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Dynamics of two-dimensional flow past a rigid flat plate with a trailing closed flexible
filament acting as a deformable afterbody are investigated numerically by an immersed
boundary-lattice Boltzmann method for the fluid flow and a finite element method for
the filament motion. The effects of Reynolds number (Re) and length ratio (Lr) on the
flow patterns and dynamics of the rigid-flexible coupling system are studied. Based
on our numerical results, five typical state modes have been identified in Lr–Re plane
in terms of the filament shape and corresponding dynamics, i.e. static deformation,
micro-vibration, multi-frequency flapping, periodic flapping and chaotic flapping modes,
respectively. Benefiting from the passive flow control by using the flexible filament as a
deformable afterbody, the coupled system may enjoy a significant drag reduction (up to
22 %) compared with bare plate scenarios (Lr = 1). Maximum drag reduction achieved at
Lc,min ∈ [1.8, 2] is often accompanied by the onset of the system state transition. The flow
characteristic and its relation to the change in hydrodynamic drag are further explored in
order to reveal the underlying mechanisms of the counterintuitive dynamical behaviour of
the coupled system. The scaling laws for the form drag and the friction drag, which arise
from the pressure and viscous effects, respectively, are proposed to estimate the overall
drag acting on the system. The results obtained in the present study may shed some light
on understanding the dynamical behaviour of rigid-flexible coupling systems.
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1. Introduction

Fluid-structure interaction (FSI) phenomenon is ubiquitous in natural and engineering
systems, in which a movable or deformable structure and an internal or surrounding
fluid are coupled to influence the behaviour of each other (Dowell & Hall 2001; Griffith
& Patankar 2020). The FSI problems may be further categorized into two subsets,
i.e. fluid-rigid structure interaction and fluid-flexible structure interaction (Hua, Zhu
& Lu 2014). The typical examples for the former scenario includes flow past a bluff
body, e.g. cylinder (Prasanth & Mittal 2008), flat plate (Yang & Strganac 2013), sphere
(Govardhan & Williamson 2005; Rajamuni, Thompson & Hourigan 2018) and other
non-streamlined bodies (Derakhshandeh & Alam 2019), with the vortex-induced vibration
(VIV) induced on bodies interacting with an external fluid flow (Williamson & Govardhan
2004; Choi, Jeon & Kim 2008; Raissi et al. 2019). The systems involving fluid-flexible
structure interaction are also commonplace, e.g. swimming fish (Liu et al. 2017), flying
birds or insects (Shyy et al. 2016), plant reconfiguration or flapping in a flow (Leclercq &
de Langre 2018) and vibrating vocal fold (Li et al. 2019). Due to its important significance
for understanding the fundamental principles in nature and the extensive engineering
applications, currently, FSI is a topic of great attention in the fluid mechanics community
(Dowell & Hall 2001; Griffith & Patankar 2020).

A concern for the FSI system is how to achieve the hydrodynamic advantages or
performance enhancements by means of manipulation of surrounding fluid flows (Lighthill
1975; Alben 2009; Shoele & Mittal 2016). One interesting example is represented
by biological flight and swimming. Fish could generate favourable flow structures for
locomotion by adjusting the movement or deformation of their body and appendages (Wu
1961, 1971; Triantafyllou, Triantafyllou & Yue 2000; Alben & Shelley 2005; Li & Lu
2012). For example, previous experimental observations (Müller et al. 1997; Nauen &
Lauder 2002) and numerical studies (Li & Lu 2012; Liu et al. 2017) have revealed that
the ring-like vortical structures formed in the wake of fish swimming possess intrinsic
connections with the optimization of thrust generation and power consumption. In the
flight of insects, by adopting appropriate flapping kinematics, the leading-edge vortex
(LEV) stays attached to and moving with the surface of the wing, which leads to the high
lift in the low Re flow region (Ford & Babinsky 2013; Eldredge & Jones 2019).

Beside these active flow controls for the optimal propulsion, swimming and flying
animals may achieve hydrodynamic advantages from the passive flexible deformation
of the propulsors (tail fins and wings) due to flow-induced loads. Results from the
experimental (Mazaheri & Ebrahimi 2010; Nakata et al. 2011), numerical (Kang et al.
2011; Zhu, He & Zhang 2014; Wang, Huang & Lu 2020) and theoretical (Michelin
& Smith 2009; Alon Tzezana & Breuer 2019; Alaminos-Quesada & Fernandez-Feria
2020) studies have shown that the proper flexibility of the fin or wing is found to bear
performance benefits, such as thrust enhancement, drag reduction, energy saving, etc.
Furthermore, as a possible strategy to reduce the drag and resist breakage, the plants living
in flow-dominated habitats are able to reduce their frontal area or reshape themselves
in a more streamlined fashion, which is referred to as ‘reconfiguration’ (Alben, Shelley
& Zhang 2002; Schouveiler & Eloy 2013; Alvarado et al. 2017; Leclercq & de Langre
2018). Compared with active flow controls, the shape self-adaptation due to flow-induced
reconfiguration of flexible structure does not need the intervention of the control system
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or the energy input, which may be an elegant and deft way to the aero/hydrodynamic
performance of the FSI system.

Not surprisingly, the flow controls by the passive deformation and flapping of flexible
structures in a natural system are found universally, as they have survived the tests of
evolution over millions of years and reached a high level of adaptability and effectiveness.
Therefore, it is particularly worthwhile to import these novel ideas which originate from
nature into technological applications, such as flow control of vortex shedding behind bluff
bodies. The bluff body flow control is not only encountered in numerous natural scenarios
(Triantafyllou et al. 2000; Alvarado et al. 2017; Leclercq & de Langre 2018), but also
of practical interest to many fields of engineering (Choi et al. 2008; Dong, Triantafyllou
& Karniadakis 2008; Fan et al. 2020). When the fluid flows around the bluff body, the
boundary layer is likely to separate into Kármán vortices alternately shedding in the
wake, which would cause the increase in differential pressure resistance (form drag). The
more severe the separation at the hind side, the greater the form drag. Meanwhile, the
asymmetric vortex shedding would induce large unsteady side forces that, in turn, may
lead to structural vibrations if the body is flexibly mounted. Therefore, for reducing drag
and suppressing VIV, controls of vortex shedding characteristics of flow over a bluff body
have attracted significant attention in the past (Zhao 2021). Many flow control techniques
have been proposed in (i) passive form and (ii) active form. The first approach includes the
splitter plate (Anderson & Szewczyk 1997; Gilliéron & Kourta 2010), segmented trailing
edges (Deshpande & Sharma 2012), dimples and grooves (Bearman & Harvey 1993),
etc. In these methods, global changes in the surface shape may be required for practical
situations. However, it seems hard to implement under some circumstances. In the latter
approach, such as blowing and suction (Schatzman et al. 2014), synthetic jets (Glezer &
Amitay 2002), rotary oscillations (Palkin et al. 2018), the intervention of a complex control
system or/and the energy input are necessary, limiting the applicability of this approach.

As a passive flow control technique, installing splitter plates behind a bluff body has
been investigated by numerous experiments and simulations in the past (Anderson &
Szewczyk 1997; Gilliéron & Kourta 2010; Wu et al. 2014; Sunil, Kumar & Poddar 2022).
A splitter plate, attached downstream, inhibits the interaction between the separating shear
layers, thereby delaying vortex shedding and resulting in a weaker Kármán vortex street
in the wake (Sunil et al. 2022). This reduces the fluctuating lift and drag acting on the
bluff body. Earlier studies were mainly limited to the rigid plates. Recently, inspired by
the drag-reducing mechanism of passive flexibility in natural systems, particular attention
has been devoted to the flexible splitter plate (Lācis et al. 2014; Wu et al. 2014; Sunil et al.
2022). It is found that a filament, with proper flexibility and length, may bring about more
performance benefits in suppressing/weakening the vortex shedding as compared with a
rigid splitter plate with the same length (Wu et al. 2014; Sunil et al. 2022). In addition,
some studies have found that installing two or multiple flexible filaments behind a bluff
body, referred to as ‘hairy coating’, can offer more drag reduction under specific conditions
than a single filament (Favier et al. 2009; Niu & Hu 2011; Deng, Mao & Xie 2019).
Favier et al. (2009) and Niu & Hu (2011) have performed the numerical and experimental
investigations, respectively, on the passive flow control by using this self-adaptive hairy
coating. They have shown that a sizable drag reduction can be achieved at the optimum
combination of the considered parameters, e.g. hair length, rigidity, and density. The
primary mechanism for drag reduction is the bending, adhesion and reinforcement of hairs
trailing the bluff body, which reduces wake width and traps ‘dead water’ (Niu & Hu 2011).

