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We present a systematic study to investigate the fluid–structure interaction (FSI) of
subaqueous spherical pendulums with several solid-to-fluid mass ratios m∗ ∈ [1.14, 14.95]
and corresponding Reynolds numbers of up to Re ∼ 104. A digital object tracking (DOT)
method was employed to track the oscillating pendulum spheres whereas the time-resolved
3-D particle tracking velocimetry (tr-3D-PTV) was used to measure the flow field around
the spheres. The data obtained from the coupling of the two measuring techniques
provide novel insights into the dynamics of pendulum sphere oscillations, instantaneous
pressure fluctuations related to vortex shedding around the spheres and the way they are
influenced by the vortex and wake interactions. Namely, we show that during the downward
motion of the pendulum spheres, vortex rings are shed off the spheres which, in turn,
induce short-lived propulsion and, subsequently, distinct deceleration. Further, we used
the measured data to improve an existing basic model of pendulum motion, which has
significant discrepancies for the period and peak amplitude predictions. We did this by
incorporating a vortex-induced drag term and a wake interaction term into the equation.
Finally, the improved equations are shown to be capable of predicting the subaqueous
pendulum dynamics with high accuracy, for the investigated range of m∗. The study thus
extends the current understanding of basic fluid dynamic mechanisms such as added mass,
nonlinear drag, vortex and pressure dynamics.
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1. Introduction

The subaqueous pendulum is a core model in fluid dynamics of important interest in
research but also for educational purposes, that is, to introduce students to the basic
concepts of dynamics and harmonic motions (Mongelli & Battista 2020). Stokes (1851)
demonstrated the pendulum’s usefulness to study drag force. About 170 years after Stokes
(1851), experimental research on spherical (Dolfo, Vigué & Lhuillier 2020) and cylindrical
(Dolfo, Vigué & Lhuillier 2021) pendulums, in the limit of small Reynolds numbers
Re < 1, was conducted. For small oscillation amplitudes, the corresponding Stokes
numbers were in the range St ∈ [153, 1500] in Dolfo et al. (2020) and St ∈ [0.2, 230] in
Dolfo et al. (2021).

Govardhan & Williamson (1997) measured the motion of a pendulum-like tethered
sphere in a uniform flow and attempted to gain insight into vortex-induced vibrations
(VIVs). Williamson & Govardhan (1997) illustrated that different modes of amplitude and
frequency responses could result in nearly doubling the drag force of the oscillating sphere
when compared with a stationary one. Obligado, Puy & Bourgoin (2013) investigated the
stability of a pendular disk facing an incoming flow. They reported significant stability
changes related to turbulent drag enhancement.

More recently, Mathai et al. (2019) studied the dynamics of heavy and buoyant
subaqueous pendulums with cylindrical bobs and large amplitudes, using different mass
ratios m∗ = ρs/ρF, where ρs and ρF are the density of pendulum and fluid, respectively.
They derived a mathematical model equation of motion and they further improved it by
including the wake flow caused by the back-swing of cylinders through the disturbed
flow field. Mathai et al. (2019) conducted a series of two-dimensional particle image
velocimetry (2D-PIV) experiments to analyse the flow field and to visualise the shedding
of vortices during the downward swing. They found that due to the finite length of the
cylinder, the added mass coefficient is significantly lower than the potential flow value of
ma = 1.

Worf et al. (2022) numerically re-investigated the subaqueous cylinder pendulum of
Mathai et al. (2019), using large-eddy simulations (LES). Their findings suggest that the
deviation in the added mass is caused by the predominance of a three-dimensional (3-D)
flow field featuring tip vortices during the first downward swing. Wake interactions occur
already before the cylinder swings back. Therefore, Worf et al. (2022) suggest starting
the wake correction proposed by Mathai et al. (2019) already before the first turning point.
Hence, even with the cylinder, which could be interpreted as a two-dimensional (2-D) flow,
only the 3-D analysis adequately explains all the predominant flow phenomena. Mongelli
& Battista (2020) performed numerical fluid–structure interaction (FSI) simulations
of pendulums with a spherical bob and different radii. In their 2-D simulations,
they considered a short slice of a cylinder to represent the sphere. Regarding the
vortex shedding topology of subaqueous pendulums with 3-D spherical bobs, Bolster,
Hershberger & Donnelly (2010) suggested that for large amplitudes, vortex streets are
induced by the shedding of vortices at the turning points that, in turn, lead to additional
drag forces over the spherical bob.

Raffel et al. (2018) and Schröder & Schanz (2023) reported the recent advances in
laser-optical flow measurement techniques that allow for more rigorous investigation of
vortex–structure interactions. For instance, Gold et al. (2023) used time-resolved 3-D
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particle tracking velocimetry (tr-3D-PTV) and a digital object tracking (DOT) method
to obtain a characteristic vortex shedding topology during the first downward pendulum
swing of oscillating spheres of various mass ratios m∗ ∈ [1.14, 14.95]. They observed that,
first, a toroidal vortex is formed in the sphere’s wake, which then splits up into two separate
vertical structures of equal size (Gold et al. 2023). They also showed that the time when
the first vortex is shed, and its initial propagation velocity, depend on m∗ (Gold et al.
2023). In essence, the DOT method combines the temporal and spatial information gained
from tr-3D-PTV recordings by treating vortex representations as distinct digital objects to
analyse vortex dynamics (Gold et al. 2023). Further, Gold et al. (2023) suggests a wake
correction model for heavy spherical pendulums underwater that already starts with the
shedding of the first vortex. Importantly, Young et al. (2022) stressed the important role
of the pressure dynamics in the particle–vortex interaction of (freely) falling spheres in
a fluid. Lastly, it should be noted that the existing Lagrangian particle tracking methods
are capable of obtaining the flow field pressure using the Navier–Stokes equations (van
Oudheusden 2013; Raffel et al. 2018).

This study aims at (i) extending our current understanding of the subaqueous pendulum
dynamics for large amplitudes and (ii) developing an improved model equation of motion
for the subaqueous pendulum for a wide range of solid-to-fluid mass ratios. To do so,
we carried out a series of experiments with heavy pendulums of spherical bobs, for
eight different solid-to-fluid mass ratios m∗ ∈ [1.14, 14.95], and for a range of Reynolds
number in the order of Re ∼ O(104). In these experiments, we improved the tr-3D-PTV
measurement system of Gold et al. (2023) to analyse the 3-D flow and pressure fields
around the subaqueous pendulum. Furthermore, we seek to improve the model equation
of motion for the subaqueous pendulum, which was previously reported in Mathai et al.
(2019), by examining the high-speed single-frame (SF) recordings of the pendulum. The
basic model equation underestimates the peak amplitude for all m∗ and is incapable of
accurately obtaining the period for the pendulum solid-to-fluid mass ratios of m∗ < 2.
Importantly, we show that considering both the vortex-induced drag (VID) and a history
force term, related to 3-D wake interactions, allows for a significant improvement of the
predictions of the model equation. Finally, our findings regarding the initiation of the wake
model application show that the most accurate model fit is achieved by using the temporal
information of first vortex shedding.

