
Can. J. Math., Vol. X X X I I I , No. 5, 1981, pp. 1060-1073 

THE TRANSLATION PLANES OF DEMPWOLFF 

N. L. JOHNSON 

1. Introduction. In [2], Dempwolff constructs three translation 
planes of order 16 using sharply 2-transitive sets of permutations in 5i6. 
That is, if $~ QSn acting on A is a sharply 2-transitive set of permutations 
then an affine plane of order n may be defined as follows: The set of 
points = } (x, y) |x, ^ A) and the lines = {(x, y) \y = xg for fixed y Ç. 37~\, 
{(x, y) \x = c), {(x, y) \y = c) for c G A. 

Let F be a vector space of dimension k over F ~ GF(pr). A translation 
plane may be defined by finding a set M of pkr — 1 linear transformations 
such that xy~l is fixed point free on V — { ©\ for all x ^ y in M. 

u 
Notice that if we allow V to act on itself (v —> u + v) then MV is a 

sharply 2-transitive set on V if and only if xy~1 is fixed point free on 
V - {&) for all x 5* y in M. If VA is 4-dimensional over GF(2), \M\ = 15. 
Note GL(VA) = As in this case. Aided by a computer program, Demp­
wolff [2] determined three sets M in GL(VA) which give rise to distinct 
translation planes. One of these planes admits the group Z3 X (Z3 X A A) 
• Z2 as a collineation group. In [1], Dempwolff constructed an infinite 
class of translation planes (orders 24r, r odd) which contain the order 16 
plane mentioned above. Both the manner of construction and the col­
lineation groups of the resulting planes are of interest. 

In Section 2, we generalize Dempwolff's construction and in Section 3 
consider the planes so constructed. In particular, Dempwolff's class men­
tioned above may be constructed by the derivation of a particular class 
of Knuth semifield planes. 

2. The Dempwolff construction and generalization. 

(2.1) Definition. Let F be a 2&-dimensional vector space over F ~ 
GF(pr), p a prime. Let ^ , K be subgroups of GLF( V) and let h e GLF ( V). 
Let h* = [g-lhg\g e &} and assume & normalizes K. If (h* VJ K) V is 
sharply 2-transitive on V then a translation plane w may be defined: 
The points of w — V © V and the lines {(x, y)\x = c}, {(x, y)\y = c] 
and {(x, y)\y = xg; g G h? \J K). ir is said to be of type (h, &, K). 

If 7T is of type (h, &, K) we define the action of & on T by 

(x, y) -^ (xg, yg) 

Received January 23, 1980 and in revised form May 26, 1981. This work was partially 
supported by a grant from the National Science Foundation. 

1060 

https://doi.org/10.4153/CJM-1981-081-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-081-8


TRANSLATION PLANES 1061 

for g Ç @. Since g Ç & maps 3> = x& onto 3; = x(g_1£g), ^ is a collinea-
tion group of T which fixes the net^l//

K+ whose lines consist of x = c, 
y = c, y = xk for k G i£F. We shall use K+ to denote i£ W { ^ } . 

(2.2) Notes, (a) If we define a multiplication in a type (fe, &, K) 
translation plane we have y = xk = x • k for all k £ h? VJ K where k 
depends only on k. We shall call K+ a subquasifteld if K+ is a subquasifield 
of a quasifield coordinatizing w. 

(b) If i£+ is a subquasifield then it is also a subnearfield since K is a 
subgroup of GLF(V). If i£+ is a field of matrices then K+ is also a subfield 
of a corresponding quasifield of x. Let TK+ denote the nearfield subplane 
coordinatized by K+ if K+ is a subquasifield. 

(c) Any type (h, ^ , X) plane 7r admits the collineation group & which 
fixes the n&i<yVK+ and acts transitively on the lines through (0, 0) of 
TT-J/K+ (y = xh* forge &). 

(d) Any generalized Hall plane of type i (see [6]) or semitransitive 
plane (see [4]) is of type (h, &, K) for certain h, & and K. 

