
BULL. AUSTRAL. MATH. SOC.

VOL. 50 (1994) [197-204]
16D70,16D50

RINGS WITH QUASI-INJECTIVE IDEALS

GEORGEIVANOV

A short proof determining the structure of Q-rings with infinite identities is given.
The structure of pQ-rings is determined and it is shown that essentially all wQ-
rings with finite identities are pQ-iingp.

Rings with, an abundance of quasi-injective modules have been studied extensively
since the late 1960's. Of particular interest are those rings whose (left) ideals are quasi-
injective, the (left) Q-rings. It follows from the author's work in [3] that the study of
Q-rings reduces to the study of the following 3 disjoint classes.

I. local Q-rings;
II. indecomposable Q-rings with more than one idempotent; and

III. Q-rings with an infinite set of orthogonal idempotents.

A ring's identity is finite if it is a sum of primitive orthogonal idempotents, otherwise
it is infinite. It was further shown that the rings of class II have finite identities and
are only the simple Artinian rings and the rings

H(m,D,V) =

/D
V D

V

V\

D
V D)

with m rows, for m ^ 2

where D is a skew field and V is a null P-algebra, one dimensional on both sides. The
rings of class I are the local left self-injective left duo rings.

The structure of Q-rings of class III is determined in Section 1. It follows from
that result that the conjecture in [4] is false. This structure theorem was obtained
independently by Byrd [1] using different methods. The author's proof (which was
obtained in 1976) appears to pre-date Byrd's and is very much shorter and simpler.
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198 George Ivanov [2]

It is included in this note, as its methods may be of use in studying other rings with
infinite identities — usually an intractable task.

In Section 2 two generalisations of Q-rings are studied: pQ-rings — rings whose
proper left ideals are quasi-injective; and wQ-rings — rings whose left ideals not iso-
morphic to the ring itself are quasi-injective. These were first studied in [5] and [6],

respectively. It is shown that the only non-local pQ-rings which are not Q-rings are
f D 0 \

the rings I 1 where D is a skew field. It is also shown that the only toQ-rings

with finite identities which are not pQ-rings are those with a unique idempotent (the
identity).

Throughout this note all rings have identity and all ideals and modules are left
and unital. The letters e, / , with or without subscripts or superscripts, always denote
idempotents and E(M) denotes the injective hull of a module M. The methods used
were developed in [3] so most of the arguments will be given only in outline.

1. Q-RINGS OF CLASS III

Throughout this section R is a Q-ring of class III. The crucial result is the following
generalisation of Lemma 3 of [3]. It does not require the assumption that R is of class
III. This is essentially Theorem 5 of [1] which is the primary contribution of that paper.
Its proof is both long and difficult.

LEMMA 1 . 1 . Let {Mi \ i £ / } be a set of minimal ideals of R with injective hulls

(in R) Rei, i £ / , respectively. For only finitely many i is Mi an image of R(l — ej).

PROOF: Assume the converse, that / is infinite and that each Mj is an image
of .R(l — ei). By Lemma 3 of [3] only finitely many Mi are images of the Re, so it
may be assumed that none are. The M{ are mutually non-isomorphic since if two are
isomorphic, say Mk and Mi, then by Lemma 2 of [3] they would be injective and hence
images of Rek (= Mk), a contradiction to the last assumption. Hence if Ki is the
kernel of an epimorphism R —> Mi then the A",- are distinct maximal ideals. For an
arbitrary pair i, j £ I there is an idempotent /;- £ Ki with the property that fjMj ^ 0
and (1 — fj)Mi ^ 0. One of fj, (1 — fj) satisfies the equation scMj. ^ 0 for infinitely
many k. Denote this idempotent by f[ and the other by / " . If / " = fj then there is
an idempotent / i € Rfj C\ R(l - ej) with the property that / i M , - / 0 . If / " = 1 - fj

then there is an idempotent f\ £ Rf" C\ R{\ — ei) with the property that f\Mi ^ 0.
Note that in either case f\ and /{ are orthogonal and Rf\ has a non-zero image in
R(l — / i ) . Repeat the above procedure with M< and Mj replaced by ideals Mi which
are images of Rfi to obtain orthogonal idempotents fi, f^ G Rfi with the properties
that Rfi, has a non-zero image in R(l — fa) and f\Mi ^ 0 for infinitely many / . In
this fashion one can construct an infinite set {/n} of orthogonal idempotents with the
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[3] Rings with quasi-injective ideals 199

property that each Rfn has a non-zero image in R(l — f n ) . This contradicts Lemma
3 of [3] and proves the lemma. D

LEMMA 1 . 2 . Let {e^} be an in&nite set of orthogonal central idempotents of R

and let Re be an injective hull in R of ($Rei. Then Re = H eiRei.