More recently, Gao et al. (2020) have proposed a nature-inspired passive control of the
bluff body flow for drag reduction. In their experimental study, a trailing closed filament,
with a negligible weight and small bending modulus, was ‘hung’ on both edges of the rigid
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flat plate placed normal to the oncoming flow. The experiment suggests that by adopting
such a ‘flexible coating’, a significant drag reduction of approximately 10.0 % is expected
under specific conditions. Compared with the existing flow control devices, this device
is easy to install and disassemble. Besides, it is supposed to have good adaptability for a
wide range of flows, benefiting from its nature of shape self-adaptation.

On the other hand, the study of a rigid-flexible coupling system raises a new kind of
FSI problem, in which the closed flexible structure is coupled with not only an external
fluid but also an internal fluid to influence the behaviour of each other. This complex
interaction may give rise to a rich variety of physical phenomena which are dictated by
complex mechanisms. These extended FSI systems are common in a living body in which
some fluid volume is inside the thin skins of organisms, and were treated as a flexible
ring filled with fluid in a surrounding fluid flow (Jung et al. 2006; Shoele & Zhu 2010;
Kim et al. 2012). However, to our knowledge, still very few studies have focused on the
dynamics of this coupling system.

At present, the dynamics of the rigid-flexible coupling system remain unclear. Moreover,
the in-depth understanding of the corresponding flow control mechanism for drag
reduction is still lacking. Inspired by Gao et al. (2020), we perform numerical simulations
of viscous flow past a rigid flat plate with a trailing closed flexible filament. In comparison
with experimental study, numerical simulations have an advantage in the aspect of
quantitative analysis, which is particularly critical for exploring relevant mechanisms
underlying the complex behaviour of a system. In this paper, the influence of Reynolds
number (Re) and length ratio of the filament and flat plate (Lr) on the flow patterns and
dynamics of the rigid-flexible coupling system have been systematically investigated. The
drag reduction and the underlying mechanisms have been examined and revealed as well.

The rest of the present paper is organized as follows. The computational model,
including physical problem and mathematical formulation, numerical method and
validation, is described in § 2. The result and discussion regarding dynamic states of
the rigid-flexible coupling system, drag and the flow characteristics, and drag estimate
are given from a comprehensive numerical investigation in § 3. Finally, the concluding
remarks are addressed in § 4.

2. Computational model

2.1. Physical problem and mathematical formulation
The rigid-flexible coupling system considered in the present study is shown in
figure 1(a). The rigid flat plate with a trailing closed flexible filament are immersed in a
two-dimensional uniform flow with oncoming velocity U. The rigid flat plate is fixed and
placed normal to the oncoming flow. The two edges of the flexible filament are attached
to the edges of the flat plate with simply support boundary conditions. The other parts of
the filament can move freely and deform passively due to the flow-structure interactions.
The geometry of this system is described by using a dimensionless parameter Lr = L/D,
where L and D are the length of the flexible filament and flat plate, respectively. It is noted
that Lr = 1 corresponds to the situation without the trailing filament.

In this system, the fluid flow is governed by the incompressible Navier–Stokes equations,

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + μ

ρ
∇2v + f b, (2.1)

∇ · v = 0, (2.2)
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Figure 1. Schematic diagram for the rigid-flexible coupling system in a two-dimensional uniform flow (a).
The rigid flat plate with length D is fixed and placed normal to the flow with oncoming velocity U. The flexible
filament, severed as a deformable afterbody, is simply supported on its both edges and attached to the two edges
of the flat plate. The geometry of this system is described by using a dimensionless parameter Lr = L/D, where
L is the length of the filament. Note that Lr = 1 corresponds to the situation without the trailing filament. The
initial shapes of the filament for the situations with Lr < π/2 and Lr ≥ π/2 are illustrated in figures 1(b) and
1(c), respectively. For cases with Lr < π/2, the initial area enclosed by the flat plate and filament is set initially
to a circular segment with Lr = θ/sinθ , where θ is the semi-central angle subtending the arc. While for cases
with Lr ≥ π/2, the initial area is set initially to a combination of rectangle and semicircle. According to this
definition, the D2-normalized initial enclosed area Ω0 can be calculated by (2.5).

where v = (u, v) is the velocity, p the pressure, ρ the density of the fluid, μ the dynamic
viscosity and f b the body force term. A uniform velocity U is set at the inlet boundary and
the side boundaries of the fluid computational domain. A Neumann boundary condition is
specified at the outlet boundary.

The deformation and motion of flexible filament are described by the structural equation
(Doyle 2001; Connell & Yue 2007; Ye et al. 2017),

ρsh
∂2X
∂t2

= ∂

∂s

[
Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1
)

∂X
∂s

− ∂

∂s

(
EI(κ − κ0)

∂2X
∂2s

/∣∣∣∣∂2X
∂2s

∣∣∣∣
)]

+ F s,

(2.3)
where s is the Lagrangian coordinate along the plate, h is the structure thickness, X (s, t) =
(X(s, t), Y(s, t)) is the position vector of the plates, F s is the Lagrangian force exerted
on the plates by the surrounding fluid and ρs is the structural density; Eh and EI are
the structural stretching and bending rigidity, respectively; κ = |∂2X/∂2s| is the local
curvature of the filament with κ0 its initial reference value. It is noted that the filament
is set to be in an initial stressless reference state, according to (2.3). Moreover, the simple
support boundary conditions applied at the edges of the filament are respectively given by

X = (±0.5, 0),
∂2X
∂2s

= (0, 0). (2.4)

The filament is initially placed at rest in the fluid. The initial shapes of filament for the
situations with Lr < π/2 and Lr ≥ π/2 are illustrated in figures 1(b) and (c), respectively.
For cases with Lr < π/2, the enclosed area by the flat plate and filament is set initially
to a circular segment; while for cases with Lr < π/2, the enclosed area is set initially to
a combination of rectangle and semicircle. According to this definition, the relationship

943 A44-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.466


Y. Sun, Z.-R. Peng, D. Yang, Y. Xiong, L. Wang and L. Wang

between D2-normalized initial area (Ω0) and length ratio (Lr) can be given as

Ω0 =
{

1
4 (θ/sin2θ − cotθ), if Lr < 1

2π,
1
2 Lr − 1

8π, if Lr ≥ 1
2π,

(2.5)

where Lr = θ/sinθ , and θ is the semi-central angle subtending the arc. In the present
simulations the volume leakage is negligible which is consistent with the experiment of
Gao et al. (2020). Thus, the enclosed area Ω(t) ≈ Ω0, which merely depends on Lr.

The characteristic quantities ρ, D and U are chosen to normalize the above equations.
Thus, the following dimensionless governing parameters are introduced: the Reynolds
number Re = ρUD/μ, the stretching stiffness S = Eh/ρU2D, the bending stiffness K =
EI/ρU2D3, the mass ratio of the plates and the fluid M = ρsh/ρD, the length ratio of the
flexible filament and the rigid plate Lr = L/D.