Conversely, we have: 

(2.3) THEOREM. Let T be a translation plane of type (h, &, K) where K+ 

is a subquasifield. If & centralizes K and leaves wK+ invariant then T is a 
semitransitive plane. 

Proof. If Ŝ  centralizes K then Ŝ  fixes JVK+ componentwise. If ^ 
leaves TK+ invariant then T is semitransitive (see Jha's definition [4]). 

(2.4) COROLLARY. Let -K be a translation plane of type (h, &, K) where 
kern 9^ GF(2). Assume K+ is a subquasifield and & centralizes K. Either 
TK+ is not invariant by @ or K+ is afield of order Vorder w so that wK+ is a 
Desarguesian Baer subplane. 

Proof. If kern 9e G F (2) and the order of w is 16, then T is Desarguesian, 
Hall or a semifield plane (see [7]). In this case only the Hall plane is of 
type (A, &,K). 

If the order of -w ^ 16, then by [4] w is derivable and irK+ is a Desar­
guesian Baer subplane. 

(2.5) THEOREM. Let Vbea vector space of dimension s over F = GF(pr = 
q).LetK\J {©) = K+be afield ^ GF(pm) where K Ç GL(s, q). Then 
the netJVK+ in ir = V © V whose components are y = xg, x = 0 for 
g G K+ is a Desarguesian net. JVK+ is a replaceable net if and only if 

\K+\ = V¥-
Proof. V is a vector space over K+ of dimension rs/m so T has dimension 

2rsm over K+. Let 

*>„ = {(V0y, V0h)\y, h € K+ for all V0 G V\. 
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Then clearly 

Uv^VTTVo = {X = 0) Ug£K+y = Xg. 

YoxJ/K+ to be replaceable, |TTFO| = pTS = p2m. Thus , pm = prsK In this 
context we may overcome the restriction on the kern in (2.4). 

(2.6) T H E O R E M . Let w be a translation plane of order ^ 16 and of type 
(ft, rS, K). Let K+ be a field of matrices and assume 8? centralizes K and 
leaves TTK+ invariant. ThenjVK+ is a derivable net and wK+ is a Baer subplane. 

Proof. Choosing coordinates within wK+, we have t h a t K+ is a subfield 
of the (left) quasifield Q c o o r d i n a t i n g w and Q is a r ight vector space 
over K+ (since^A/

K+ is a Desarguesian net by (2.5)) . From here we can 
use Jha ' s results to obtain the result. Actually, he used kern -^ G F (2) 
to obtain t ha t K+ is a subfield under the assumptions t ha t it was a 
subquasifield. 

On the other hand, i(-yVK+ is derivable: 

(2.7) T H E O R E M , Let T be a translation plane of type (ft, &, K) where KA 

is a field of order V order IT and & centralizes K. If ^ does not leave wK + 
invariant then w is a Hall plane. 

Proof. Clearly CS Ç GL(2, K+) act ing on any component OÏJVK+. 
Let a (z & of order p where the characterist ic of TT is p. Then a fixes 

pointwise a 1-space over K+ on each of x = 0, y = 0 and y = x. Thus , 
a fixes a 2-space F (a) over K+ pointwise. Clearly, F (a) — TVO for some 
Vo in V (see (2.5)) . Thus , F(0) is a Baer subplane mJYK+. Clearly, 
each Sylow ^-subgroup S mus t also fix a Baer subplane F(S) in ^VK+ 
pointwise. w is of order q2k and @ acts transit ively on the qk(qk — 1) 
components of ir -~^VK+ (see (2.2) (a ) ) . Thus , qk | | 5 | so there mus t be 
exactly qk + 1 Sylow ^-subgroups corresponding to the qk + 1 Baer 
subplanes of ^K+ which are also subspaces. Since & Ç GL(2, K+), 
clearly SL(2, K+) C CS. If the order of TT is not 16, TT is Hall by [3]. If 
the order of TT is 16, TT is Hall or one of the planes constructed by Demp-
wolff (see [7]). However, since CS fixes ^4V+ componentwise this la t ter 
possibility cannot occur. 