This paper is organised as follows. In § 2, we describe the experimental methods
used in this study. Subsequently, in § 3, the proposed model equation of motion of
subaqueous pendulums is presented, and its limitations to describe the dynamics of motion
are discussed. Finally, the findings of the study and future research perspectives are
summarised in § 4.

2. Experiments

2.1. Experimental system
The carrying system for the experimental set-up and measuring equipment is a table-like
construction made of aluminium rail profiles, grounded on damped leveling feet. The
experiments are performed in a 600-mm-long, 300-mm-wide and 300-mm-high glass tank,
placed over the volume optic (VO). In figure 1, we depict details of the experimental
set-up. As can be seen, several aluminium rails with glass clamps attach the pendulum
and its release device to the glass tank. The release device is an adaptive mechanical
gripper (NIRYO Robotics) over a guiding arm. A microcontroller (OpenCM9.04, Type C)
operates small movements of the gripper to avoid disturbing the flow field. A nylon string
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Figure 1. Schematics of the experimental set-up for the single frame recording (SF) and 3D-PTV
measurements. (a) Side view. (b) Plan view: SF set-up that is highlighted in red (CAM II), 3D-PTV system is
marked with the green rectangle (CAM I-CAM IV), VC is the video camera. (c) 3-D sketch of the tank set-up
with the camera alignment and the sphere that is coloured in yellow.

with a diameter of 0.05 mm, attached to a ball bearing, is used as the pendulum thread.
Spheres of different materials with the same diameter D of 12.71 mm, representing the
pendulum bob, are glued to the loose end of the string. Table 1 lists the materials and their
specific properties in the experiments. To avoid undesirable illumination peaks, and to
reduce the friction differences caused by their surface roughness, all spheres were painted
black.

Initially, the sphere is 2.2D below the water level, while at its lowest position, it is located
8.5D above the base of the tank. The distance to the sidewalls is >10D. The pendulum
length of L = 200 mm is measured from the bearing to the centre of the sphere and the
initial angular deflection is θ = 37.5◦. A self-designed adjustment tool is used to guarantee
the same initial position throughout the experiments (Gold et al. 2023) with pendulums of
various solid-to-fluid mass ratios.

After a 3-minute waiting interval to damp out disturbances in the fluid, the
buffer-recording mode is started. When the gripper releases the sphere, the trigger initiates
the saving of the past 200 images and the recording of further 3800 images. A high-speed
PTV system from LaVision is used. This system includes four high-speed cameras
(Imager Pro HS 4M CMOS) and a high-speed laser (ND:YLF-PIV Laser, E = 30 mJ,
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Abbreviation Material Density (g cm−3)

PA Polyamide 1.14
POM Delrin 1.41
PTFE Teflon 2.15
Al2O3 Soda-lime Glass 2.50
Si3N4 Silicon nitride 3.26
ZrO2 Zirconium oxide 6.00
SST Stainless steel 1.4034 7.75
WC Tungsten carbide 14.95

Table 1. Material properties of the pendulum spheres with a diameter of D = 12.71 mm.

λ = 527 nm) of the Litron LDY series. The cameras (CAM I–IV) have a resolution of
2016 × 2016 pixels. Each camera is equipped with a Scheimpflug adapter (SP in
figure 1b) which is empirically adjusted during the calibration procedure. The approximate
Scheimpflug angles are 2◦ for CAM I, 0◦ for CAM II, 2◦ for CAM III and 3◦ for CAM IV.
In addition, a video camera (VC = iPhone 12, HD 1080p, 1920 × 1080 pixels), orthogonal
to the Y–Z plane and operating at 240 frames per second, is used to determine the
maximum Z-displacement of the sphere. From VC we manually extracted the maximum
ratio between the Z-displacement in pixel and the spheres diameter in pixel of the same
image frame. The length scale of VC ranged from 7 to 11 pixel mm−1. The laser head
emits a laser beam with a diameter of 5 mm and is connected to a VO via an optical
guiding arm. The two-component VO expands the laser beam to the desired volume.
Further, three mirrors (MIR) reflect the laser light to regions with shadows cast by the
sphere. A mechanical aperture (MA) is placed above the VO to suppress unsharp edges.
The timing synchronisation is managed using a programmable timing unit (PTU; PTUX by
LaVision) operated by the Davis 10.1 by LaVision software. The trigger is a photoelectric
barrier (Sick WL8) that is connected to the trigger input of the PTU. The system consists
of a reflector (REF) and a photoelectric sensor (S/E) to transmit and receive the light
signal, both mounted on two guiding rails. In its initial position, the sphere pendulums
interrupt the signal of the photoelectric barrier. A LED (Veritas Constellation 120) is
used to illuminate the tank during the camera adjustment, calibration and single-frame
recordings (CAM II) without the laser. Lastly, to calibrate the camera, we employed a 3-D
calibration plate (204-15 by LaVision, 204 × 204 mm) with two different planes (level
separation of 3 mm) and dot-shaped markers (spacing of 15 mm).

2.1.1. Particle tracking velocimetry
To perform the tr-3D-PTV measurements, the water was seeded using the polyamide
tracer particles with a mean diameter of 50 μm and a density of 1.016 g cm−3. By
analysing the seeding particles’ Stokes numbers, Gold et al. (2023) ensured that the tracer
particles follow the streamlines with sufficient accuracy for the intended experiments.
However, the acceleration statistics of small-Stokes-number particles in turbulence are
strongly affected by the presence of gravity (Mathai et al. 2016). Therefore, we additionally
guarantee sufficiently small Stokes/Froude ratios |St/Fr| � 1 as suggested by Mathai
et al. (2016). The image size of the four cameras was h × w = 1500 × 2016 pixels, which
resulted in a length scale of ∼9 pixels mm−1. The 3-D calibration of the volume of
interest (VOI) with dimensions of x = 178 mm, y = 115 mm and z = 51 mm (x/D = 14,
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y/D = 9 and z/D = 4) was carried out prior to the experiments. To do so, the cameras
were readjusted until the calibration error for the planes of each camera is less than
0.25 pixel. In addition, we performed a correction of the calibration error using the
volume self-calibration approach by Wieneke (2008) to minimise triangulation errors.
The calibration images were recorded at a frequency of 500 Hz, with a seeding density
of about 0.03 particles per pixel (ppp). Based on these calibration images, the volume
self-calibration was carried out. The mean calibration error (0.03 pixel) and the maximum
calibration error (0.09 pixel) are well below the threshold given by Wieneke (2008)
(<0.1 pixel). During the pendulum experiments, even higher seeding densities, ranging
from 0.035 to 0.07 ppp, were considered. The recordings were performed with a camera
and laser frequency of 500 Hz and single pulse mode. The raw images were cropped to
the VOI and preprocessed by removing unsteady reflections caused by the sphere. For this
filter operation, the background was calculated for each image by applying an anisotropic
diffusion filter with 20 iterations and further subtracted from the original (Gold et al.
2023). Using these operations, we ensured that the images only show the illuminated
seeding particles. The sparse Lagrangian particle tracks were derived from the position
of the seeding particles along the four image frames of each time step and the novel
shake-the-box algorithm (STB) reported in Schanz, Gesemann & Schröder (2016). We
cancelled out the non-physical ghost particle tracks by relating the allowed velocity range
to the sphere’s maximum velocity.