2.2. Numerical method
The governing equations of the fluid-plate problem are solved numerically by an immersed
boundary-lattice Boltzmann method for the fluid motion and a finite element method for
the deformation of the flexible filament. The lattice Boltzmann equation with the body
force model (Guo, Zheng & Shi 2002) is employed in present simulations, i.e.

fi(x + eiΔt, t + Δt) − fi(x, t) = −1
τ

[ fi(x, t) − f eq
i (x, t)] + ΔtFi, (2.6)

where fi(x, t) is the distribution function for particles with ei at position x and time t. The
D2Q9 velocity model is applied here. Here Δx and Δt are the grid spacing and time step,
respectively; τ is relaxation time associated with fluid viscosity (ν), i.e. τ = ν/c2

s Δt + 0.5,
where cs = (Δx/Δt)/

√
3 is the lattice sound speed. The equilibrium distribution function

f eq
i (x, t) and the force term Fi are defined as (Guo et al. 2002)

f eq
i = ωiρ

[
1 + ei · v

c2
s

+ vv : (eiei − c2
s I)

2c4
s

]
, (2.7)

Fi =
(

1 − 1
2τ

)
ωi

[
ei − v

c2
s

+ ei · v

c4
s

ei

]
· f b, (2.8)

where ωi is the weighting factor depending on the lattice model (ω0 = 4/9, ω1 = ω2 =
ω3 = ω4 = 1/9, ω5 = ω6 = ω7 = ω8 = 1/36), and I is the unit tensor. The density ρ and
velocity v can be calculated by

ρ =
∑

i

fi, ρv =
∑

i

eifi + 1
2

f bΔt. (2.9)

The immersed boundary method employed in this study has been extensively used to
simulate the FSI problems (Peskin 2002; Mittal & Iaccarino 2005). The Lagrangian force
between the fluid and structure F s can be calculated by the penalty scheme (Goldstein,
Handler & Sirovich 1993)

F s = α

∫ t

0
[V f (s, t′) − V s(s, t′)] dt′ + β[V f (s, t) − V s(s, t)], (2.10)

where α and β are negative large penalty parameters which are selected based on the
previous studies (Hua, Zhu & Lu 2013; Ye et al. 2017; Peng, Huang & Lu 2018a,c),
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V s = ∂X/∂t is the velocity of Lagrangian material point of the filament, and V f is the
fluid velocity at the position X obtained by interpolation

V f (s, t) =
∫

v(x, t)δ(x − X (s, t)) dx. (2.11)

The body force term f b in (2.1) represents an interaction force between the fluid and the
immersed boundary to enforce the no-slip velocity boundary condition. The Lagrangian
force is spread to the nearby Eulerian grids by using the expression

f b(x, t) = −
∫

F s(s, t)δ(x − X (s, t)) ds, (2.12)

where δ(x − X ) is the Dirac delta function. Note that in the simulations, f b is distributed
over several Eulerian grids in width by using a smoothed delta function interpolation.
Thus, the leakage of internal fluid area enclosed by the flat plate and filament may arise,
due to the use of the smoothed approximation to the Dirac delta function (Kim et al. 2012;
Ye et al. 2017).

Here we adopt a penalty forcing scheme proposed by Kim et al. (2012) to diminish the
area leakage effect. In the scheme, the fluid compressibility β is defined as

β = − 1
Ω

∂Ω

∂p
, (2.13)

where Ω is the fluid area enclosed by the plate and filament and p denotes the pressure.
Integrating above the differential relation between Ω and p, and using Taylor’s expansion,
the pressure difference between the interior and exterior of the enclosed area can be
approximated by

Δp = 1
β

(
1 − Ω

Ω0

)
+ 1

β

∫ t

0

(
1 − Ω

Ω0

)
dt′, (2.14)

where Ω0 denotes the initial interior area and the last term of the equation represents
historical effects. Thus, the penalty force for area conservation is calculated by using the
pressure difference Δp as

FΩ = Δpen, (2.15)

where en represents the local normal unit in the direction from the interior to the exterior
of the enclosed area. This force is also added to the structure motion equation (2.3) as an
external force term.

Equation (2.3) is discretized by a nonlinear finite element method with a co-rotational
scheme. A detailed description of the method can be found in Doyle (2001). The motion
of the filament in the present study is regarded as a large-displacement and small-strain
deformation problem. By using the co-rotational scheme, the original problem with
the geometrical nonlinearities in global coordinates splits into two parts, i.e. the rigid
body motion and pure deformation in local coordinates, which are resolved by the
coordinate transformation and linear theory, respectively. A detailed description of the
above numerical method can be found in our previous papers (Hua et al. 2013; Ye et al.
2017; Peng et al. 2018a,c; Peng, Huang & Lu 2018b).
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(a)

�x = D/200, �t = T/8000
�x = D/100, �t = T/4000
�x = D/50, �t = T/2000

(c)

β = 10 (present)

β = 5

β = 50

(b) 

(d )
Kim et al. (2012)
Present

80
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Figure 2. Validations of the present numerical method. (a) The area enclosed by the flat plate and deformable
filament, Ω/Ω0, as a function of time for cases with and without penalty force, respectively. In these cases,
Re = 100, Lr = 2.5, K = 0.001, S = 1000 and M = 0.1. (b) The variations of the mean drag coefficient as
a function of Lr for the cases with Re = 100 and β = 5, 10, 50. (c) The time variations of Fy for the cases
with Lr = 2, Re = 100 under different lattice spacings (Δx = D/200, D/100 and D/50) and time steps (Δt =
T/8000, T/4000 and T/2000). (d) The variations of the mean drag coefficient as a function of S for the cases
of a flapping ring in a uniform flow. The present results are provided to compare with the previous results (Kim
et al. 2012). Here, K = 0.01, Re = 100 and S = 6–70.

2.3. Validation
Based on our convergence studies with different computational domains, the
computational domain for fluid flow is chosen as 20D × 50D in the x and y directions. The
domain is large enough so that the blocking effects of the boundaries are not significant. In
the x and y directions the mesh is uniform with spacing Δx = Δy = D/100. The filament
is discretized with a mesh size of Δs = D/100. The time step is Δt = T/4000 for the
simulations of fluid flow and filament motion, with T = D/U.

Figure 2(a) shows the time histories of the changes in area with and without the penalty
forcing strategy for the case with Re = 100, Lr = 2.5, K = 0.001, S = 1000 and M =
0.1. It is seen that the maximum area leakage is ∼ 0.5 % and ∼ 12 % for the cases with
and without the penalty force, respectively. The results indicate when the penalty forcing
strategy is adopted, the area conservation is improved significantly and satisfied for the
present study.

To examine the effect of β on the results of simulations, figure 2(b) shows the variations
of the mean drag coefficient as a function of Lr for the cases with Re = 100 and varying β,
i.e. β = 5, 10 and 50. It is found that the choice of β does not affect the overall drag of the
coupling system for all the cases with Lr ∈ (1, 10]. Whereas, it should be noted that a very
small value of β may cause numerical instability, while a very large value of β may not
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guarantee volume conservation. In our simulations, β = 10, which can ensure the volume
conservation and numerical stability at the same time.

Also, the grid spacing and time step independence studies are performed. Figure 2(c)
shows the time-dependent Fy of the afterbody calculated under the different lattice
spacings and time steps for the typical case with Lr = 2, Re = 100. It is confirmed
that Δx = D/100 and Δt = T/4000 are sufficient to achieve accurate results in the
present simulations with Re = 100. Further verification shows that Δx = D/100 and Δt =
T/4000 are also sufficient to accurately simulate the flows at higher Re, e.g. Re = 800 (not
shown in figure 2c). Hence, in all of our simulations, Δx = D/100 and Δt = T/4000 were
adopted.

To further validate the present numerical method, we simulate a flexible ring flapping
in a uniform flow. Figure 2(d) shows the mean drag coefficients of the ring as functions
of S for K = 0.01 and Re = 100. It is seen that the present results agree well with those of
Kim et al. (2012).

In addition, the numerical strategy used in this study has been validated and successfully
applied to a wide range of flows, such as the dynamics of fluid flow over flexible filaments
(Tian et al. 2010) or loops (Ye et al. 2017), and self-propulsion of flapping flexible plates
(Hua et al. 2013; Peng et al. 2018a,c).