(2.8) T H E O R E M . Let TT be a translation plane of type (ft, &, K) where 
K, c3 Çz GL(2k, pr). If K+ is a field of matrices of order pkr centralized by 
& and if is the full normalizer of a Sylow p-subgroup within GL(2, K+), 
then TT is a plane derived from a semifield plane of Knuth type II. 

Proof. By (2.4) there is a 2^-invariant Baer subplane F(S) which is 
pointwise fixed by a Sylow ^-subgroup S. F(S) H X = 0 and F(S) r\ Y 
= € are /-spaces over K. By appropr ia te basis choice on X — Û, CS 
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has the form 

a b 
0 c\ 

ac j* 0, a, b, c £ KÎ 

(recall & is the full normalizer of S and we may choose 5 = 

a G K> on X = 0). Thus, & contains the subgroups 

/ a 
0 / 

/ 
M0 

i 0 
a£ K ©\ = M 

and 

I. 
(zK- Û "H. 

Considering the action on T, aH and aH both fix 2-spaces over K point-
wise. (aH and S both fix the same Baer subplane of JVK pointwise.) 
By [6], 7T may be derived from a semifield plane coordinatized by a semi-
field which is of dimension 2 over its right and middle nuclei simul­
taneously. That is, the right equals the middle nucleus. So, -K is of Knuth 
type II (see [5] and Knuth [8]; also see (3.4) (1) and (2)). 

(2.9) COROLLARY. Let ir be a translation plane of type (h, &, K) where 
K+ is a field of matrices of order pkT centralized by &, ^, K ÇI GL (2k, pT), 
and ^ is generated by Baer collineations. Then w is either Hall or a derived 
semifield plane of Knuth type II. 

Proof. By (2.4), we may assume ^ Ç GL(2, K+) normalizes a Sylow 
^-subgroup. So, on X = 0, 

<3 C ac ^ 0,a,b,c G K( = 

"I 
I 

0 
tK 

a 0 
0 a 

a 

0 

a Ç K - 0 

k K - 0 

If g G & fixes a Baer subplane pointwise then g must fix pointwise an 
/-space over K on each of X = 0, Y = 0, and Y = X. If on X = 0 
this /-space is not F(S) H I = 0,we may choose it to be j(h, 0)\h G K}. 

(for c G K) on X = 0. Notice the /-spaces over i£+ That is, g = 
0 

on X = ^ and ^ F(X) H X = 0 are in an orbit under S. Thus, if 
g G ^ fixes an /-space pointwise, g* fixes {(h, 0)\h G i£} pointwise for 
/ G 5. The point of this is that any element of & may be written as a 
product of elements that pointwise fix either F(S) C\ X =• 0 or 
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(h, 0)\h € K\ on X = 0. That is, a typical element has the form 

I a 
0 I 

I 0 
0 c 

I a 
0 / 

d 0 
0 I 

Since S < S?, the elements of & may be written in the form 

I1 a] \I 01 ~c 0" 
.0 / . _0 b_ _o /. 

fora, b,c £ K+. 
Originally, K C g \ Thinking of ! QGL(2,K+) we have 

Thus, 

d 

dexr ç 

/ a 0 
Lo / J Lo b 

if and only if a = & and c = b 
'I 0 
0 d 

the form in 

d. In other words, for each element of 

there is a corresponding element of the form 

d 0 
0 I 

. Thus, 

0 

contains 

0 d'1] d£K- t 

is the full normalizer of 6" within GL(2, K+). 

3. The Dempwolff planes of order 24% r odd, and other con­
structions. 

(3.1) The Dempwolff Planes. In [1], Dempwolff constructs an infinite 
class of translation planes of type (h, &, K) : Let V be 4-dimensional over 
F ^ GF(2T) where r is odd. Let 

h = 
\0 j 

hi 

where 

3 = 
"l 0" 
.1 1_ 

Let D2r+i be a dihedral group of order 2(27' + 1) in GL(2, 2T) containing j 
and let 2̂*-+i denote the cyclic stem. Let Z(GL(2, 2T)) denote the center 
ofGL(2,2 r) .Let 

K = Z(GL(2,2')) -^ r+ i . 
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Dempwolff takes 

K = a 0 
0 eu 

a£Kj 

and 

& =K h 
0 

a 
h. 