PROOF: As each .Re,- is injective J\ R-ei is injective and as each e< is central,
@Rei is an essential submodule of J | Rei. Therefore Re is isomorphic to fj Rei. Since
(l-e)Re = 0, Re = eRe = End(Re) ^ End(n^ef). As the e< are orthogonal
and central End ( n R^i) — II eiRei and eiRei = Rei, thus Re = eRe = H eiRei
as required. U

To simplify the statement of the main result we need the following definition.

DEFINITION: Let C be a Q-ring with infinite identity and all of whose idempotents
are central, U a simple left C-module, D the endomorphism ring of U, acting on the
right, so that U is a (C, D)-bimodule, and let V be a null U-algebra, one dimensional
on both sides. Then we define H(m,C,U,D,V), for an integer TO ̂  3, to be the
following matrix ring.

H(m,C,U,D,V) =

\

D
V D

U C)

with 77i rows and columns.

For TO = 2 we define JI(TO,C,U,D, V) to be the ring H{2,C,U,D) = (° ° J . For

TO = 1, H(m,C,U,D,V) is simply the ring C.

We can now state and prove the main theorem.

THEOREM 1 .3 . A ring R is a Q-ring of class III with no summands of class H
if, and only if, it is isomorphic to a product of a Unite number of rings H(m, C, U, D, V)
each of which satisSes the following conditions:

(i) ell = 0 for every primitive idempotent e £ C,
(ii) C — Co x C\ where Co is an in&nite or empty product of local rings and

C\ has no primitive idempotents.

PROOF: Let M. = {Mi \ i G /} be the set of minimal ideals with the property
that (1 — e,-)M{ ^ 0, where Ra is the injective hull in R of Mj. By Lemma 1.1 the
set I is finite and so Rf is the injective hull in ii of © Mi, where / = Y\ e<. Hence

i€I i

by Lemma 2 of [3], fR(l - / ) = 0 and all idempotents in (1 - f)R(l - /) are central
in ( 1 - / ) / * ( ! - / ) .
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Let {fj | j G J } be the set of primitive idempotents in C = (1 — f)R(l — f).
Being central, these idempotents are mutually orthogonal. If Re is the injective hull of
®Rfi then, by Lemma 1.2, Re - f] Rfi - H fiRfi • It follows that C = Co x Ci where
Co = II / W t and Ci = ^(1 ~ / - e) = ( 1 - / - e)i?(l - / - e) has no primitive
idempotents.

Let A4o = {Mj \ i £ J} be the subset of M. consisting of those minimal ideals
which are images of C. We now show that C — ®Ci where the Cj are subrings with
the property that dMi = Mi and CjMi = 0, for i ^ j . If F = C/J(C) then since
each Mi is annihilated by a maximal, ideal each Mj is canonically an F-module. Let
Ki be the annihilator of Mi in F and let o £ j f 2 \ i f i . Then aM\ = M\ and aM2 = 0.
Since F is a regular ring (Theorem 5.1 of [2]) there is an idempotent e G F such that
Fe = Fa. Therefore M\ is an image of Fe and Mi is an image of .F(l — e). But e
is central in F so F is a direct sum of the subrings Fe and F(l — e). In this way we
can obtain a decomposition F = ®Fi where the Fi are subrings with the property that
FiMi — Mi and FiMj = 0 , i ^ j . As idempotents lift modulo J(C) (Theorem 5.6 of
[2]) the required decomposition of C follows.

Let Mjo G M.Q be the image of Cj and let Mj\ be the image of Rejo = E(Mjo);
let Mj2 be the image of Rej\ = E(Mji) and so on. This sequence is finite. As Mo
is finite it is sufficient to show that each M,-,- can appear only once. If not then one of
these minimal ideals is an image of two Reji or of Cj and an Reji. In both cases R
would have two isomorphic indecomposable injectives and thus would contain a simple
Artinian ring as a summand (Lemma 2 and Theorem 1 of [3]) — a contradiction to
the assumption that R has no summands of class II. If Rfj — Cj + Rejo + Reji + . . .
then Rfj is a two sided ideal and a ring summand of R. For by construction Rfj has
no images in i2(l — fj) and R(l — fj) can have no images in the Reji, by the above
argument, and no images in any d, i ^ j , since all idempotents in C are central. The
minimal ideals in A4 must be exhausted by the Rfj 8 as otherwise R would have a
summand of class II. Hence R is a direct product of the rings Rfj = Rj. From now
on we only consider these rings.

The matrix representation of Rj is obtained, in the usual manner, by considering
it as its own ring of endomorphisms. The proof that the injective hull of each Mji has
a unique submodule (namely Mji) is the same as the second paragraph of the proof of
Lemma 4 of [3]. The rest of the details of the matrix representation of Rj are similar
to the proof of Theorem 3 of [3]. We now show that condition (i) is satisfied.