3. Results and discussion

In the study, the effects of the length ratio (1 ≤ Lr ≤ 10) and Reynolds number (10 ≤
Re ≤ 800) are investigated. It is noted that Lr = 1 corresponds to the situation without the
trailing filament. In all our simulations, the mass ratio (M = 0.1), bending stiffness (K =
0.001) and stretching stiffness (S = 1000) are fixed. The mass ratio is fixed at M = 0.1,
which matches the case of a flexible afterbody in the wind tunnel (M ∼ O(10−1–100)).
A large value of the stretching stiffness S is chosen such that the stretching deformation
of the filament can be neglected. We chose a very small bending stiffness K so that the
filament is fully compliant with the surrounding flow, which is consistent with the previous
experiments (Gao et al. 2020).

3.1. Dynamic states of the rigid-flexible coupling system
In this section we present the dynamic states of the rigid-flexible coupling system in a
flow. Based on a variety of simulations for a wide range of parameters considered here,
we have identified five typical modes of dynamic behaviours in terms of the filament
motion and flow pattern, i.e. static deformation (SD) mode, micro-vibration (MV) mode,
multi-frequency flapping (MFF) mode, periodic flapping (PF) mode, and chaotic flapping
(CF) mode, respectively.

Figure 3(a) shows the instantaneous vorticity contour and shape deformation of the
filament for the case with Re = 10, Lr = 2.25, corresponding to the SD mode. Animations
are also given in supplementary movie 1. It is seen that for the SD mode, the filament
adapts to the streamlines of the surrounding flow and undergoes a static deformation with
the fluid loading. The steady wake downstream of the plate is formed because of the
low Re. Specifically, the shear layers with opposite vorticity formed at the edges of the
plate, attached to the reshaped afterbody and then dissipated downstream (see figure 3a).
In addition, the snapshot of the reshaped filament for other cases with Re = 10 and
Lr = 1.1, 1.5, 4, 6, 8, 10 are also plotted with solid green lines in figure 3( f ). It is shown
that for the SD mode, the filament appears stationary and has reflectional symmetry about
its midline, behaving like a rigid body. As Lr increases, the filament sequentially appears
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as ‘plate-like’ (e.g. Lr = 1.1), ‘cylinder-like’ (e.g. Lr = 1.5) and ‘slender’ (e.g. Lr = 10)
shapes, which is consistent with experimental observations (Gao et al. 2020). It is
noted that for the cases with large Lr, the rear part of the filament is squeezed by the
surrounding fluid, yielding a rounded tip at the end of the afterbody. Figure 3(b) shows
the instantaneous vorticity contour and shape deformation of the filament for the case with
Re = 100, Lr = 1.3, corresponding to the MV mode. A video showing the vortex shedding
and filament vibration is also included in supplementary movie 2. As we can see, the shear
layers begin to separate at the edges of the flat plate and then form a pair of alternately
shedding vortices, i.e. Kármán vortices. The figure also illustrates the development and
spatial organization of the Kármán vortices in the far wake. It is seen that the alternate
vortices convect downstream parallel to the centreline as two rows of vortices having
opposite rotation. A snapshot of the deformation configurations of the filament is shown
in figure 3(g). For the MV mode, the flexible filament experiences a particularly small
vibration, along with the alternate shedding of the Kármán vortices. To further describe
the dynamics of the filament, figure 4(a) shows the time variation of the lift coefficient
(Cl) for the overall system and transverse position of the filament midpoint (xm) for the
case with Re = 100, Lr = 1.3. Here the lift coefficient is defined as Cl = 〈Fx〉/1

2ρU2D,
where 〈q〉 := (1/(t1 − t0))

∫ t1
t0

q(t) · dt and q(t) is an integrable physical quantity. In the
computations, t1 − t0 is chosen as 10 times 1/f1, where f1 is the dominant frequency
of the integrand. As shown in figure 4(a), Cl changes with time periodically around its
averaged value zero. It is also seen that the filament vibration amplitude in terms of the
peak-to-peak value of xm is less than 0.04D (see inset within figure 4a). According to the
power spectrum density (PSD) of Cl (see figure 4e), an isolated frequency ( f1 = 0.178) of
lift change, which is equal to that of the vortex shedding and the filament micro-vibration,
is observed. Note that compared with the MV mode, the lift for the SD mode case is time
invariant, i.e. Cl = 0, thus, the time variation and PSD of Cl for the SD mode are not given
in figure 4.

The behaviours of the flow pattern and the filament deformation for the case with Re =
100 and Lr = 2.25, corresponding to the MFF mode, are shown in figures 3(c,h), and
animated in supplementary movie 3. In this case, the Kármán vortex street is also found
in the wake of the coupled system (see figure 3c). It is noted that the distance between
the two rows of vortices having opposite rotation becomes smaller, compared with that for
the MV mode cases. Moreover, the filament experiences a flapping motion with a larger
amplitude with the pick-to-pick value of xm ≈ 0.34D, as shown in figures 3(h) and 4(b).
The curve of Cl(t) in figure 4(b) shows a distinct pick (or valley) near the maximum (or
minimum) value of xm, indicating the in-phase relation between the variations of Cl and
xm. As shown in figure 4(f ), the PSD of Cl suggests multiple discrete frequencies for the
filament flapping, e.g. f1 = 0.155, f2 = 0.472, f3 = 0.789, etc., whereas the first frequency
f1, i.e. vortex shedding frequency, is dominant.

As Lr becomes larger, the dynamic state of the system may switch from the MFF mode
to PF mode. Here we use the case with Re = 100 and Lr = 6 as an example for the PF
mode, as shown in figure 3(d,i) and supplementary movie 4. It is seen that for the PF mode,
the filament flaps periodically; meanwhile, the separated shear layers become unstable,
resulting in periodic alternate shedding of vortices. Different from the multiple discrete
frequencies for the filament flapping in the MFF mode, an isolated frequency for the PF
mode cases is found, e.g. f1 = 0.155 for Lr = 6 and Re = 100, as shown in figure 4(g).
In addition, the phase difference Δϕ between the maximum Cl and the maximum xm
is about π, indicating the out-phase relation between time variations of Cl and xm (see
figure 4c).
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Figure 3. Behaviours of the flow patterns and deformations of filament shapes: (a–e) the instantaneous
vorticity contours, and ( f –j) the envelops (solid black lines) of the flexible filaments for five distinct modes
with Re = 10, Lr = 2.25 (a, f ), Re = 100, Lr = 1.3 (b,g), Lr = 2.25 (c,h), Lr = 6 (d,i) and Re = 800, Lr = 9
(e, j), corresponding to the static deformation (SD), micro-vibration (MV), multi-frequency flapping (MFF),
periodic flapping (PF) and chaotic flapping (CF) modes, respectively. Animated visualisations of the dynamic
states for these modes have also been provided in supplementary movies available at https://doi.org/10.1017/
jfm.2022.466. For the SD mode, the snapshot of the filament deformation shapes for other cases with Re = 10
and Lr = 1.1, 1.5, 4, 6, 8, 10 are also plotted with solid green lines in figure 3( f ).