£K 
© 

& (LK 

& ç GL(4, 2r) centralizes K and K is a field of order 22r. Also 
the full normalizer within GL(2, K+) of 

h 
a atRj. 

Therefore, by (2.5) the Dempwolff planes may be derived from a semi-
field plane of Knuth type II. However, (2.6) does not adequately describe 
the corresponding semifields nor does it specify the kernel (kern) of IT. 

We shall give an alternate proof that (h, &, K) defined above does 
give rise to a sharply 2-transitive set (h? W K) V. In the process we 
extend DempwolfFs construction so as to obtain all of the derived Knuth 
type II planes of maximal kern. 

(3.2) LEMMA. Let P ~ GF(pr) and assume x2 

over P for fixed f, g G P- Then 
fx — g is irreducible 

a p a,(3£P 

= 0 

is afield of order p2r. 

Proof. Note 

a P 

fig a + Pf. 

if and only if 

a(a + Pf) - p2g = 0 

if and only if 

(ap-1)2 + (aP~l)f - g = 0 for P ^ 0. 

This set of matrices is additive and multiplicative, so (3.2) is proved. 

(3.3) The Knuth Semifields of Types I-IV. Let (@, + ) = (GF(q2), + ) 
and t e & - (GF(q) = F). Define / • a = ta for a £ F, 

(ta + ô) • (tp + y) = (ta) • (tp) + t(Ô°p + ay) + ôy 

where a is an automorphism of F. If / 9^ 0, 0-, g are chosen so that yff+1 
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+ fy — g = 0 has no solutions in F, then each of the multiplications I 
through IV gives rise to a semi-field (@, + , -) : 

I. (to) • (/j8) = tct°P°-lf + a°Pff-2g, 
II. (to) - (tp) = ta'ff + a'Pg, 

III. (/a) • (//3) = /a/3 '-1 /+ a^"1^-^, 
IV. (/a) • (//3) = to/3/ + a*-1/^. 

(3.4) Notes (see [8]). (1) Any semifield ( ^ , + . •) such that 

(to + 5) • (//3 + y) = (to) • (#) + *(0'0 + cry) + dy 

for a, /3, <5, 7 in T7 is of type II if and only if the right (nucleus) associator 
= middle (nucleus) associator = F. 

Proof. (<=) That is, 

(to) • m = ((to). t)p = (a°-n) • m = «-H/. (^)) 

(2) Also, [8] shows that if (S^, + , • ) is a semifield which is 2-dimensional 
over F such that a (be) = (ab)c whenever any pair of elements of a, 6, c 
are in 7*' then there is & t (z & — F such that at = taa for some automor­
phism a of ^ . So if F is the right and middle nucleus any such semifield 
2-dimensional over F is of type II. 

(3) Let P be the fixed field of a and (&, + , •) a semifield of type II. 
Then tP + P = {tp + 6\p, 6 £ P\ = kernel = left (nucleus) associator 
of (^, + , •)• 

(3.5) The Derived Knuth Semifields of Type I-IV (see [5] (3.4)). Each of 
the following multiplications of * of type i (with field addition) defines 
a (right) quasifield which coordinatizes a translation plane derived from 
a semifield plane of Knuth type i: 

I. (to + 5) * (t(3 + y) = t(ô - a°p-lf - ap~lyY~lp 

+ (Ô - a '0-1 / - ap-lyY~ly + a'p-'^g, a 9* l,f 7*0. 

II. (to + Ô) * (//3 + 7) = t(ô - a°$-°f - af$-lyy-l$ 

+ (5 - a°p-°f - ap-lyY~ly + a'/J-'g, ff^l,/^0. 

III. (to + b) * (//3 + 7) = /(5 - a$~lf - a$-lyy-l$ 

+ (Ô - a/3"1/ - a/S-1?)*-1? + oL'-ip-ig, a 9* l,f 7* 0. 