Assume it is not. Then there is a primitive idempotent e G C such that some M;,
say M\ , is an image of Re. Let M2 be an Mj which is an image of Re\ = E(Mi), M3
an Mi which is an image of Res = E(Mi), ... and so on. As the number of the Mi is
finite this process terminates at step n, say. That is, Ren has no images outside itself.
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Therefore B = Re © Rei © • • • © Ren is a two-sided ideal of R. But B has at least two
idempotents and is indecomposable so it is a Q-ring of class II: a contradiction to the
hypothesis that R has no summands of class II.

The proof of the converse is similar to that for Theorem 3 of [3]. D

COROLLARY 1.4. A left Q-ring need not be right injective.

PROOF: The right ideal f 1 in the ring I 1 is not injective. D

The following Corollary is the correct statement of the Remark at the end of [3].

COROLLARY 1 .5 . A ring is a Q-ring if, and only if, it is a sum of (a finite num-
ber] of rings of class U and rings of type H(m, C,U,D,V) which satisfy the conditions
of Theorem 1.3.

PROOF: By Lemma 3 of [3] a Q-ring can have only a finite number of central
idempotents each of which generates a ring of class II. Hence a Q-ring is a finite sum
of rings of class II and the rings H(m, C, U, D,V). U

Note that products of rings of class I axe contained in the rings H(m, C, U, D, V)
as part of the subrings C.

COROLLARY 1.6 . A ring is a left and right Q-ring if, and only if, it is the sum
of rings of class II and a ring Q — Q\ x Qi all of whose idempotents are central and
which has the following properties. Q\ is a product of local left and right Q-rings and
Qz is a left and right Q-ring with no primitive idempotents.

PROOF: The rings of class II are left and right Q-rings and the rings H(m,C,U,D,V)
are not right injective if m ^ 2. So the only rings of the latter type that can appear
are the rings C. D

2. pQ-RINGS AND wQ-RINGS

The study of pQ-rings was initiated in [5]. The authors showed that prime pQ-
rings axe Q-rings and that commutative Noetherian pQ-rings are Q-rings except for
a, somewhat trivial, case. It was shown in [6] that nonsingular wQ-rings satisfying
certain finiteness conditions are either Q-rings or the matrix rings in Theorem 2.3.
Those finiteness conditions imply that the rings have finite identities. In this section we
determine the structures of arbitrary pQ-rings and of luQ-rings with finite identities.

There are trivial examples of pQ-rings and loQ-rings with unique idempotents
which are not Q-rings. The available techniques seem to be unable to shed much light
on the structure of these rings or, in fact, on local Q-rings. So the major remaining
open questions are to determine the structures of these rings and of wQ-rings with
infinite identities. Some progress is made on the last question in [7] where the authors
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obtain some results on arbitrary nonsingular wQ-rings, but even their structure remains
unknown.

We first study pQ-rmgs and show that, apart from some simple exceptions, they
are Q-rings.

LEMMA 2 . 1 . If R is a pQ-ring with a unique idempotent (the identity) then R
is a local ring and every element in its radical is a zero divisor.

PROOF: Let a € A be an element which is not a zero divisor. Then Ra = R so if
Ra ^ R then Ra, and hence R, is quasi-injective. This implies that R is a local ring
(Proposition 5.8 of [2]) and every element in its radical is a zero divisor (Theorem 5.1
of [2]): a contradiction. Hence every regular element of R is a unit. Therefore, R is a
local ring and its radical consists of zero divisors. D

LEMMA 2 . 2 . If R is a pQ-ring with at least three orthogonal idempotents then
it is a Q-ring.

PROOF: Let e\, e^, es be three orthogonal idempotents whose sum is the identity
of R and let £ be a left ideal of R. To show that R is self-injective it is sufficient to
show that any homomorphism 0 from L to R can be extended to an endomorphism of
R. If £ is a direct summand of R then that can be done trivially. If L is not a direct
summand then it has a complement K and L @ K is essential and proper in R. Clearly
0 can be extended to a homomorphism from L@ K to R. Hence we can assume that
L is essential in R. As L is quasi-injective it is invariant under endomorphisms of its
injective hull and so it is closed under right multiplication by elements of R. If Re, D L
is denoted by Li then L — L\ ® L2 © £3 and

'011 012
021 022

k 031 032

where <f>ij : Li —» Rej is the appropriate restriction of 0. Clearly <f> can be extended
to be an endomorphism of R provided each 0,-y can be extended to a homomorphism
Rei —> Rej. This can clearly be done as Rei © Rej is quasi-injective, being a proper
ideal. Hence R is injective and therefore is a Q-ring. U

THEOREM 2 . 3 . A non-local ring is a pQ-ring if, and only if, it is either a Q-ring

or the ring I 1, for some skew £eld D.

