Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies

Dedicated to Professor Akio Kawauchi for his 60th birthday

Atsushi Ishii and Masahide Iwakiri

Abstract

We introduce a flow of a spatial graph and see how invariants for spatial graphs and handle-body-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle cocycle invariants for spatial graphs and handlebody-links.

1 Introduction

In this paper, we introduce flowed spatial graphs and define quandle cocycle invariants for spatial graphs and handlebody-links. Carter, Jelsovsky, Kamada, Langford, and Saito [1] defined quandle cocycle invariants for links and surface-links. It was proved that a quandle cocycle invariant detects non-invertibility for surface-links in [1] and chirality for links in [2, 12]. We remark that the fundamental quandle cannot detect them, although the fundamental quandle is stronger than the fundamental group. A quandle cocycle invariant is useful in determining the triple point number, the triple point cancelling number, the w-index, and so on (cf. 4, 5, 13]).

A spatial graph is a finite graph embedded in the 3 -sphere. An invariant for links is that for spatial graphs, since equivalent spatial graphs have the equivalent constituent links. Our invariant distinguishes spatial graphs whose constituent links are equivalent. The Yamada polynomial [16] is an invariant for spatial graphs without vertices of degree greater than 3, where we remark that the Yamada polynomial of a general spatial graph is an invariant as a flat vertex graph. Our invariant is defined for all spatial graphs and distinguishes spatial graphs whose Yamada polynomials coincide.

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere. We can use an invariant for 3-manifolds to distinguish handlebody-links. For example, the fundamental group of the exterior of a handlebody-link is an invariant. However, these invariants do not work for handlebody-links with homeomorphic exteriors, which implies that we cannot detect the chirality of a handlebody-link by using these invariants. In [3], the first author defined a weight sum invariant for handlebody-links by using Mochizuki's 3-cocycle and showed that the invariant can detect the chirality. The quandle cocycle invariant defined in this paper is a generalization of this invariant. We show that the quandle cocycle invariant is non-trivial

[^0]for the handlebody-link represented by Kinoshita's θ-curve, where we remark that the previous weight sum invariant is trivial for the handlebody-link.

There are two steps needed to define a quandle cocycle invariant. First we have to define a quandle coloring. It is not easy to define quandle colorings for spatial graphs and handlebody-links, since a suitable coloring condition for a vertex is unknown. In [3], the first author introduced an enhanced constituent link and defined a kei coloring, where a kei is a particular type of quandle. In this paper, we introduce a flow, which is a generalization of an enhanced constituent link. In the second step, we define a suitable quandle (co)homology and a quandle cocycle invariant. We define a new subcomplex of the rack chain complex. The quotient complex gives a (co)homology for spatial graphs and handlebody-links. We also show that our quandle cocycle invariant does not depend on the choice of the representative element of a cohomology class.

This paper consists of nine sections. In Section 2, we introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs. In Section 3 we recall the definitions of a quandle X and an X-set and define the type of a quandle. In Section 4 we define a quandle coloring for flowed spatial graphs. In Section [5] we give some examples for the quandle coloring. In Section6, we introduce a quandle (co)homology for spatial graphs and handlebody-links. In Section 7 we define a quandle cocycle invariant for spatial graphs and handlebody-links. In Section 8, we evaluate a quandle cocycle invariant for Kinoshita's θ-curve. In Section 9 , we prove the theorems that were introduced in Section7

2 A Flow of a Spatial Graph

We introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs.

Let G be a finite graph without vertices of degree 0 . A spatial graph $L=f(G)$ is a graph G embedded in the 3 -sphere S^{3}. Two spatial graphs are equivalent if one can be transformed into the other by an isotopy of S^{3}.