Figures 3(e) and 3( j) show the behaviours of the flow pattern and the filament
deformation for the case with Re = 800, Lr = 9, corresponding to the CF mode. A video
showing the dynamics of this case is also provided in supplementary movie 5. Here, we
note that even though the flexible afterbody may deform greatly and flap strongly in the
CF mode, the self-contact phenomenon has not been observed during the process of the
different parts of the afterbody approaching and moving away from each other. Unlike
the ordered flow patterns in the MV, MFF and PF modes, the chaotic vortical structures
are found in the wake of the coupled system for the CF mode case (see figure 3e). The
shear layers attached to the filament start to roll up at the forepart of the afterbody and
then break into eddies with varying sizes irregularly shedding in the wake (see figure 3e),
accompanied by the chaotic flapping of the filament (see figure 3j). Furthermore, the
curves of Cl(t) and xm(t) illustrate the dynamic disorder of the coupled system, as shown in
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Figure 4. Time variations of the lift coefficient Cl (solid line) of the overall system and the transverse position
xm (dashed line) of the midpoint of filament (a–d), and power spectrum density (PSD) of Cl(t) (e–h) for cases
with Re = 100, Lr = 1.3 (a,e), Lr = 2.25 (b, f ), Lr = 6 (c,g) and Re = 800, Lr = 9 (d, h), corresponding to
the MV, MFF, PF and CF modes, respectively. Inset: enlargement of the variation of xm versus time for the MV
mode with Re = 100, Lr = 1.3 (a1).

figure 4(d). Moreover, figure 4(h) shows the PSD of Cl for the case with Re = 800, Lr = 9.
As one can see, figure 4(h) shows a broadband spectrum, indicating a non-periodic
behaviour of the coupled system. Moreover, a high peak is found at f1 = 0.140 (see
figure 4h), showing the dominant flapping frequency for the filament flapping and vortex
shedding. In the discussion above, it is interesting to note that there is an obvious difference
in the phase relation between Cl and xm for the MFF and PF modes. To further illustrate
this point, the variations of the phase difference Δϕ between the maximum Cl and the
maximum xm as functions of Lr for different Re are shown in figure 5(a). It is seen that
the system mode switches from the MFF mode to PF mode as Lr increases, resulting in a
jump of Δϕ, e.g. Δϕ ≈ 0 for the MFF mode case with Re = 100, Lr = 2 and Δϕ ≈ π for
the PF mode case with Re = 100, Lr = 7. Moreover, the root-mean-square (rms) values of
the transverse position of the filament midpoint, xm,rms, as functions of Lr for various Re,
are shown in figure 5(b). It is revealed that as the increase of Lr, xm,rms follows obviously
different variations within different mode regions. For example, when Re > 50, the xm,rms
first increases linearly within the MV mode region (Lr < 2), and then experiences an
enormous increase by following a logarithmic growth law until reaching its maximum
value at Lr ≈ 3.5. After that, xm,rms gradually decreases and stabilizes. Therefore, one
can distinguish the boundaries between the distinct modes through the curve profiles of
Δϕ and xm,rms. Our results indicate that the occurrence of the motion states of the system
depends mainly on the length ratio Lr and Reynolds number Re. The phase diagram for the
five modes in the H–Re plane is shown in figure 6. Each symbol in the figure represents
a case we simulated. It is seen that the SD mode occurs mainly in the low Re region
(say Re = 10). As Re increases, the transition from a steady to unsteady state for flow
past the coupled system is found at a critical Re ∈ (25, 50) for 1 ≤ Lr < 4, or ∈ (10, 25)

for 4 ≤ Lr ≤ 10. In the moderate Re region (say Re = 100), the MV, MFF, PF and CF
modes appear in succession as Lr increases from 1.1 to 10; when Re is large enough (say
Re = 800), only the MV and CF modes occur.
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Figure 5. (a) Phase difference between the peaks of Cl and xm, and (b) the root-mean-square value of the
transverse position of the filament midpoint, xm,rms, as functions of Lr for various Re.
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Figure 6. Overview of the five typical mode regions on the Lr–Re plane, where the symbols �, �, ◦, � and �
represent the SD, MV, MFF, PF and CF modes, respectively. The drag reduction region (DRR) is marked by
the grey colour. The Lrc,max (or Lrc,min) trajectory along which the system experiences a local maximum (or
minimum) drag is plotted by the dashed (or dash-dotted) line on the phase plane. The typical cases in figure 3
are marked by the symbols ×.

3.2. Drag and the flow characteristics
The drag acting on the coupled system by the surrounding fluid is further investigated to
better understand the relationship between the drag variations and the mode transitions.
The jump in the fluid force across the plate or filament at a certain Lagrangian point, i.e
F s, can be decomposed into two parts: one is the normal force F n in which the pressure
component dominates, the other is the tangential force F τ which comes from the viscous
effects. These forces are defined as

F s = [−pI + T ] · n = F n + F τ = (Fx, Fy), (3.1)

F n = (F s · n) · n = (Fn
x , Fn

y ), (3.2)

F τ = (F s · τ ) · τ = (Fτ
x , Fτ

y ), (3.3)
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where I is the unit tensor, T the viscous stress tensor, τ the unit tangential vector, n the
unit normal vector and [ ] denotes the jump in a quantity across the immersed boundary.
The system experiences a fluid drag in the y direction, i.e −Fy = −(Fn

y + Fτ
y ). Thus,

the corresponding time-averaged drag coefficients are defined as Cd = −〈Fy〉/1
2ρU2D,

Cn
d = −〈Fn

y 〉/1
2ρU2D and Cτ

d = −〈Fτ
y 〉/1

2ρU2D, respectively. Figure 7(a) shows the fluid
drag curves versus Lr at different Re for the overall system. Here the drag is normalized by
that for the bare plate scenario. It is seen that the drag curves show two distinct tendencies
depending on the Re. For the flow at a low Reynolds number (say Re = 10 or 25), the
drag almost monotonically increases with the increase of Lr. For the higher Reynolds flow
(e.g. cases with Re ≥ 50), the drag first decreases from Cd/Cd,Lr=1 = 1 as Lr increases,
and reaches a local minimum at Lr = Lrc,min. After that, the drag curve shows a sharp
rise until the second threshold at Lr = Lrc,max, where the system experiences a local
maximum drag. When Lr > Lrc,max, the fluid drag generally shows a slow decline as
Lr increases. Moreover, we denote the Lrc,min (or Lrc,max) trajectory in the Lr–Re plane,
as shown in figure 6. It is found that the emergencies of local minimum (or maximum)
drags at Lc,min ∈ [1.8, 2] (or Lc,max ∈ [3.5, 4]) are often accompanied by the system state
transitions. Furthermore, it is interesting to note that benefiting from the passive flow
control by using the trailing filament as a deformable afterbody, the system may experience
a counterintuitive reduction in fluid drag, corresponding to the scenarios within the grey
region (Cd/Cd,Lr=1 < 1) marked in figure 7(a). Compared with the bare plate, the system
enjoys a dramatic drag reduction (up to approximately 22 %) at Lr ≈ Lc,min for Re ≥ 50.
The considerable reductions in drag are also observed for cases with large Lr and high
Re, e.g. Lr > 5 and Re � 400. As shown in figure 6, we denote the drag reduction region
(DRR) in the Lr–Re phase plane for the overall system. The critical value of Re, i.e. Rec,
separating the DRR and drag increase region (DIR) generally depends on Lr. Specifically,
Rec ∈ (25, 50) for 1 ≤ Lr ≤ 2 while Rec ∈ (100, 200) for 4 ≤ Lr ≤ 10; Rec increases as
the increase of Lr for 2 < Lr < 4. The DDR almost covers the region with Re > Rec except
for the cases with Re = 800, Lr = 1.1 and 1.3. Compared with the experiment (Gao et al.
2020) with a higher Re ∼ 2700–5500, our simulations also show that the counterintuitive
drag reduction due to the flow-induced reconfiguration of filament may arise in the
low-moderate Re (∼ 10–103) flow region. The experimental data from Gao et al. (2020)
with Re = 4400 which is based on the speed of uniform inflow U∞ = 1.54 m s−1 are
plotted in figure 7(a). It is worth noting that, although the numerical results are not in
perfect agreement with the experimental data (which to some extent is expected given the
higher Re flow in the soap film experiments), similar trends in drag variation have been
found in the experiments and present simulations; in particular, the Lrc,min (or Lrc,max)
obtained from the experiment is very close to that from the simulations with Re ≥ 400
(see figure 7a). The experimental and numerical results have shown together that this kind
of device, referred to as a ‘flexible coating’, may have a high level of adaptability and
effectiveness for the flow control for reducing drag of the bluff body in a flow.