IV. (to + Ô) * (//3 + 7) = t(-a$-°f - aP~lyy-lP 

+ (Ô - «0-*/ - a jS-^)*-^ + a"-1/?-^, cr 5* 1 , / 9* 0 

fora, 0 ,5 ,7 G F^GF(q). 

Also, (to + 5) * 7 = to7 + dy where a is an automorphism of F and 
y<r+\ + /y — 3/ ̂  0 for all 3/ in F. 
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(3.6) Definition. Let ( ^ , + , •) be a Knuth semifield of order q2 and 
type II. We shall say that (CS, + , •) is maximal if and only if fP + P 
^ GF(q).Thzt is, P^GF(Vq~) (see (3.4) (3)). 

(Note that if \tP + P\ > q then (^, + , •) is a field and a = 1). 
So (^, + , •) is maximal precisely when the kernel is maximal (in 

terms of possible order). 

(3.7) LEMMA. Let (&, + , •) be a maximal Knuth semifield of order q2 

and type IL Lhen ya+l + fy — g ^ Ofor all y in F (see (3.5)) if and only if 
x2 + fx — gis irreducible over P C F, P ~ GF(\/rq). 

Proof. If P ^ GF(\/q) then a = Vq so y + 1 G P . Hence (y°+l + g)/-1 

is in P. If 3/cr+1 + fy — g = 0 then y <E P . In this case, 3/* = 3/ and 3^(7+1 

= y2. 

(3.8) THEOREM. Le/ T be a derived Knuth plane of maximal type II. That 
is, 7T may be coordinatized by a derived semifield of maximal type. If the order 
of TV is q2 and x2 + fy — g is irreducible over P ~ GFi^fq) then T is a 
translation plane of type (h, CS', K) where 

h = 

K = 

0 0 
0 0 
g 0 

1 0 " 

- / 
- / 

- 1 
0 •'-{ 

0 - / 

a 0 
Pg a + pf. 

a J t P ' , 

H 
8 ( 
0 . K A 

>**}'{ 
8 0 

8fK-Û> 

(3.9) COROLLARY. The Dempwolff planes w correspond to derived Knuth 
planes of maximal type II where f = g = 1. Thus x2 + x + 1 is irreducible 
over P and P ^ GF(2r), r odd. That is, 

(ta + 8) * (t(3 + 7) = t(8 + av T + a v ? / 3 " ^ + a^y)^"1^ 

+ (8 + aVTff-"/T+ afi-lyY^~l)y + av"/3~^ 

for a, f3, 8, y £ GF(\/rq = 2r, r odd) defines the quasifields coordinating 
the Dempwolff planes. 

Proof. Let (&, + , •) be the derived semifield of maximal Knuth type II 
as listed in (3.5) II. Let P ^ GF(y/q), P C F^ GF(q) and ^ of order 
q2. Thus, a = \/q. 

By (3.7), x2 + fx — g is irreducible over P and by (3.2), 

a (3 
Pg a + Pf. 

*,pep 
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is a field of order (Vg)2 = q. We allow that F = P[m], m a root of 
x2 + fx — g. Also note that 

( - (m + / ) ) 2 = m2 + 2mf + f2 = -mf + g + 2m/ + / 2 

= ™/+£+/ 2 = (m+f)f+g= -(-(™+f)f+g. 
That is, — (m + / ) = w ^ = m°. So 

(mft + fa)* = - (m + / )& + /32 = - WjSi - / f t + £2 

for/S* 6 P . By (3.5) II, 

(ta + <5) * t = /(«S*-1 - a/*""1) + aag = /(<5ff - ag) + <xffg 

(/ £ P and o--1 = cr). Let a, <5 Ç P = mai + a2, wôi + <52, au ôt G P , 
respectively. So 

(ta + 5) * / = /(ô0- — af) + a'g = ( — mai — fai + a2)g 

+ t(-mbi - foi + <52) - f(mai + a2)). 