2.1.2. Pressure from PTV
Recently, the PTV method is shown to be an effective non-intrusive approach to obtaining
accurate pressure fields (van Oudheusden 2013). This method is based on the relation
of the local pressure gradient to the flow acceleration and the viscous stress term in the
absence of body forces, which can be described through incompressible Navier–Stokes
equations, as follows (van Oudheusden 2013; Raffel et al. 2018):

∇p = −ρ

(
∂U
∂t

+ (U · ∇)U
)

+ μ∇2U, (2.1)

where p is the instantaneous pressure field, ρ is the fluid density, U is the instantaneous
velocity field and μ is dynamic viscosity of the fluid. For incompressible flows at relatively
high Reynolds numbers in this study, the pressure gradient is mainly dependent upon the
flow material acceleration, with little influence by the viscous stress (van Oudheusden
2008; Raffel et al. 2018). This justifies neglecting the viscous stress term for many
applications (van Oudheusden, Scarano & Casimiri 2006; van Oudheusden 2008; Raffel
et al. 2018). The derivation of the acceleration terms from the instantaneous velocity field
is based on Lagrangian approaches and the particle tracks obtained from the PTV method
(Liu & Katz 2006; Novara & Scarano 2013; Raffel et al. 2018). Notably, in comparison
with the PIV-based methods, performing a more straightforward PTV technique could
result in a more accurate derivation of material acceleration and, consequently, a higher
quality of the measured pressure field (van Oudheusden et al. 2007). Nonetheless, the
instantaneous velocities and accelerations are only available on the irregularly scattered
particle positions within the measurement volume and this may not always be an optimal
starting position (Raffel et al. 2018). Therefore, the interpolation of sparse PTV data
onto a Cartesian mesh deems essential to obtain high-quality measurements (Raffel et al.
2018; Schröder & Schanz 2023). Such interpolation approaches are the vortex-in-cell
methods (VIC+ and VIC#), which were previously reported in Schneiders & Scarano
(2016) and Jeon, Müller & Michaelis (2022). This interpolation approaches attempt to
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reconstruct a high-resolution velocity field using the velocity–vorticity formulation of the
incompressible Navier–Stokes equations and the particle tracks. The VIC+ and VIC#
algorithms take account of the temporal information in the form of the velocity material
derivative from the particle tracks and, therefore, are described as ‘pouring time into space’
(Schneiders & Scarano 2016; Jeon et al. 2022).

Herein, we carried out this grid interpolation by applying VIC# on a grid resolution of
16 voxels, i.e. 1.78 mm with 40 iterations per time step, a filter length of 3 time steps and
second-order polynomial track denoising for the velocity, acceleration and pressure fields.
The deviation between the PTV measurement data and the velocity and material derivative
was treated by a cost function for a single time step of the measurements (Schneiders &
Scarano 2016; Jeon et al. 2022). Other parameter combinations were tested and the VIC#
results were found to be insensitive to the grid size and the interpolation scheme. The
present parameters were selected based on computational time and memory requirements.
Time integration was not included in the optimisation because we only considered the
instantaneous velocity and the corresponding material derivative. The avoidance of time
integration allowed for keeping the memory requirements relatively low (Schneiders &
Scarano 2016). VIC# is shown to provide a rigorous way of parameter selection without
the case- or user-dependent tuning (Jeon et al. 2022). The pressure gradient is derived
from the velocity and acceleration fields by taking the divergence of the incompressible
Navier–Stokes equations to obtain the Poisson equation, as follows (van Gent et al. 2017;
Raffel et al. 2018):

∇2p = ∇ · (∇p) = −ρ∇ · (U · ∇U). (2.2)

Subsequently, the pressure field is obtained by spatial integration of the Poisson equation
using appropriate boundary conditions (van Gent et al. 2017; Raffel et al. 2018). Since the
incompressible flow is divergence-free (i.e. ∇ · U = 0), the time derivative and viscous
term are cancelled out of (2.2). Further, Bernoulli’s principle was used as the boundary
condition and the pressure at the water surface level (i.e. reference pressure) was set equal
to zero at all times. The grid interpolations and pressure calculations were done using
Davis software, version 10.1.2.

To compare the pressure field results from VIC#, we performed binning with 72-voxel
subvolume size, overlapping of 87.5 % (= 9-voxel or 1-mm grid), second-order polynomial
for the test case m∗ = 6.00. After binning we applied pressure from PTV with the
above-described settings. In comparison with VIC# (also 9-voxel grid), we get a similar
pressure characteristic related to the vortex shedding of the sphere. Nevertheless, as
reported by Michaelis & Wieneke (2019), binning gives us some non-physical pressure
fluctuations in the outer boundary regions of the VOI. An image, displaying the results of
VIC# and binning with subsequent pressure from PTV can be found in the supplementary
material is available at https://doi.org/10.1017/jfm.2023.1008.

2.1.3. Single-frame recording and DOT
To investigate the raw pendulum motion for different m∗, planar recording using only one
camera (CAM II) and without a laser was conducted. The camera was placed orthogonal
to the glass tank and therefore to the pendulum apparatus. A uniform background
illumination was provided by the LED. At the beginning of each experimental series,
the calibration plate was placed within the tank and aligned parallel with the image
plane. The size of the image frame was set to h × w = 1500 × 2016 pixels. Calibration
images were recorded and a 2-D mapping function was computed. By adjusting the
camera and repeating the procedure, we ensured that the calibration error was less than
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Figure 2. (a) Example of the DOT when scaled to real-world dimensions. The red squares display the
bounding boxes around the sphere and the release device. (b) The result of the circle fit for the example tracks
of m∗ = 3.36. Note that the radius of the circle equals the pendulum length, L = 200 mm. (c) Amplitude plot
for replicated experiments (exp1, exp2, exp3) with m∗ = 3.36. As can be seen, the experiment is reproducible
with sufficient exactness.