Let $\mathcal{E}(L)$ be the set of edges of L. Let \mathcal{O}_{e} be the set of two orientations of an edge $e \in \mathcal{E}(L)$. Let A be an abelian group. A map $\varphi_{e}: \mathcal{O}_{e} \rightarrow A$ is an A-flow of an edge e if $\varphi_{e}(-o)=-\varphi_{e}(o)$, where $-o$ is the inverse of $o \in \mathcal{O}_{e}$. An A-flow φ_{e} is represented by a pair $(o, s) \in \mathcal{O}_{e} \times A$ up to the equivalence relation $(o, s) \sim(-o,-s)$; see Figure 2.1, where an element of A is represented with an underline. We fix an orientation o_{e} for each edge e of L. A collection $\varphi=\left\{\varphi_{e}\right\}_{e \in \mathcal{E}(L)}$ is an A-flow of L if we have

$$
\sum_{e \in \mathcal{E}_{\text {in }}(v)} \varphi_{e}\left(o_{e}\right)=\sum_{e \in \mathcal{E}_{\text {out }}(v)} \varphi_{e}\left(o_{e}\right)
$$

at any vertex v, where

$$
\begin{aligned}
\mathcal{E}_{\text {in }}(v) & :=\left\{e \mid e \text { is an edge incident to } v \text { such that } o_{e} \text { points to } v\right\}, \\
\mathcal{E}_{\text {out }}(v) & :=\left\{e \mid e \text { is an edge incident to } v \text { such that }-o_{e} \text { points to } v\right\} .
\end{aligned}
$$

Figure 2.1

Figure 2.2

We remark that the definition of an A-flow of L does not depend on the choice of the orientations o_{e}. We denote by $\operatorname{Flow}(L ; A)$ the set of A-flows of L.

An A-flowed spatial graph (L, φ) is a pair of a spatial graph L and $\varphi \in \operatorname{Flow}(L ; A)$. Two A-flowed spatial graphs are equivalent if one can be transformed into the other by an ambient isotopy preserving an A-flow. We note that the two \mathbb{Z}-flowed spatial graphs depicted in Figure 2.2 are not equivalent.

By taking suitable subsets of $\operatorname{Flow}(L ; A)$, we obtain many spatial graph invariants from an A-flowed spatial graph invariant. In the following proposition, we give some specific constructions of spatial graph invariants.
Proposition 2.1 Let Ψ be an invariant for A-flowed spatial graphs.

- Let L be a spatial graph. Let B be a subset of A such that $B=-B$. We set

$$
\operatorname{Flow}(L ; B):=\left\{\varphi \in \operatorname{Flow}(L ; A) \mid \varphi_{e}\left(\mathcal{O}_{e}\right) \subset B \text { for any edge e of } L\right\} .
$$

Then the multiset $\{\Psi(L, \varphi) \mid \varphi \in \operatorname{Flow}(L ; B)\}$ is an invariant of L.

- Let (L, O) be an oriented spatial graph, where O is an assignment of an orientation $O(e) \in \mathcal{O}_{e}$ to each edge e of L. Let B be a subset of A. We set

$$
\operatorname{Flow}(L, O ; B):=\left\{\varphi \in \operatorname{Flow}(L ; A) \mid \varphi_{e}(O(e)) \in B \text { for any edge e of } L\right\}
$$

Then the multiset $\{\Psi(L, \varphi) \mid \varphi \in \operatorname{Flow}(L, O ; B)\}$ is an invariant of (L, O).
Then, for an A-flowed spatial graph invariant Ψ, we define the spatial graph invariant Ψ^{Σ} by

$$
\Psi^{\Sigma}(L)=\{\Psi(L, \varphi) \mid \varphi \in \operatorname{Flow}(L ; A)\}
$$

where we note that Σ is just a symbol. Proposition 2.1 follows immediately from the fact that $\operatorname{Flow}(L ; B)$ and $\operatorname{Flow}(L, O ; B)$ do not depend on the embedding f for $L=f(G)$.

We state one lemma for constructions of A-flowed spatial graph invariants, since they play a critical role in Proposition 2.1. Two spatial graph diagrams represent an equivalent spatial graph if and only if they are related by a finite sequence of the R1-R5 moves depicted in Figure 2.3 ($8,16,17]$). Then we have the following lemma.

Figure 2.3

a contraction move

$\left(s_{1}+\cdots+s_{n}=u=-t_{1}-\cdots-t_{m}\right)$ an A-flowed contraction move

Figure 2.4

Lemma 2.2 Two A-flowed spatial graph diagrams represent an equivalent A-flowed spatial graph if and only if they are related by a finite sequence of the A-flowed R1-R5 moves, where the A-flowed R1-R5 moves are the R1-R5 moves preserving A-flows.