Further, the drag-reducing effect by using a flexible afterbody is compared with that
using a rigid one for the typical cases as listed in table 1. The geometry of a rigid afterbody
is represented by the time-averaged shape of a flexible one with identical Lr. It is found that
for the cases with Lr = Lrc,min (i.e. cases 1–4), the drag reduction can be achieved by using
a flexible or rigid afterbody, whereas the ‘flexible coating’ may give rise to more benefit in
drag reduction of the system, especially in the higher Re region considered here, e.g. Re =
800 (case 4 in table 1). These facts suggest that suitably adding a flexible coating to a
rigid body may lead to additional reduction in drag relative to conventional flow control
devices/measures, e.g. rigid splitter plates or other streamlining, in which the FSI effect
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Figure 7. (a) Fluid drag acting on the coupled system normalized by the drag of the isolated rigid plate,
i.e. Cd/Cd,Lr=1 as functions of Lr for various Re. The drag for the system can be decomposed into two parts,
i.e. the tangential one Cτ

d/Cd,Lr=1 (b) which comes from the viscous effects, and the normal one Cn
d/Cd,Lr=1 (c)

in which the pressure component dominates. Inset: Cn
d/Cd,Lr=1 for the rigid plate (c1) and the flexible filament

(c2), respectively. For the overall system, Cd/Cd,Lr=1 < 1 corresponds to the drag reduction scenarios, which
is located in the grey region in figure 7(a). Also, the experimental data (Gao et al. 2020) with Re = 4400,
which is based on the speed of uniform inflow U∞ = 1.54 m s−1, are plotted in figure 7(a).

Re Lrc,min Flexible Cd (Cd/Cd,Lr=1) Rigid Cd (Cd/Cd,Lr=1)

Case 1 50 1.8 1.85 (0.885) 1.86 (0.890)
Case 2 100 1.8 1.95 (0.790) 2.05 (0.831)
Case 3 200 2.0 2.15 (0.821) 2.24 (0.855)
Case 4 800 2.25 2.31 (0.789) 2.70 (0.922)
Case 5 100 3.0 2.70 (1.094) 1.98 (0.803)

Table 1. Comparison for the drag coefficients (Cd and Cd/Cd,Lr=1) of the overall systems with the flexible and
rigid afterbodies for typical cases. Here, for cases 1–4, the length ratio Lr = Lrc,min, at which the maximum
reduction in drag is achieved in the flexible scenarios (see figure 7a). The geometry of a rigid attachment is
represented by the time-averaged shape of the flexible afterbody with the identical Lr.

is not included. Moreover, it should be noted that a flexible afterbody may also lead to a
larger fluid drag of the overall system compared with a rigid one when Lr is larger, e.g. case
5 in table 1.

Figures 7(b) and 7(c) show the contributions to the total drag from the viscous and
pressure stresses for the system, i.e. Cτ

d/Cd,Lr=1 and Cn
d/Cd,Lr=1, respectively. For the

SD mode cases with Re = 10, it is seen that, as Lr increases, the friction contribution
increases from approximately zero to 0.8, while the pressure contribution reduces from
approximately 1 to 0.65. Thus, for the whole system, the form drag predominates at the
small Lr, but is no longer the exclusively dominating force at the large Lr, where the skin
friction drag cannot be neglected. As Re increases, the friction drag is greatly reduced,
e.g. Cτ

d/Cd,Lr=1 < 0.25 for Re ≥ 100, resulting in the form drag predominating in the
total drag for high Re cases. Because of this, it is seen from figures 7(a) and 7(c) that
the form drag changes with a similar tendency as that of the total drag within the high
Re region. We further show the form drag curves at varying Re for the rigid and flexible
parts in inset figures 7(c1) and 7(c2), respectively. It is observed that when Lr is close to 1,
e.g. Lr = 1.1, where the flow pattern is similar to that of the bare plate scenario, the trailing
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filament contributes almost the same form drag as the rigid plate, as shown in figure 7(c2).
As Lr further increases, the form drag on the filament for all Re cases decreases firstly
until the first threshold at Lrc,min, where the form drag reduction is up to nearly 30 % in
comparison with that at Lr = 1. After Lr > Lrc,min, the filament experiences the distinct
form drag variations for the low Re region (e.g. Re = 10) and high Re region (e.g. Re >

100), respectively (see figure 7c2), which is similar to that for the overall system as shown
in figure 7(c). Moreover, it is noted that as Lr increases, small changes in the form drag of
the rigid plate are observed at most Re, e.g. Re = 10 or ≥ 100. These facts indicate that
the drag reduction for the coupled system is mainly derived from the passive controls for
the favourable flow over the flexible trailing filament.

To further explore the underlying mechanisms of the counterintuitive drag reduction
behaviour of the coupled system, the corresponding flow characteristics are investigated
in the following. Figure 8 shows the time-averaged vorticity and pressure contours around
the structures, as well as the vertical component of fluid loads on their surfaces for typical
cases. For the isolated plate in the flow, i.e. the case with Re = 100 and Lr = 1 as shown
in figures 8(a,e,i), it is clear in a time-averaged sense that a low-pressure region on the
lower surface and a high-pressure region on the upper surface of the plate (figure 8e),
which is induced by the opposite vortex pair (figure 8a) and the fluid deceleration effect,
respectively, dominate nearly the overall drag of the plate (figure 8i). Unlike the isolated
plate case, for the case with Re = 100 and Lr = 2 in figure 8(b, f, j), the vortex pair is
stretched downstream, and the vorticity in the shear layer is mainly distributed on both
sides of the filament. This vorticity distribution induces a weakened low-pressure region
directly below the filament (figure 8b, f ), leading to an obvious drag reduction (figure 8j).
It is noted that because the flow separation occurs early due to the large reverse pressure
gradient near the front outer surface of the filament (see figure 8f ), the contribution of
viscous friction to the total drag is negligible in comparison with that of the pressure
(see figure 8j). For the case with Re = 100 and Lr = 3.5, as shown in figure 8(c,g,k),
the filament achieves a more streamlined time-averaged shape by adapting itself to the
surrounding fluid, which is helpful for the shear layers attaching to the surfaces (figure 8c).
In this case, as shown in figure 8(k), the fluid drags contributed by the pressure and
the friction mainly distribute on the top/bottom and side surfaces of the enclosed loop,
respectively; the form drag is still dominant, but the fiction drag is no longer negligible.
Thus, compared with the bare plate scenario, although the form drag slightly reduces, the
total drag increases due to the addition of fiction (see figure 7). For the case with Re = 10
and Lr = 9, as shown in figure 8(d,h,l), it is seen that unlike the cases discussed above, the
filament is subjected to a considerable fiction drag and a negligible form drag, owing to its
highly streamlined steady deformation. Thus, in this case, the form drag and the friction
drag are almost contributed by the rigid plate and the flexible filament, respectively (see
figure 8l).

Figure 9 shows the unsteady behaviours for the typical cases with Re = 100, Lr = 1, 2
and 3.5. For the bare plate scenario (Re = 100, Lr = 1), the shear layers separate at the
edges of the flat plate and form a pair of counter-rotating vortices alternately shedding
in the wakes (see figure 9g), which causes the periodic fluctuations in pressure on the
lower surface of the plate, as we can see in the curve of Fy(t) (see figure 9a). From the
instantaneous flow field around the plate at instant A, corresponding to the valley in the
curve of Fy(t) as shown in figure 9(a), it is clear that the maximum instantaneous drag
is attributed to the low-pressure region induced by the vortex which moves just below the
plate at instant A, as shown in figure 9(d). For the case with Re = 100 and Lr = 2, a similar
situation is observed in the instantaneous flow field (see figure 9e) at instant B when the
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Figure 8. Time-averaged vorticity (a–d) and pressure (e–h) contours around the coupled system, and the
distribution of the y component of time-averaged normal and tangential force (i − l) for the typical cases
with Re = 100, Lr = 1 (a,e,i), 2 (b, f, j), 3.5 (c,g,k) and Re = 10, Lr = 8 (d,h,l), respectively. The two vectors,
i.e. (0, Fn

y ) (red colour) and (0, Fτ
y ) (blue colour), are plotted along the plate and filament, illustrating the spatial

distribution of the fluid drags contributed by the pressure and friction, respectively.

maximum instantaneous drag is achieved, as shown in figure 9(b). The difference from
the bare plate case is that the moving vortex is weaker and, thus, the induced low-pressure
region is weakened, resulting in a smaller drag peak. For the case with Re = 100 and
Lr = 3.5, a dramatic peak is found in the curve of Fy(t) at instant C as shown in figure 9(c).
From figure 9( f ), we can see that at the trailing end of the afterbody, the local high and low
pressure appear on the inner and outer surfaces, respectively, which is responsible for the
sharp increase of the drag at instant C. It is also noted that at this moment, the left shear
layer with positive vorticity is able to maintain attachment to the reshaped and moving
surface (see figures 9f,i), and such attached flow will provide a considerable contribution
to friction drag (figure 8k).