0.25 pixel. Once the system was successfully calibrated, the pendulum bob was placed at
its initial position and the recording was carried out, as described previously for the PTV
experiments. The recorded images were dewarped by applying the previously mentioned
2-D mapping function. The image sequences were then exported and further processed
by the DOT method proposed by Gold et al. (2023). Herein, each image represents a
single time step of the recording with a time increment of 1/500 s. Initially, a semantic
segmentation based on a threshold binarisation and a colour-negation were applied to each
image sequence. This helped us to obtain images of ‘zeros’ (white) and ‘ones’ (black)
based on the pixel intensity. As the next step, a bounding box was computed for connected
regions each with more than 3000 pixels. The bounding box method allows us to eliminate
all objects other than the gripper and the sphere. We note that before the release of the
pendulum, a single bounding box surrounds the sphere and the gripper.

As the sphere moves away from the gripper two bounding boxes are computed. Since
the centre point of the pendulum is not captured by the camera (figure 2a), we determined
the centre point by circular regression from the pendulum positions (xi, yi). We applied
the simplified circle fitting computation by Coope (1993). The procedure computes the
least-squares solution (α, β, γ ) of the system Az = b, where the rows of the matrix A are
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m∗ 1.14 1.41 2.15 2.50 3.26 6.00 7.75 14.95
Tmean (s) 4.75 2.43 1.48 1.32 1.21 1.04 1.01 0.95
θmax (rad) 0.048 0.067 0.107 0.133 0.156 0.269 0.330 0.440

Table 2. Mass ratio m∗, mean period during 8 seconds Tmean and maximum angular position at the end of the
first swing θmax.

of the form (xi, yi, 1) and the entries of the vector b are x2
i + y2

i . Then the centre and the
radius of the best-fit circle are

(xc, yc) = (α/2, β/2) and r =
√

γ + x2
c + y2

c, (2.3a,b)

respectively. The obtained radius r is a byproduct and it can be used with the known
pendulum length to validate the pixel-to-real-world scaling described in the following.
The obtained pendulum centre coordinates (xc, yc) are the relevant result,

Further, a scaling factor for relating pixels to real-world dimensions is calculated by
detecting the ruler markers on each image. In addition, the initial phase of no movement
was cut away by applying an angular-change threshold of 0.002 rad, that is, the time
step before this change in inclination appeared was set to zero. Figure 2 displays the
DOT based on the test case of m∗ = 3.26. The red squares in figure 2(a) highlight
the computed bounding boxes around the sphere and the release device. The accuracy of
the object tracking and the ensuing circle fit method is shown in figure 2(b). The resulting
radius matches the pendulum length of L = 200 mm. The accurate reproducibility of
the conducted experiments is illustrated in figure 2(c) by plotting the uncut angular
deflection θ vs time for three independent experiments with m∗ = 3.26. In table 2 the
mean oscillation period Tmean over 8 s, the maximum angular position θmax at the end of
the first swing from the DOT analyses is presented for the observed values of m∗.

3. Equation of motion

The model equation of motion for a cylindrical pendulum proposed by Mathai et al. (2019)
is adapted for a spherical pendulum. The rotational equation of motion describing the
oscillation of an underwater pendulum can be written as follows:

I
d2θ

dt2
= τnet, (3.1)

where I is the moment of inertia, θ is the angular position of the pendulum and τnet is the
net torque. The total moment of inertia of the oscillating system is mainly composed of
the pendulum’s moment of inertia Ip = mpL2 and the moment of inertia of the spherical
bob Is = 2/5mr2. Here, L is the length of the pendulum, r is the radius of the sphere
and m is the mass of the sphere, also representing the total pendulum mass mp. In these
experimental tests, the radius of the spheres is small compared with the pendulum length.
Therefore, the sphere’s moment of inertia is negligible. For a pendulum oscillating in a
fluid, an additional force term considering the acceleration of the surrounding flow field
must be included. This is done by an added mass ma, producing the effective mass of the
object meff = m + ma. For a sphere of radius r, the usual added mass is ma = 2/3ρFπ r3,
where ρF is the fluid density. With the assumption of meff acting as the total mass in one
point, the system can be modelled by Ip = meff L2. The net torque τnet is given by the sum
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Figure 3. The Re-dependent drag coefficient CD. Black diamond symbols (�) represent the selected CD values
and the grey line indicates a range from the existing literature (Hoerner 1965; Roos & Willmarth 1971;
Schlichting & Gersten 2017).

of the forces acting on the system times the leverage length. These forces are distinguished
into the gravitational force FG = ρsgV , the buoyancy force FB = ρFgV , the drag force
FD = 1/2ρFv2

s CDAp, as well as the friction force Ff = μf FN . Here, g is the gravitational
acceleration, ρs the density of the pendulum, ρF the fluid density, V the volume of the
sphere, CD the drag coefficient, vs the velocity of the pendulum, Ap the projected area of
the sphere, FN the normal force acting on the bob and μF the friction coefficient of the
bearing. According to Mathai et al. (2019), the non-dimensional equation of motion of a
viscously damped pendulum can be written as

m∗
eff

d2θ

dt̃2
= −k sin(θ) − c

∣∣∣∣dθ

dt̃

∣∣∣∣ dθ

dt̃
− h |cos θ | sgn

(
dθ

dt̃

)
. (3.2)

Here, time is non-dimensionalised by t̃ = t
√

g/L and mass by m∗ = ρs/ρF. Therefore,
m∗

eff = m∗ + m∗
a, with a theoretical added mass coefficient of m∗

a = 0.5 for a sphere. The
expression k = |m∗ − 1| describes the influence of gravity FG and buoyancy FB. Further,
the drag force FD is expressed by c = 1/2CDApL/V . Friction at the bearing Ff is included
by h = μf |m∗ − 1|R/L, where R is the radius of the rod. The influence of Re on CD is
considered by assigning one value of CD to each m∗, as presented previously. Figure 3
displays CD as a function of the Reynolds number Re from Hoerner (1965), Roos &
Willmarth (1971) and Schlichting & Gersten (2017). The present work considers values
of CD that are related to the mean Re of the sphere during the pendulum oscillation.
Therefore, the Reynolds numbers Re are averaged for the 8-second-long experiment, and
the corresponding value of CD is determined. Figure 3 shows the resulting values for the
different mass ratios m∗ as black triangles. This extends the work by Mathai et al. (2019),
where constant CD = 1.2 for all m∗ is used. Figure 4 provides a comparison between
the experiment and the basic model for m∗ = 1.14 (figure 4a) and m∗ = 7.75 (figure 4b).
For m∗ < 2 the model starts to over-predict the velocity and period beginning with the
shedding of the first vortex (Gold et al. 2023).