PROOF: By Lemmas 2.1 and 2.2 it may be assumed that R has exactly two or-
thogonal primitive idempotents ei and ei. MR decomposes then it is a product of two
Q-rings and so is itself a Q-ring. Hence it may be assumed that R is indecomposable.
If Rei = Re2 then, since Rei is quasi-injective, R is quasi-injective and hence is a ta-
ring. So it will be assumed that Rei j£ Re^. Since R is indecomposable one of eiRe^ ,
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e2Re\ is non-zero, say e2Rei ^ 0. If L is an essential proper submodule of Rei then
L@Re2 is quasi-injective, hence invariant under all endomorphisms of E(L ffi Re2) D R

[2, Proposition 3.1] and thus L ffi Re2 is a right ideal of R. The proof of Lemma 2 of
[3] now shows that e2Rex C 5(i?ei) ^ 0.

In fact, S(Rei) is simple and essential in Re\. To prove this it is sufficient to show
that an indecomposable quasi-injective module M must be uniform. If it is not then
the map which kills the complement of a non-essential submodule K of M and is the
identity on K can be extended to an endomorphism of M which, by Theorem 5.1 and
Proposition 5.8 of [2], must be an automorphism— a contradiction. Therefore S(Rei)
is simple and essential in Re\.

By the second paragraph of the proof of Lemma 4 of [3], this minimal submodule
is the unique proper submodule of Re\ and is the set e2Re\. As Rei is quasi-injective
e2Rei is a one dimensional right vector space over eiRei and a simple left e2-Re2-
module. If eiRe2 = 0 then by the proof of Lemma 4 of [3], e2Re2 = Re2 is a skew

field and R = ( J where D = e2Re2 = e1Rei. If exRe2 ^ 0 then, as for

Rei, it follows that Re2 has a unique submodule which is the set e\ Re2 and is a one
dimensional right vector space over the skew field e2Re2. It can now be shown, as in

[3], that R == I J where D = eiRei = e2Re2 is a skew field and V is a null

ZJ-algebra, one dimensional on both sides. Thus R is a Q-ring, by Theorem 3 of [3].

This proves the theorem. Q

We now turn to wjQ-rings.

If a toQ-ring decomposes (as a ring) then it is a Q-ring as each summand is quasi-

injective and thus a Q-ring. Therefore it is only necessary to consider indecomposable

wQ-rings. Since principal ideal domains are trivially wQ-iings (that is, by default) the

main interest is in wQ-rings with more than one idempotent.

THEOREM 2 . 4 . If R is a wQ-ring with Unite identity and more than one idem-

potent then R is a pQ-ring.

PROOF: Let 1 — ei + • • • + en, n ^ 2, be a decomposition of the identity of R
into orthogonal primitive idempotents. We want to show that every proper left ideal is
quasi-injective. Clearly each Rei is quasi-injective so if all the Ret are isomorphic R is
itself quasi-injective and is therefore a Q-ring. So we may assume that all the Rei are
not mutually isomorphic. Assume that eiRe2 ^ 0 and let K — Ra for some non-zero
a £ ei#e2. If K®Rex = R then n = 2 and K = Re2 . It follows that Re2 = Rd since
by the projectivity of Re2, the isomorphism from Re2 to K can be factored through
Rei —* K. But this case has been excluded by assumption. Therefore K ffi Re\ is
quasi-injective. By Proposition 3.1 of [2], K ffi Rei is invariant under endomorphisms
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of its injective hull and so is invariant under endomorphisms of Re\ @ Re2. That
is, K © Rei is closed under right multiplication by elements of (ei + e2)R(ei + e2).
Therefore e\Re2 = e\Re2 Q K. As Re2 is indecomposable and quasi-injective it is
uniform, so K is simple. Consequently, if i ^ j ^ k then eiRej.ejRek = 0 and
eiRej.ejRei =0.

Let <f> : R —> L be an isomorphism to a left ideal L oi R. Then for each i,
ei<j> = o,ej + 53 ^ijei f°r some â  G ejitej, b^ e e</Ee;-. Since each bij generates

a simple or zero left ideal, a,- ^ 0. As etRet is a local ring, Oj must be a unit in
eiRei [2, Proposition 5.8]. If a^1 is the inverse of aj in et-i2ej, then <7i = 6na^"1e,-^ =
6i»ej -{- X) bua^hjej — 6i,e,-, since inor1^^ g eii2ej.ei.Re,-, i 7̂  j . Therefore

5i — • • • — 9n = «i ei € L. This means that itea C L. Similarly it can be shown that
each Rei C L and therefore R = L. That shows that R has no proper left ideals
isomorphic to itself and therefore all proper left ideals are quasi-injective. That is, R
is a pQ-iing. U
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