From the discussion above, the generation, movement and shedding of vortices around
the coupled system play a prominent role in the dynamic characteristics, especially the
fluid drag of the system. We further explore the vortex structures in the far field and their
relation to changes in drags. For cases with Re = 100, Lr = 1, 2 and 3.5, as shown in
figure 9(g,h,i), the Kármán vortex streets, associated with the averaged drag force (Griffin
& Ramberg 1975; Li & Lu 2012), are observed in wakes. Here, the Kármán vortex street is
characterized by the distance between its two staggered rows of vortices, w, the streamwise
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Figure 9. The unsteady behaviours of the coupled system: (a–c) the y component of fluid force for the system,
Fy, and the transverse position of the filament midpoint, xm, as functions of time for Re = 100, Lr = 1 (a), 2
(b) and 3.5 (c); (d–f ) the instantaneous pressure contours and streamlines around the coupled system at instant
A for Re = 100, Lr = 1 (d), instant B for Re = 100, Lr = 2 (e) and instant C for Re = 100, Lr = 3.5 ( f ); (g–i)
the instantaneous vortical structures in the far field for Re = 100, Lr = 1 (g), 2 (h) and 3.5 (i). The paths of
the vortex with positive (anticlockwise rotation) and negative (clockwise rotation) circulation are plotted by
the solid and dashed lines, respectively. The position of the vortex core is identified by xc = ∫

xωz dS/
∫

ωz dS
and yc = ∫

yωz dS/
∫

ωz dS. ( j–l) The time-averaged velocity deficit induced by the vortex street in the wake
for Re = 100, Lr = 1 ( j), 2 (k) and 3.5 (l). The contours show the magnitude of the time-averaged velocity in
the y direction, and the velocity profiles in the far field are also illustrated by the vectors (0,v) at y = −12.

separation between the adjacent vortices having opposite rotation, h, and the vortex
circulation Γ . The position of the vortex core is defined as xc = ∫

xωz dS/
∫

ωz dS and
yc = ∫

yωz dS/
∫

ωz dS. For the system, the averaged drag force is relevant to the reverse
jet flow in the vertical direction induced by the vortices. As illustrated in figure 9(g),
according to the vortex-dipole model (Godoy-Diana et al. 2009), the vertical component
of the dipole-induced velocity is

VΓ
y = VΓ cosα = Γ

2πd
× cosα = Γ w

2π(w2 + h2)
, (3.4)

where cosα = w/d and d = √
h2 + w2. For comparison of three typical cases with Re =

100 and Lr = 1, 2 and 3.5, the parameters of Kármán vortex streets are given in table 2. It
is seen that compared with the bare plate case (Re = 100, Lr = 1), the vortex street width
for the drag reduction case (Re = 100, Lr = 2) is significantly narrower, which results
in a substantial increase of α and decrease of the value of cosα. This would result in a
weakened reverse jet flow with a smaller VΓ

y according to (3.4). However, for the case
with Re = 100 and Lr = 3.5, the enhanced reverse jet flow with larger VΓ

y , corresponding
to the increased drag, is mainly attributed to the more increase of vortex circulation Γ ,
relative to the less decrease (or increase) of the value of cos α (or d).

Further, figure 9( j–l) shows the time-averaged vertical velocity contours and velocity
profiles in the wake for the three cases. As we can see, the velocity deficit (wake profile),
induced by Kármán street with the reverse jet, arises in the far field for all the cases,
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Re Lr Γ w h α (deg.) VΓ
y

Case 1 100 1 3.77 2.82 1.99 35.3 0.14
Case 2 100 2 4.51 1.04 2.77 69.5 0.085
Case 3 100 3.5 4.50 2.79 2.20 38.3 0.16

Table 2. Parameters of Kármán vortex streets for cases with Re = 100 and Lr = 1, 2 and 3.5. Here, Γ , w, h
and α are the parameters determined based on the flow field. Here VΓ

y is calculated by using (3.4).

indicating the onset of net fluid drag acting on the system. Moreover, it is seen that
compared with that for the bare plate case (Re = 100, Lr = 1), the intensity of reverse jet
flow is weakened for the drag reduction case (Re = 100, Lr = 2), but enhanced for the drag
increase case (Re = 100, Lr = 3.5), respectively. And a weakened (or enhanced) reverse
jet can be considered as a prognosticator of a further drop (or increase) in drag. These
findings indicate that the flexible filament coating to a rigid plate may offer favourable
flow controls for the vortex dynamics in the near field and in the far field, which brings in
sizable drag reduction for the overall system.

3.3. Drag estimate
In this section the form drag and the friction drag, which come from the pressure and
viscous effects, respectively, are further estimated. According to the Blasius solution
(Schlichting & Gersten 2016) for the flow along a very thin flat plate, the friction drag
on one side of the flat plate ∼ ρU2Lf (ULf /ν)−1/2, where U is free-stream velocity
and Lf is the length of the flat plate, indicating that the friction drag is proportional to
U3/2 and to L1/2

f . From the discussion above, it is revealed that the friction drag mainly
originates from the attached shear layer on the outer surface of the filament. Therefore, by
assuming the friction drag on the filament surface follows the same scaling rule, we have
Cτ

d ∼ (Lτ /Re)1/2, where Lτ is the dimensionless characteristic length of the frictional
layer scaled by D and Re = ρUD/μ. Thus, the coefficient of friction drag on the filament
can be estimated by

Cτ
d = 2kτ

√
Lτ

Re
, (3.5)

where Lτ = (Lr − 1)/2 and kτ is a dimensionless constant coefficient.
Figure 10(a) shows the variation of Cτ

d as (Lτ /Re)1/2. As we can see, all the data
from the present simulations appear to collapse into a straight line described by (3.5)
with kτ ≈ 1.8, indicating that the friction drags calculated by (3.5) agree well with the
numerical results. It is noted that the constant coefficient kτ derived from the Blasius
solution for the flat plate boundary layer is 1.328, which is smaller than kτ = 1.8 from the
numerical results. One should also note that the Blasius solution with kτ = 1.328 is only
valid in the limit of Re >> 1, which is not the case with low-moderate Re in the present
simulation. In spite of this, our numerical results indicate that (Lτ /Re)1/2 may serve as a
practicable metric for scaling the friction drags. On the other hand, the form drag arises
from the pressure difference on the upper and bottom surfaces of the enclosed system,
which is closely related to filament flapping and deformable shape. Thus, the transverse
characteristic length of the afterbody is a more important factor than the streamwise length
for scaling the form drag. Since the afterbody is subjected to a shape deformation or
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Figure 10. Scaling laws for the friction drag (a) and the form drag (b) acting on the coupled system, which
come from viscous effects and pressure differences, respectively. The friction drags Cτ

d and the renormalised
form drag Cn

d,W are plotted as functions of (Lτ /Re)1/2 and Lr, respectively. A new drag coefficient, Cn
d,W , is

normalised using the maximum width of the afterbody envelope W, instead of D. Inset gives the variation of
Cn

d versus Lr for Re = 10. Results indicate that the friction drags follow the scaling law of Cτ
d ∼ (Lτ /Re)1/2

for all the Re numbers considered here; while the form drags follow the scaling laws of Cn
d,W ∼ Lr−0.60 for