While our present experiments were done with heavy spheres, the model equation (3.2),
which is also valid for buoyant cylinders (Mathai et al. 2019), additionally allows us to
predict the behaviour of buoyant spheres with m∗ < 1. For example, a buoyant sphere with
m∗ = 0.59 would experience the same driving |FB − FG| as a heavy one with m∗ = 1.41.
Therefore, we compare the model results for both cases in figure 4(a). The buoyant sphere
(m∗ = 0.59) features a smaller peak angular displacement and quicker damping compared
with the heavy one (m∗ = 1.41). This can be explained by the lower inertia of the buoyant
sphere Mathai et al. (2019).
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Figure 4. Amplitude plot of experiment vs basic model equation of motion (3.2) for: (a) m∗ = 1.41 and
model-only for m∗ = 0.59; (b) m∗ = 7.75.

For all experimentally investigated cases of m∗, the maximum amplitude in the model is
about 1.25 times larger than that observed in the experiments. This overshooting might be
related to the drag enhancement by complex 3-D FSIs which are not captured in the basic
model. When using values for CD about 70 % higher as found by Bolster et al. (2010), the
model fit would be improved significantly. This information is useful since it quantifies
the magnitude of the missing terms related to fluid–solid coupling. Still, for higher mass
ratios m∗ > 2 the model period already matches the measurements quite well.

Hence, improvements of the model can be realised based on two phenomena: (i)
including the damping caused by the shedding of vortices which shows a strong influence
on lower mass ratios m∗ < 2 and therefore systems related to a lower structural damping;
(ii) inclusion of a term representing a more complex 3-D coupling of the fluid related to
wake interactions.

3.1. Vortex and pressure dynamics
The tr-3D-PTV measurements presented by Gold et al. (2023) revealed the presence of a
specific shedding topology of similar physical appearance for the full range of m∗. First,
a toroidal vortex ring is formed behind the sphere, which separates into two vortex rings
of roughly equal size. Soon later, one of the two vortexes detaches leaving the pendulum’s
circular path and propagating downwards.

A video showing the vortex separation and associated pressure dynamics for m∗ = 7.75
can be found in the supplementary material https://doi.org/10.1017/jfm.2023.1008. The
findings of Gold et al. (2023) suggest an interaction between the upper counter-clockwise
rotating part of the detached vortex ring and the sphere’s wake. In addition, figure 5
marks two instants during the vortex detachment for m∗ = 6.00. In this figure, the velocity
vectors are superimposed over the Q-criterion isosurfaces (of Q = 0.125). In addition,
the isosurfaces are coloured by the maximum-normalised fluid velocity magnitude (Uf ).
Given the velocity vs of the sphere and the maximum fluid velocity Umax, as seen in
figure 6(b), the vortex shedding process corresponds to a distinct fluid velocity peak.
During this shedding period, the velocity profile of the sphere features a clear knick and
the surrounding fluid velocity reaches its maximum. We argue that this behaviour can
be explained by examining the momentum transfer from the upper part of the separating
vortex ring towards the sphere’s wake during the vortex separation. As the sphere detaches
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Figure 5. FSI related to vortex shedding for m∗ = 6.00. Vectors denote fluid velocity magnitude Uf . Isosurface
is based on the maximum-normalised Q-criterion (of Q = 0.125) (Hunt, Wray & Moin 1988) and coloured by
Uf . (a) Instant during vortex separation. (b) Instant after separation and closure of second vortex.

from the top (clockwise-rotating) portion of the shed vortex, and during the closure
of the detached vortex, the fluid in the sphere’s wake gains an upward momentum
getting pushed up (Gold et al. 2023). The fluid velocity vectors in the upper part of
the detached vortex ring clearly point towards the sphere’s wake, causing a momentum
transfer figure 5(b). This produces a vortex-induced propulsion of the sphere, resulting in
a decreased deceleration. Subsequently, the shed vortex propagates down below the sphere,
in fact having higher speed than the sphere itself, and the counter-clockwise-rotating
upper part drags down the pendulum velocity vs. Recently, Young et al. (2022) discussed
the correlation between pressure dynamics and vortex shedding for spheres falling in
a fluid with the non-axisymmetric flow and Re = 2000. If the running distance of the
sphere was L/D > 5, unsteady vortex shedding in high-Reynolds-number flows generate
a pressure difference in the horizontal direction thrusting the sphere laterally (Young
et al. 2022). This has been previously observed by other researchers (see, e.g., Govardhan
& Williamson 2005; van Hout, Krakovich & Gottlieb 2010; Eshbal et al. 2019; Negri,
Mirauda & Malavasi 2020; Kovalev, Eshbal & van Hout 2022).

Our findings support the hypothesis reported in Young et al. (2022) for the pendulum
trajectory, as we observed a lateral movement of the sphere and vortex structure. More
specifically, Young et al. (2022) reported a dependence of the sphere’s lateral displacement
on m∗ and Re, while the trajectories of the shed vortex seem to be insensitive to Re. This
also counts for the pendulum and is a key finding of Gold et al. (2023), which found that
the propagation angle of the shed vortex is independent of m∗ and Re. In addition, herein,
we resolved the instantaneous pressure field which features distinct pressure signatures
related to the vortex shedding: see figure 6(c).

The deceleration of the sphere, after the vortex was shed, is further supported by
the pressure field distribution, in which the pressure gradient vectors point from the
low-pressure zone of the detached vortex towards the sphere’s wake. We argue that
the observed pressure gradient causes momentum transfer from the sphere towards to
the vortex structure leading to a deceleration of the sphere. The relatively high-pressure
zone in the sphere’s front can be attributed to the displacement and drag of the fluid
by the sphere towards the wake region. Figure 6(d) shows the average (pavg), maximum
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Figure 6. FSI related to vortex shedding and pressure dynamics for m∗ = 2.50. (a) Shedding of first vortex.
Isosurface is based on the maximum-normalised Q-criterion with value Q/Qmax = 10−4. The background
shows a middle slice of the corresponding z-vorticity magnitude |ωz|/ωzmax. (b) Pendulum velocity vs and
maximum field value of flow velocity Umax. The blue line maUmax represents a moving average of 10 data
points. The blueish band in the inset indicates the separation process during the shedding of the first vortex
ring. (c) Pressure field during vortex shedding for m∗ = 2.50. Vectors represent the maximum normalised
pressure gradient with a positive direction from low to high. Isosurfaces are based on maximum normalised
relative pressure distribution. Red indicates above-reference and blue indicates below-reference pressure zones.
(d) Average (pavg), maximum (pmax) and minimum (pmin) field value of the instantaneous pressure. The blueish
band indicates the shedding of the first vortex ring.

(pmax) and minimum (pmin) field value of the instantaneous pressure. A distinct pressure
maximum and even more pronounced minimum are present during the vortex shedding
phase. We choose m∗ = 2.50 as the reference case since this density ratio features optimal
damping related to FSI, as reported by Gold et al. (2023).

