas + aia) + aa)
+ (=mf + )Bib + m(bB; + Bia) + Baa
a b 0 0

= (B, B1, a2, a1) bg a+f " g
bg a +0f

The group (x,y) — (x,y8) in 7 appears in the form
(tx1 + 1, txe + y2) — (bx1 + ¥1B, txs + y28)
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in 7. We are representing F as the matrix field

{FA

when considering multiplication x * a = x x (mb + a). So,

(b1 + y1, txs + y2) = (tx1 + y18, txs + y2B)

a,bEP}

in m appears in the form

I 0
o 8

o

o
I 0
0 8
where

c d .
g = [dg (L—I—df] for some ¢, d in P.

The elation group (x, y) — (x, xa + ¥) in 7 is

I «
0 I

o~
~ R

in .
Thus, = is of type (h, ¥, K) where

0 0 1 0
Lol 00— -
I 0o —f o)
—fe —f 0 —f
SD b0 0
_Jlbg a+bf O 0 i
K = 1 0 0 " b a,b € P; ,

0 0 bg a + bg
—[2 ﬁz } li.[g a b :,
a b bg a4+ bf
0 7 I
Note that the group ¥ we have used is not the full normalizer in

|72 by tbp
GL2,\/7) ofS={[é ?]

that the full normalizer @* of S within GL(2, v/q) leaves h? invariant
(by conjugation) so = is also of type (h, ¥*, K).

g: a,bEP

a € F}. However, it is easy to check
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In the Dempwolff plane,

b=

10
11 B
Obviously in this case f = ¢ = 1 and P = GF(2") implies r is odd.

(3.10) CorOLLARY. Let Vy be a 4-dimensional vector space over P =
GF(p"). Let x* + fx — g be trreducible over P and let

a b
§ bg a+bf 0

« b
O bg a + bf

o =35 Gllsextils, llecxi

K = (L,/)EP;.

Let

Let

, 1 0
7)o
O, P
h =
g 0 —=f 0
—fg —¢ 0
Then (h? \J K)V,1is a sharply 2-transitive set on 17y.

In a similar manner, other derived Knuth type planes may be con-
structed. The possible planes are given in the following table. We leave
the details for the reader.

Let P = GF(p7), x* + xf — g irreducible over P. Let

a b
0y
bg a+ bf s
b

a
& bg a4+ bf.

Note that hyy = hy;; but we use a different group ¥ to define h%. Also
note that K is not a collineation group of a derived type 111 or IV plane.

K = a,be P

4. Remarks on the collineation groups of the Dempwolff planes.
Recall from (3.3),

o[z et
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Sharply Transla-
Fixed point free element Group 2-transitive  [tion Plane
o 0 1 0 = SoH, (k119U K)V, | Derived
_ g 0 —f —1 ;[I jH . % Knuth
hio = g O0—f O 01 Zek type 11
—fg —f 0 —f H,y = %[ zc K% plane
K is a collineation group
ofr
0 0O 1 0 4G = S\H, (h1119VU K) V4| Derived
A _ 0 0 —f —1 Knuth
e g 0—f 0 K is not a collineation type 111
—fe =f f£ f group of =
hIV = h[r] {9 S()Hl (h [ng K) V4 Derived
Knuth
=4l 2|z < foe 1
K is not a Collmeatlon
group of =
Let

1

Jla 0] A
0= \[0 a“l] ac Ky

Then the full normalizer of S with GL(2, K) is KSQ. We may take S¢
or I\SQ as 9. The full normalizer of K within GL(4, P) is KSQ(T") where

ol . [1 0 2
T = j]’]_{l 1] Recallh—[]. 12]

Let 4 be KSQ. Dempwolff shows that the full linear translation
complement is 9 X Z,-., where Zs:,1 is a cyclic group of order ¢ + 1.

G X Loriy = KSQUT) X Zors
2 lee i e

SHoHWUT) X Zor 1.

i

By our analysis we may identify the groups as follows.

(4.1) Notes. S is an elation group in the semifield plane 7 with axis
X = (7 (under appropriate choice of coordinates).

H, and H, are homology groups with axes ¥ = & and X = O,
respectively.
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The kernel of # = P 4+ P induces the kern of = and the group Zsr .
(m is a vector space of dimension 8 over GF(27).)

The group (T') is obtained from an automorphism of order 2 of the
semifield that fixes tP 4+ P pointwise.

That is, let s € GF(2?") — {tP + P} such that s> = s + 1. Since s?’
isalso aroot of x* + x 4+ 1 we have s?" = s 4+ 1 = s% Write out the multi-
plication of the semifield in terms of the basis {1, s} over ¢tP + P. Letting
k(ta + B) = tafora, B € F, it is not difficult to verify that

(@as+ B)(bs + 7) = (ab + ak(5) + Bs + ay)s + (ad + ak(7) + BY)

for all &, B, 3, 7 in tP 4+ P. From here, it follows that the mapping T
such that

T(as+B) =a(s+1)+8

is the unique automorphlsm of order 2 which fixes tP + P pointwise.
Since T"maps s tos + 1, T leaves GF(22’) invariant. GF(2?%") corresponds
to &y in Dempwolff’s construction, so 7 induces a collineation of = which
fixes a Baer subplane pointwise and thus may be considered an element in
GL(4,27) which normalizes ¥ ..

J
0
the components y = xg if and only if jgj=' = g. So T fixes y = xh and

Note 7" in the Dempwolff plane is [ 0] and as a collineation fixes

a

— x[za,() ] - x [
Y Za,o a a

for a € P. T also fixes

a

y = wh ’ a
a
Note
a
x* (ta) = xh “

since a € P.

5. Open questions and problems. (1) Let = be a translation plane
of type (h, 9, K) of order # 16. If K+ is a field then we have, see (2.6),
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that if 9 centralizes K+ and leaves mx+ invariant then mx+ is a Baer
subplane and = is derivable. Characterize the derived planes.

(2) If wis of type (h, 9, K), K+ a field, ¥ centralizes K+ but does not
leave wg+ invariant. Is = a Hall plane?

(3) If = is of type (h, &, K), K+ a field, is there a subgroup ¥ of ¥
such that ¥ centralizes K and = is of type (k, ¢, K)?

(4) For planes of order # 16 the Hall planes are the only known (k, ¥,
K) planes to admit a nonsolvable collineation group. If = is (k, ¢, K)
and ¥ is nonsolvable, is = Hall?
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