Re ≥ 25 and Cn
d ∼ Lr−1.27 for Re = 10, respectively. Legend is identical to that in figure 7.

strong flapping for most cases in our simulations, the flat plate width D can not serve as
a good characteristic length for scaling the form drag, as shown in figure 7. Therefore,
we here adopted the maximum width of the afterbody envelope W as a characteristic
length to renormalise the form drag, i.e. Cn

d,W = Cn
d × 1/W∗ = −〈Fn

y 〉/1
2ρU2W, where

the dimensionless quantity W∗ = W/D.
Figure 10(b) shows the variation of Cn

d,W versus Lr for Re ≥ 25. It is shown that
the symbols with Re ≥ 25 appear to collapse nearly into a curve described by Cn

d,W =
2.66Lr−0.60. It is also noted that the symbols in the large-Lr region (say Lr > 3) are closer
to the scaling curve than those in the small-Lr region. The results in figure 10(b) suggest
that W is a reasonable characteristic length for scaling form drag in flapping regions,
especially in large-amplitude flapping regions, i.e. Lr > 3 (see figure 4b). While for the
static deformation region with Re = 10, W is no longer a characteristic length for the form
drag. As shown in the inset in figure 10(b), the coefficient Cn

d can be merely described by
Lr, i.e. Cn

d = 1.20Lr−1.27 + 1.84. Thus, the form drag on the system for all the Re numbers
considered can be estimated by

Cn
d = a × W∗n

Lrb + c, where

{
a = 2.66, b = 0.60, c = 0, n = 1, if Re ≥ 25,

a = 1.20, b = 1.27, c = 1.84, n = 0, if Re = 10.

(3.6)
Finally, the overall drag coefficient can be estimated by

C
′
d = Cτ ′

d + Cn′
d = 2kτ

√
Lτ

Re
+ a × W∗n

Lrb + c. (3.7)

It is noted that for a short afterbody, e.g. Lr < 3, the transverse characteristic length is no
longer the only dominant metric for scaling drag, and, thus, the deviation of Cn

d estimated
is slightly larger, compared with that for a slender afterbody, as shown in figure 10(b). In
order to eliminate this error, a correction factor γ based on the drag of a bare rigid plate
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Figure 11. The overall fluid drags Cd/Cd,Lr=1 as a function of Lr. All the data in figure 7(a) are plotted again
in figure 11 with the same symbols, and each curve in figure 11 denotes the estimated drag calculated using
(3.8) for each Re, respectively.

is introduced. Therefore, the modified drag estimate formula is expressed by

C
′′
d = 2kτ

√
Lτ

Re
+ γ ×

(
a

W∗n

Lrb + c
)

, (3.8)

where γ = Cd,Lr=1/C
′
d,Lr=1 = Cd,Lr=1/Cn′

d,Lr=1 for Lr < 3, and γ = 1 for Lr ≥ 3.
Figure 11 shows the variations of Cd/Cd,Lr=1 as a function of Lr for Re = 10–800. All

the data in figure 7(a) are plotted again in figure 11 with the same symbols, and each curve
in figure 11 denotes the estimated drag calculated using (3.8) for each Re, respectively. It
is seen that the estimate curves, which are based on the scaling laws for friction drag and
form drag, show a similar tendency to those in the simulations. Moreover, we note that a
good degree of agreement between the numerical and estimate data is observed at even
high-Re and large-Lr regimes, in which the flow is highly unsteady and the filament flaps
strongly. The drag scaling laws proposed here are helpful for understanding the underlying
mechanism of the drag variations and may give valuable insight into the dynamics of this
type of FSI system.

4. Concluding remarks

In summary, we carried out a numerical investigation on the dynamics of fluid flow past a
rigid flat plate with a trailing closed flexible filament acting as a deformable afterbody. We
have found the five distinct modes of the system state according to the filament motion and
flow pattern, i.e. SD, MV, MFF, PF and CF modes. It was indicated that the occurrence of
the system mode depends mainly on Lr and Re. The phase diagram for the typical modes
in the Lr–Re plane were plotted.

The drag variations show two distinct tendencies in lower and higher Re regions. For the
flow at low Reynolds number, the drag almost monotonically increases with an increase of
Lr. While for the higher Reynolds flow, all the Cd(Lr) curves indicate the existence of the
local minimum (or maximum) drags at Lc,min ∈ [1.8, 2] (or Lc,max ∈ [3.5, 4]). Besides, we
also noted that the Lc,min, or Lc,max, trajectory generally separates different mode regions
in the Lr–Re plane. In other words, as Lr changes, the overall system may reach its local
minimum or maximum drag, along with the emergence of state transition. Moreover, it
was interesting to note that benefiting from the passive flow control by using the trailing
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filament as a deformable afterbody, the system may experience a counterintuitive reduction
in fluid drag. Compared with the bare plate, the system enjoys a dramatic drag reduction
up to approximately 22 %; and the considerable reductions in drag were also observed for
cases with large Lr and high Re, e.g. Lr > 5 and Re ≥ 400.

The analysis of time-averaged and instantaneous flow fields shows that drag reduction is
mainly attributed to favourable control for the shedding and movement of vortices around
the flexible afterbody. The velocity deficit (wake profile) induced by the Kármán vortices
arises in the far field, indicating the onset of net fluid drag acting on the system. To explore
the relations between drag and vortical wake, the characteristics of Kármán vortex streets
in the far field for typical cases are quantificationally described by using w, h and Γ . For
the drag reduction case, the vortex street width (w) is significantly narrower and, thus, the
strength of the reverse jet is weakened.

The drag decomposition shows that the form drag predominates at the small Lr but is no
longer the exclusively dominating force at large Lr, where the skin friction drag cannot be
neglected. As Re increases, the friction drag is greatly reduced, resulting in the form drag
predominating in the total drag for high Re cases. Finally, the overall drag is estimated
based on the scaling laws for the friction drag and the form drag. Our results show that
the friction follows a similar scaling rule as that in the Blasius boundary layer, i.e. Cτ

d ∼
(Lτ /Re)1/2; and the form drag can be scaled by the length ratio, Lr, and the maximum
envelope width of the afterbody, W∗, i.e. Cn

d ∼ W∗/Lr0.6 for Re ≥ 25 and Cn
d ∼ 1/Lr1.27

for Re = 10.
Although the geometric shape is simplified and the simulation is two dimensional,

our preliminary study is still indispensable for understanding the complex dynamics of
this new kind of rigid-flexible coupling system. It also inspires a novel flow control
method for the aero/hydrodynamic performance enhancement. For example, by suitably
adding a flexible coating to a rigid body, some favourable flow features for reducing drag
on a two-dimensional bluff body are achieved. Unlike the experiments with the higher
Re ∼ 2700–5500 (Gao et al. 2020), we have performed a series of numerical simulations
at the low-moderate Re ∼ 10–103. Nevertheless, a similar trend in drag variation has been
found in the experiments and the present simulations with Re > 100. In particular, the
locations of the local minimum and maximum drags, i.e. Lrc,min and Lrc,max, respectively,
are very close for the experiments and simulations with Re ≥ 400. The results from the
experimental (Gao et al. 2020) and the present numerical studies have showed together
that the counterintuitive drag reduction exists for flows with quite a wide range of Re,
which indicate that the passive controls may have high adaptability and effectiveness.
However, for three-dimensional bluff bodies in many real-life situations, such as athletes
or some vehicles, the vortical flows are essentially three-dimensional and highly turbulent
(Park et al. 2006). Thus, the two-dimensional simulations with the low-moderate Re in
the present study can not represent the three-dimensional situations with high Re. This
raises the question of whether the ‘flexible coating’, as a passive flow control device,
is still effective for reducing drag on a three-dimensional bluff body. The effects of the
three-dimensional body shape and the higher Re on the dynamic behaviour of this new
class of system is beyond the scope of the present study but will be a focus of our future
research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.466.
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