To investigate the vortex-pressure characteristic regarding different Re, we now focus
on the below-reference pressure field evolution for m∗ = 2.50, 7.75 and 14.95. To do so,
we normalise the instantaneous minimum field values of pressure pmin by conducting the
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Figure 7. Pressure characteristics during the first swing for m∗ = (2.50, 3.26, 6.00). Non-dimensional
pressure p∗ to m∗ ratio plotted against time t to period T ratio. Pressure p∗ is the field minimum value
normalised by the moving average minimum of 10 data points. For T the oscillation period of the first swing
was used. Circles, squares and triangles represent instantaneous values while lines represent a moving average
(mam∗ ) of 10 data points.

minimum moving average of the pressure field for all time steps. Doing so, we obtain
the non-dimensional pressure field (p∗

min). In figure 7 we plot the ratio p∗
min/m∗ against

the non-dimensional time t/T , where T is the period of oscillation of corresponding m∗.
As seen in this figure, distinct peaks of various m∗ coincide with the peaks of p∗

min/m∗.
The corresponding t/T of the peaks are closer for the denser materials (e.g. m∗ = 7.75
and 14.95) than the material with smaller density, i.e. m∗ = 2.50. This correlates with
the pendulum’s velocity, which increases slightly for m∗ ≥ 6.00. Accordingly, the time of
vortex separation decreases slightly, m∗ ≥ 6.00 (Gold et al. 2023). At the early stages of
motion, i.e. 0 < t/T < 0.17, pressure evolution of m∗ = 7.75 and m∗ = 14.95 agree quite
well. However, at later times (i.e. at t/T > 0.17), p∗

min/m∗ of m∗ = 7.75 decreases more
rapidly than that of m∗ = 14.95. Figure 7 further indicates the significant influence of first
vortex shedding on the dynamics of the sphere regardless of m∗. Plotting the time-averaged
vorticity distribution, Gold et al. (2023) found the maximum pressure on the path of the
downward shed vortex, and not in the sphere’s wake. This correlates with our analysis
of the pressure field highlighting the importance of the pressure field to describe vortex
dynamics and vortex–structure interactions.

3.2. Drag correction related to vortex shedding and pressure dynamics
Gold et al. (2023) also found the Strouhal number (Strouhal 1878) to be a very good
estimator to predict the onset of vortex shedding tvs for the spherical pendulum in a dense
fluid. Remarkably, for m∗ < 2 the model equation (3.2) starts to strongly deviate from
the experiments at the instant of vortex separation tvs, supporting the above-mentioned
vortex interaction mechanism. Hence, a VID correction is suggested. The present VID
correction is included in the former drag term and considers additional forces caused by
vortex shedding behind the sphere. Mathai et al. (2019) approximate the drag coefficient
in the presence of vortex shedding as

CDvs = CD(1 + A∗
z sin ωvst), (3.3)

where A∗
z = Az/D is the non-dimensional maximum out-of-plane amplitude (Govardhan

& Williamson 1997; Jauvtis, Govardhan & Williamson 2001; Govardhan & Williamson
2005; Negri et al. 2020) and ωvs = 2πSrvs/D is the vortex shedding frequency. Here Sr
is the Strouhal number, vs is the velocity of the sphere and D is the sphere diameter.
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m∗ 1.14 1.41 2.15 2.50 3.26 6.00 7.75 14.95
v∗

smax
19 23 30 35 37 40 41 42

A∗
z 0.90 0.70 0.50 0.40 0.35 0.13 0.10 0.08

Table 3. Mass ratio m∗, corresponding normalised velocities v∗
smax

and non-dimensional maximum
out-of-plane amplitudes A∗

z .

According to Jauvtis et al. (2001) and Govardhan & Williamson (2005) A∗
z depends on

a normalised velocity v∗
s = vs/( fND), where fN represents the natural frequency of the

tethered sphere in water including added mass (Govardhan & Williamson 2005; Eshbal
et al. 2019):

fN = 1
2π

√
g
L

(
m∗ − 1

m∗ + m∗
a

)
. (3.4)

Govardhan & Williamson (1997) introduced two different modes characterising the
VIVs of the tethered sphere facing the uniform flow. The two modes are defined as Mode
I and Mode II and occur in a velocity regime of v∗

s ∼ [5, 10] featuring a wide range
of normalised amplitudes A∗

z : [0.2, 0.8]. Negri et al. (2020) even observed cross-flow
oscillation amplitudes up to 1.1 within the first two modes for m∗ = 1.38 and v∗

s ∼ [5, 15].
In addition, (Jauvtis et al. 2001) found two more modes (Mode III and IV). Mode III
arises in a velocity regime v∗

s : [20, 40]. Our experiments fall well within the v∗
smax

regime
of Mode III and we observed A∗

z up to 0.9. We used the values of A∗
z from the recordings of

the video camera VC, which are consistent with the findings of Govardhan & Williamson
(1997), Jauvtis et al. (2001), Govardhan & Williamson (2005) and Negri et al. (2020).
Table 3 sums up the normalised maximum sphere velocities v∗

smax
and the corresponding

non-dimensionalised maximum out-of-plane amplitudes. The last Mode IV is related to
velocities far from those present in this work and is characterised by intermittent bursts of
vibration (Jauvtis et al. 2001). Young et al. (2022) described the out-of-plane displacement
of falling spheres as a consequence of the pressure difference associated with vortex
shedding, with small m∗ corresponding to higher A∗

z . This was also observed in the present
findings.

Considering the drag correction introduced in (3.3), the corresponding drag force term
is described as cvs = CDvsApL/(2V). Including this term into (3.2) leads to

m∗
eff

d2θ

dt̃2
= −k sin θ − cvs

∣∣∣∣dθ

dt̃

∣∣∣∣ dθ

dt̃
− h |cos θ | sgn

(
dθ

dt̃

)
,

where cvs = CD
ApL
2V

(1 + A∗
z sin ωvst).

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

This adaption of the model results in a significant improvement of the model equation for
m∗ < 2. The model corrections cause a decrease in velocity beginning at the first instant of
vortex shedding for m∗ = 1.14. In addition, the maximum amplitude during the first swing
is reduced as shown in figure 8(a). However, in the range of higher mass ratios m∗ > 2.0
the model does not provide any relevant improvement since the amount of damping caused
by vortex shedding is small. Figure 8(b) shows the model error for m∗ = 7.75. Therefore,
a further correction term related to the wake flow will be introduced.
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Figure 8. Amplitude plot of experiment vs model with and without the VID term for (a) m∗ = 1.41 and
(b) m∗ = 7.75.