Now define h £ GL(4, \/q) by xh = x * t (where x £ â^) in terms of the 
basis {1, ra, £, /w} for & over P . If x = /a + 5 then 

X * / = (Ô2, <5i, «2, ai)h = (<52, ôi, a2 , a i ) 

0 0 1 0 ' 
0 0 - / - 1 
£ 0 - / 0 

Lr/£ ~S 0 " / J 
in terms of {1, m, t, tm). 

[y = x * (ta + 0) for a ^ 0} is an orbit under the group in the semi-
field plane 

And, 

(/a + fi)*(mb + a) = t(ma\ + a2)(mb + a) + (m/3i + p2)(mb + a) 

= /(m a 16 + m(ba2 + aia) + a2a) + m2 (fiib) + ra(6/32 + /?ia) + 02a 

= t(( — mf + y)ai + 6 + m(ba2 + a\o) + a2a) 

+ {-mf + y)0ib + m(b(32 + M + f32a 

= (/32, Ph a2, ai) 

a b 0 0 
^ a + 6/ 0 

^ a + bfj 

The group (x, 3/) —> (x, 3//?) in f appears in the form 

(txi + yu tx2 + y2) —> (/X] + 3/1/3, /x2 + 3>2/3) 
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a b 
bg a + bf. 

in 7T. We are representing F as the matrix field 

when considering multiplication x * a = x * (mb + a). So, 

(toi + yi» tx2 + y*) -> (toi + yij8, to2 + 3̂ 2/3) 

in 7T appears in the form 

7 £ 
0 

^ 

where 

c d 
Vdg a + dfi 

for some c, d in P. 

The elation group (x, y) —> (x, xa -}- y) in T is 

0 I 
I a 
0 / 

i n 7T. 

Thus, 7r is of type (ft, 

ft = 

0 
0 
g 

L-fg 

0 1 

K) where 

0 

K = 

) ° 
vLo 

0 - / - 1 
0 - / 0 
- / o - / j 

b 0 0 
a + 6/ 0 0 

0 a b 
0 ôg a + • 

c , K P / , 

^ fl + */-
fl(KP 

6 

/ 2 

Note that the group & we have used is not the full normalizer in 

GL(2} y/q) oî S = l\ ^ J L ^ ^ . However, it is easy to check 

that the full normalizer ^ * of S within GL{2, y/~q) leaves h9 invariant 
(by conjugation) so w is also of type (ft, ^ * , K). 
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In the Dempwolff plane, 

G 

1 0 
i 1 

1 0 
1 1 

Obviously in this case / = g = 1 and P = GF(2r) implies r is odd. 

(3.10) COROLLARY. Let \\ be a ^-dimensional vector space over P = 
GF(pT). Let x2 + fx — g be irreducible over P and let 

K = 

a b 
bg a + bf 

©2 
a b 
bg a + 6/L 

a, be P L 

Let 

<S h ©2 
Y©2 $i 

&^K h 
©2 

a 

hi 
€K\ 

Let 

©, 
1 0 

- / - 1 
0 - / 0 

Yrte -g o -/ . 
Then (h? VJ K) \\ is a sharply 2-transitive set on F4. 

In a similar manner, other derived Knuth type planes may be con­
structed. The possible planes are given in the following table. We leave 
the details for the reader. 

Let P ^ GF(pr), x2 + xf - g irreducible over P. Let 

K =« 

b 
a + bf 

©2 

02 

a b 
bg a + bf_ 

a, be P) 

Note that hîy = h m but we use a different group & to define h9. Also 
note that K is not a collineation group of a derived type III or IV plane. 