A handlebody-knot is a handlebody embedded in S^{3}. A handlebody-link is a disjoint union of handlebody-knots. Two handlebody-links are equivalent if one can be transformed into the other by an isotopy of S^{3}. When a handlebody-link H is a regular neighborhood of a spatial graph L, we say that H is represented by L. We note that two spatial graphs representing an equivalent handlebody-link are said to be neighborhood equivalent ($(\boxed{14})$).

An (A-flowed) contraction move is a local change of an (A-flowed) spatial graph as described in Figure 2.4 where the replacement is applied in a disk embedded in S^{3}. An (A-flowed) R6 move is the diagrammatic move corresponding to the (A-flowed) contraction move. Then we have the following theorem.

Theorem 2.3 ([3]) Two spatial graphs represent an equivalent handlebody-link if and only if they are related by a finite sequence of contraction moves and ambient isotopies.

By Proposition 2.1 and Theorem 2.3, we have the following proposition.
Proposition 2.4 Let Ψ be an invariant for A-flowed spatial graphs. If Ψ is invariant under A-flowed contraction moves, then the multiset $\Psi^{\Sigma}(L)$ is an invariant of a handlebody-link represented by a spatial graph L.

We state one lemma for constructions of A-flowed spatial graph invariants that are invariant under A-flowed contraction moves. By Lemma2.2, we have the following lemma, since we may apply an A-flowed contraction move in a small disk by an isotopy of S^{3}.

an IH-move

an A-flowed IH-move

Figure 2.5

Lemma 2.5 Let D_{1} and D_{2} be diagrams of A-flowed spatial graphs $\left(L_{1}, \varphi_{1}\right)$ and $\left(L_{2}, \varphi_{2}\right)$, respectively. The following statements are equivalent:

- Two A-flowed spatial graphs $\left(L_{1}, \varphi_{1}\right)$ and $\left(L_{2}, \varphi_{2}\right)$ are related by a finite sequence of A-flowed contraction moves and ambient isotopies preserving A-flows.
- Two diagrams D_{1} and D_{2} are related by a finite sequence of the A-flowed R1-R6 moves.

Remark 2.6 We do not need all spatial graphs to represent all handlebody-links. Spatial trivalent graphs are sufficient to represent all handlebody-links, where a spatial trivalent graph may contain circle components. An (A-flowed) IH-move is a local change of an (A-flowed) spatial trivalent graph as described in Figure 2.5, where the replacement is applied in a disk embedded in S^{3}. Then, in Theorem 2.3, Proposition 2.4 and Lemma 2.5 we can replace spatial graphs and contraction moves with spatial trivalent graphs and IH-moves, respectively (see [3]).

3 A Quandle

We recall the definitions of a quandle X and an X-set, and define the type of a quandle.

A quandle ([6, 9]) is a non-empty set X with a binary operation $*: X \times X \rightarrow X$ satisfying the following axioms:
Q_{1}. For any $a \in X, a * a=a$;
Q_{2}. For any $a \in X$, the map $S_{a}: X \rightarrow X$ defined by $S_{a}(x)=x * a$ is a bijection;
Q_{3}. For any $a, b, c \in X,(a * b) * c=(a * c) *(b * c)$.
We present some examples of quandles. A trivial quandle $(X, *)$ is a non-empty set X with the binary operation defined by $a * b=a$. The dihedral quandle of order p, denoted by $\left(R_{p}, *\right)$, is the quandle consisting of the set $\mathbb{Z}_{p}(:=\mathbb{Z} / p \mathbb{Z})$ with the binary operation defined by $a * b=2 b-a$. The tetrahedral quandle, denoted by $\left(S_{4}, *\right)$, is the quandle consisting of the set $\mathbb{Z}_{2}\left[t, t^{-1}\right] /\left(t^{2}+t+1\right)$ with the binary operation defined by $a * b=t a+(1-t) b$. In general, an Alexander quandle $(M, *)$ is a Λ-module M with the binary operation defined by $a * b=t a+(1-t) b$, where $\Lambda:=\mathbb{Z}\left[t, t^{-1}\right]$. Then the tetrahedral quandle is an Alexander quandle. We also remark that the dihedral quandle $\left(R_{p}, *\right)$ is isomorphic to the Alexander quandle $\left(\mathbb{Z}_{p}\left[t, t^{-1}\right] /(t+1), *\right)$ as
quandles. An n-fold conjugation quandle $(G, *)$ is a group G with the binary operation defined by $a * b=b^{-n} a b^{n}$.