3.3. Wake flow corrections
Mathai et al. (2019) present a 2D-PIV-based approach for the improvement of their model
by including a term related to the wake flow interaction. Their nonlinear drag model
was capable of well predicting the amplitude of motion for the first swing but deviated
significantly for subsequent swings. They concluded that the missing part of the model is
related to the cylinder entering a disturbed flow field when it first returns. During its swing,
the cylinder imparts momentum onto the flow field, which later impacts the bluff body
when coming to the turning point. The incoming flow velocity Uf causes an additional
flow resistance (drag) due to the higher relative flow velocity Urel = vs − Uf . From planar
2D-PIV measurements Mathai et al. (2019) determined the mean fluid velocity Uf at
several different angular positions θ upstream of the cylinder in small windows of size
2D × 2D through the middle of the cylinder length. Based on a relationship between
the normalised fluid velocity U∗

f at normalised angular positions θ∗, Mathai et al. (2019)
provided a modified drag term FDf = 1/2ρFAsCD(vs − Uf )

2 for heavy cylinders, where
Uf = U∗

f vs0. This leads to a new model equation of motion starting at the end of the first
swing:

m∗
eff

d2θ

dt̃2
= −k sin θ − cvs

∣∣∣∣dθrel

dt̃

∣∣∣∣ dθrel

dt̃
− h| cos θ |sgn

(
dθ

dt̃

)
, (3.6)

where dθrel/dt̃ = (vs − Uf )/
√

Lg denotes the relative angular velocity.
Nevertheless, the LES of a cylinder pendulum with m∗ = 4.98 by Worf et al. (2022)

suggest that the influence of the wake already starts before the end of the first swing. This is
in line with the present findings with spheres as described previously. The model including
the VID does not satisfyingly predict the amplitude and period during the first swing,
especially for m∗ > 2. Based on the vortex shedding topology for spherical pendulums,
Gold et al. (2023) suggest starting the model equation (3.6) at the instant tvs when the first
vortex sheds. Based on the vortex shedding topology for spherical pendulums presented by
Gold et al. (2023), however, the instant when the first vortex sheds tvs is suggested as the
beginning of the model. Further, the findings of Worf et al. (2022) revealed the significant
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inside Vf interacting with the sphere. (c) Decay of the normalised wake velocity U∗

f vs the normalised angular
position θ∗ for m∗ : [1.14, 14.95]. Note that positive values of θ∗ indicate movement of the sphere to the left
and negative to the right.

effect of 3-D flow such as tip vortices. We note that such vortical flow structures are not
resolved in the 2-D analysis (see, e.g., Mathai et al. (2019)).

In the present study, we analysed the velocity field of the region in front of the sphere Uf
for different angular positions and volumes Vf of size D3 (D × D × D). Figure 9(a) shows
the data assimilation process at the end of the first swing with angle θmax and the pendulum
velocity vs. Figure 9(b) further shows an extent of the selected fluid volume having a
x-distance dx of 1D between the centre of Vf and the sphere. To ensure that Vf is on the
pendulum’s path, the centre of Vf needed to be shifted in the y-direction by dy = dx tan θ .
Depending on the material and different maximum deflection, the number of fluid volumes
nVf (m

∗) studied in this work range from nVf = 3 for m∗ = 1.14 to nVf = 16 for m∗ = 14.95.
Analogously to Mathai et al. (2019), the fluid velocity Uf is normalised by the pendulum
velocity at angular position θ = 0, referred to as vs0. The corresponding angles θ are
normalised by the maximum angle at the end of the first swing θmax. Since θmax is negative,
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Figure 10. (a) Amplitude plot of experiment vs model with (WF + VID) and without (VID) the wake
correction for m∗ = 2.50. (b) Shell plot of experiment vs model with (WF + VID) and without (VID) the
wake correction for m∗ = 2.50. Note that ωs is the angular velocity and θ is the angle of displacement.

θ∗ is positive when right to equilibrium position with θ = 0 and negative if left to it. The
data presented in figure 9(c) show a good collapse for all values of m∗ and, therefore, a
polynomial fit for U∗

f (θ∗) is derived. The overall data structure is similar to that presented
by Mathai et al. (2019). The main difference is the much smaller magnitude of U∗

f for
the sphere compared with the cylinder. However, this is what one would expect since a
cylinder of the same diameter Dc = D and length Lc = D holds a larger area (y−z-plane)
facing the incoming fluid flow and is generally less streamlined.

When computing (3.6) and varying the initiation time of the wake model, the best fit is
found when starting at the instant of shedding of the first vortex presented by Gold et al.
(2023). Finally, the set of equations to describe the dynamics of the subaqueous spherical
pendulum can be expressed as

m∗
eff

d2θ

dt̃2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−k sin θ − cvs

∣∣∣∣dθ

dt̃

∣∣∣∣ dθ

dt̃
− h| cos θ |sgn

(
dθ

dt̃

)
, t < tvs,

−k sin θ − cvs

∣∣∣∣dθrel

dt̃

∣∣∣∣ dθrel

dt̃
− h| cos θ |sgn

(
dθ

dt̃

)
, t ≥ tvs.

(3.7)

This adaption led to a major improvement of the model predictions for both the amplitude
and period for m∗ ∈ [1.14, 14.95]. Figure 10(a) compares the model with the VID
correction against the model with both the VID correction and the wake (WF + VID)
correction. As can be seen, we also plot the measured results of m∗ = 2.50. As seen, the
comparisons mark an excellent fit between the WF + VID model and the experimental
data over the entire duration of the experiment. In addition, we plot in figure 10(b) the
angular displacement of the pendulums, θ , vs the angular velocity, ωs. Again, as can
be seen in this figure, it seems that the WF + VID model outperforms the VID model
significantly. In addition, this is clearly evident in figure 11(a) in which the absolute
amplitude errors in rad for both the WF + VID and the VID model are displayed. In
particular, as m∗ increases, the wake correction leads to higher model accuracy. Finally,
in figure 11(b) we plot the time history of the relative amplitude error. In contrast to the
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Figure 11. (a) Amplitude error of the VID and the WF + VID models in rad for m∗ = 1.41 and 14.95.
(b) The relative error in the peak amplitude before (VID) and after including the history force due to wake
flow (WF + VID). The dashed lines represent the mean relative errors for the two models (blue, VID = 38 %;
red, WF + VID = 7 %). The coloured bands indicate a range from the mean relative error ± and the standard
deviation σ for VID (blue) and WF + VID (red).

absolute error values, the maximum relative errors relate to the lighter materials. However,
one has to take into account that the pendulums with small m∗ can solely induce minor
deflection angles and, thus, absolute errors would be limited. As a result, the maximum
relative error is associated with the pendulum with m∗ = 1.14. This maximum error is
∼35 % which corresponds to an absolute amplitude error of 0.015 rad. By including the
wake correction in the VID model, the mean relative error decreased from 38 % to 7 %.
Hence, the proposed model (3.7) allows for, with a high level of confidence, predictions of
the 3-D FSIs related to the subaqueous pendulum for a wide range of m∗.