4. Remarks on the collineation groups of the Dempwolff planes. 
Recall from (3.3), 

K 
/ [z 0 

"' I L0 Z zeK 
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Fixed point free element Group 
Sharply 

2-transitive 
Transla­
tion Plane 

hn = 

- o 
g 

g 

-~fg -

0 1 On 
0 - / - 1 
0 - / 0 

-/ o -/J 

# = SoHo 

K is a collineation group 

Of 7T 

(hu*[)K)V4 Derived 
Knuth 
type II 
plane 

hiii = 

r ° 
0 
g 

L-fg 

0 1 0 -
0 - / - 1 
0 - / 0 

- / p /J 

0 = So#o 

K is not a collineation 
group of T 

(hm*[}K)Vt Derived 
Knuth 
type III 

h iv = h m 

«-icai^'i 
X is not a collineation 
group of 7T 

(hiv^U K)V* Derived 
Knuth 
type IV 

Let 

5 -
/ a 
0 / 

£K 

Q o 
0 

«C Kf . 

Then the full normalizer of S with GL(2, K) is KSQ. We may take SQ 
or KSQ as &. The full normalizer of K within GL(4, P) is KSQ(T) where 

r = 
j 

0 J 
,J 

1 0 
1 1 

. Recall h 
© j 
j h. 

Let @ be i£S(). Dempwolff shows that the full linear translation 
complement is CS X Z2r+i where Z»r+i is a cyclic group of order q 4- 1. 

#' X Z, r + 1 = £SQ<r> X Z2,+i 

J °^7f Ai\Z ° 41 >(T) X Z2r+1 
_0 Zj 

= SHoHi(T) X Z2r+1. 

By our analysis we may identify the groups as follows. 

(4.1) Notes. S is an elation group in the semifield plane 7? with axis 
X — 0 (under appropriate choice of coordinates). 

Ho and Hx are homology groups with axes Y = 0 and X = 0, 
respectively. 

https://doi.org/10.4153/CJM-1981-081-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-081-8


1072 N. L. JOHNSON 

The kernel of # = tP + P induces the kern of 7r and the group Z2r+i. 
(IT is a vector space of dimension 8 over GF(2T).) 

The group (T) is obtained from an automorphism of order 2 of the 
semifield that fixes tP + P pointwise. 

That is, let 5 G GF(22T) - [tP + P) such that s2 = s + 1. Since s2r 

is also a root of x2 + x + 1 we have s2r = s + 1 = s2. Write out the multi­
plication of the semifield in terms of the basis {1, s} over tP + P. Letting 
k(ta + f3) = ta for a, (3 £ F, it is not difficult to verify that 

(as + (Î) (OS + y) = (âô + âk(b) + fib + âf)5 + (ctô + âk(y) + 0?) 

for ail â, /5, 5, 7 in tP + P . From here, it follows that the mapping f 
such that 

t(âs + 0) = â(s + 1) + 0 

is the unique automorphism of order 2 which fixes tP + P pointwise. 
Since Tmaps 5 to s + 1, T leaves GF(22r) invariant. GF(22T) corresponds 
to ^ o in Dempwolff's construction, so T induces a collineation of T which 
fixes a Baer subplane pointwise and thus may be considered an element in 
GL(4, 2r) which normalizes ^ P . 

Ti ol 
Note P in the Dempwolff plane is 

0 3 
the components y = xg if and only if jgj~l 

y = x\ 

for a £ P. T also fixes 

3/ = xh 

Note 

x * (/a) = xh 

and as a collineation fixes 

= g. So T fixes y = xh and 

since a £ P. 

5. Open questions and problems. (1) Let TT be a translation plane 
of type (A, # , 2Ê) of order 5* 16. If K+ is a field then we have, see (2.6), 

https://doi.org/10.4153/CJM-1981-081-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-081-8


TRANSLATION PLANES 1073 

that if ^ centralizes K+ and leaves TTK+ invariant then wK+ is a Baer 
subplane and w is derivable. Characterize the derived planes. 

(2) If 7T is of type (h, @, K), K+ a field, ^ centralizes K+ but does not 
leave TK+ invariant. Is w a Hall plane? 

(3) If T is of type (h, &, K), K+ a field, is there a subgroup ^ of ^ 
such that & centralizes K and T is of type (h, @, K)? 

(4) For planes of order 9^ 16 the Hall planes are the only known (h, &, 
K) planes to admit a nonsolvable collineation group. If w is (h, &, K) 
and & is nonsolvable, is T Hall? 
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