3.4. Perspective on flexible bodies, low Reynolds numbers and buoyant particles
The presented wake model is found to be applicable for the wide range of m∗ and A∗

z
investigated in the present study of heavy spheres, as well as the stiff cylinder pendulum
from Mathai et al. (2019) which allows for small out-of-plane movement. In comparison
with rigid cylinders, flexible cylinders can exhibit more complex structural response and
vortex-wake patterns (Ma et al. 2022). These can significantly alter the damping behaviour
due to a net energy transfer between fluid and the body. In addition, the added mass
effects can be both positive and negative (Ma et al. 2022; Modarres-Sadeghi 2022). The
fact that the self-excited flow field of the pendulum is unsteady, makes it even more
complex and until now there is only limited research on flexible cylinders in unsteady
flow (Ma et al. 2022). The cylinder can experience different flow velocities along its
axis and therefore can lock-in with the flow at different points, forcing the structure to
oscillate (Modarres-Sadeghi 2022). To adapt our model to flexible bodies, the introduction
of additional model terms capturing the bodies’ mechanical properties (e.g. the Cauchy
number) could be promising. For a flexible cylinder, further adaptations could be the
inclusion of the dimensionless damping parameter c∗ by Vandiver, Ma & Rao (2018),
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which places the global structural response on a spectrum of lightly to heavily damped
systems (Ma et al. 2022).

Regarding the limitations of this study for small Reynolds numbers, there are various
aspects to consider. As concluded by Dolfo et al. (2020), the domain of small Reynolds
numbers Re � 1 is easily observed with micrometre-sized particles, but the particle
size limits considerably the range of St numbers that can be investigated. However,
with macroscopic objects, it is difficult to obtain small Re, but a large range of St is
easily available (Dolfo et al. 2020). To examine the response time of the spheres, we
calculate the Stokes number, St = tsvs/Ls, where ts is the relaxation time of the bob mass
(= ρsD2/(18μ)), where μ is the dynamic viscosity of the fluid (10−3 Pas), vs is the bulk
velocity (i.e. maximum velocity of the pendulums) and Ls is a characteristic length of the
flow (i.e. the pendulum length L). This gives St ∈ [4, 400] with Re ∈ [103, 104] and St and
Re increase with increasing m∗. Alternatively, we can calculate St based on the pendulum
period St = ts/T which gives us St ∈ [2, 150]. As predicted by Stokes (1851), Dolfo et al.
(2020) found a quadratic dependence of the measured drag force with the sphere radius,
if the sphere radius is larger than the viscous penetration depth. In addition, the value
of the drag force was in very good agreement with Stokes’ result (Dolfo et al. 2020).
Regarding the cylindrical pendulum, the results for large aspect ratios (cylinder length to
diameter Lc/Dc = 52) are remarkably close to Stokes’ theory, whereas for Lc/Dc = 13.3
the finite-length cylinder theory fits best (Dolfo et al. 2021). In the domain of small St
and small Re, where CD = 24/Re, fluid damping (fluid viscosity) effects (Chen 1981) are
dominant to characterise the motion of the spherical pendulum. For moderate Reynolds
numbers, as studied by Bolster et al. (2010), to the range of Re of this study, effects such
as vortex shedding and Reynolds drag become significant.

For buoyant spheres, where the added mass ma contributes significantly to the particle’s
inertia, the model corrections regarding VID and wake interactions might require
adaptation. In addition, inertial heavy and light particles tend to behave differently in
turbulent flows (Toschi & Bodenschatz 2009). Heavy particles are expelled from vortical
regions, whereas light particles are drawn into them (Calzavarini et al. 2008a,b; Toschi &
Bodenschatz 2009; Vajedi et al. 2016). The latter is described as a consequence of pressure
gradient forces in the fluid field (Vajedi et al. 2016). This might influence the FSIs of
macroscopic buoyant spherical pendulums and points out the need for further research.

4. Conclusion

In this work, a detailed analysis concerning the FSI of heavy spherical pendulums
underwater is presented for a wide range of solid-to-fluid mass ratios m∗ of the pendulums.
The interactions of various pendulums with their surrounding flow fields are investigated
using the measured data from DOT, tr-3D-PTV and PTV. The experimental data obtained
from these tests marks a strong dependency of the amplitude and the oscillation frequency
of pendulums on the solid-to-fluid mass ratio m∗. Furthermore, the influence of VID
oscillation was clearly evident. In particular, for low values of m∗, vortex shedding and
the resulting oscillating drag significantly affect the pendulums’ decay. A short propulsion
of the sphere, followed by distinct deceleration was observed during vortex separation. We
analysed the pressure associated with the vortex shedding and its relevance for out-of-plane
displacement of the pendulums. In addition, analogies between pressure effects regarding
the present pendulum and the falling sphere experiments by Young et al. (2022) are
discussed.
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The findings revealed that disturbed flow fields around pendulums significantly
influence their oscillations. As a result, we revised the theory-based equation of motion
of underwater pendulums, which was proposed by Mathai et al. (2019), to include both
oscillating drag and the wake interaction for a more accurate prediction of the spherical
pendulum motion. Further, based on our experimental tests, we implemented a wake model
initiation, at the instant when the first vortex is shed, to address the open research question
raised by Worf et al. (2022).

The added mass value of the implemented model was equal to the potential flow theory
value of ma = 0.5. Literature-based drag coefficients as a function of Re (Hoerner 1965;
Roos & Willmarth 1971; Schlichting & Gersten 2017) were used in the model equation
to enhance its agreement with the experimental tests. We show that implementing both
drag and wake correction can clearly reduce errors in the frequency and amplitude of
oscillation and, thus, significantly improve the quality of the proposed model. As a result
of these improvements, the proposed model equation (3.7) is capable of predicting, with
an unprecedented level of confidence, the 3-D FSIs for a wide range of solid-to-fluid
mass ratios and Reynolds numbers. Overall, this highlights the importance of knowing
the underlying mechanisms such as added mass, nonlinear drag and vortex dynamics to
better understand the interaction between the fluid and structures.

While the present model is valid for rigid bluff bodies of circular cross section, an
extension for other geometries or flexible bodies (e.g. flexible cylinders) requires more
research on the complex FSI in unsteady flow. In particular, investigations on the complex
wake interactions are needed. This can be done in the style of the present 3D-PTV wake
analysis and it can help to find models for other bluff bodies, and/or for the validation
of numerical FSI/immersed boundary models for flexible bodies, oscillating in unsteady
flow.

We want to stress the importance of research on buoyant particles in turbulence,
potentially based on the buoyant spherical pendulum. Therefore, the methodological
framework of the present study and the deduced model approaches are potentially
beneficial, especially to investigate the role of pressure gradient forces. Further,
investigating the dynamics of heavy and buoyant pendulums in different viscous fluids
and for small Reynolds numbers could be a promising continuation of this topic.

In future research, we will employ the implemented model equation to describe the
impact properties in the study of particle–wall and particle–particle collisions with a
pendulum apparatus. Once again, the findings of the present paper highlight the key role of
pendulum investigation in addressing fundamental questions in fluid dynamics research.

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2023.1008.
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