The associated group of a quandle X, denoted by $\operatorname{As}(X)$, is defined by

$$
\operatorname{As}(X)=\left\langle x \in X \mid x * y=y^{-1} x y(x, y \in X)\right\rangle
$$

An X-set is a set Y equipped with an action of the associated group $\operatorname{As}(X)$ from the right. We denote by $y \tilde{*} g$ the image of an element $y \in Y$ by the action $g \in \operatorname{As}(X)$. Then we have the following:
$\widetilde{\mathrm{Q}}_{2}$. For any $a \in X$, the map $\widetilde{S}_{a}: Y \rightarrow Y$ defined by $\widetilde{S}_{a}(y)=y \tilde{*} a$ is a bijection;
$\widetilde{\mathrm{Q}}_{3}$. For any $y \in Y, a, b \in X,(y \tilde{*} a) \tilde{*} b=(y \tilde{*} b) \tilde{*}(a * b)$.
We show examples for X-sets. We set $Y:=X$ and $y \tilde{*} a:=y * a$. Then $(Y, \tilde{*})$ is an X-set. We set $Y:=\{y\}$ and $y \tilde{*} a:=y$. Then $(Y, \tilde{*})$ is an X-set.

For $i \in \mathbb{Z}$, we define $a *^{i} b:=S_{b}^{i}(a), y \tilde{*}^{i} a:=\widetilde{S}_{a}^{i}(y)$. The type of a quandle X is defined by

$$
\text { type } X:=\min \left\{i \in \mathbb{Z}_{>0} \mid a *^{i} b=a \text { for any } a, b \in X\right\}
$$

We set type $X:=\infty$ if we do not have such a positive integer i. If X is finite, then type $X<\infty$. A trivial quandle is of type 1 . The dihedral quandle $\left(R_{p}, *\right)$ is of type 2. A quandle of type 2 is called kei $([15])$. The tetrahedral quandle $\left(S_{4}, *\right)$ is of type 3. We note that a quandle of type n is an n-quandle ([7]). In this paper, we set $\mathbb{Z}_{\infty}:=\mathbb{Z}$. Then $a *^{i} b$ is well defined for $i \in \mathbb{Z}_{\text {type } x}$. We define

$$
\text { type } X_{Y}:=\min \left\{i \in \mathbb{Z}_{>0} \mid a *^{i} b=a, y \tilde{*}^{i} a=y \text { for any } a, b \in X, y \in Y\right\} .
$$

We set type $X_{Y}:=\infty$ if we do not have such a positive integer i. Then $a *^{i} b$ and $y \tilde{*}^{i} a$ are well-defined for $i \in \mathbb{Z}_{\text {type } X_{Y}}$.

4 A Quandle Coloring for Flowed Spatial Graphs

We define a quandle coloring for flowed spatial graphs. The number of quandle colorings is an invariant for flowed spatial graphs. We also define a coloring by using a quandle X and an X-set, which is used to define a quandle cocycle invariant in Section 7

Let X be a quandle. Let D be a diagram of a $\mathbb{Z}_{\text {type } X}$-flowed spatial graph (L, φ). We denote by $\mathcal{A}(D)$ the set of arcs of D, where an arc is a piece of a curve such that its endpoint is an undercrossing or a vertex.

We choose an orientation $O(e) \in \mathcal{O}_{e}$ for each edge $e \in \mathcal{E}(L)$. Then (L, O, φ) is a $\mathbb{Z}_{\text {type } X}$-flowed oriented spatial graph. For an arc α that originates from an edge e, we put $O(\alpha):=O(e), \varphi_{\alpha}:=\varphi_{e}$. To represent an orientation $O(e)$ in D, we may use the co-orientation obtained by rotating the orientation $O(e) \pi / 2$ counterclockwise. We denote it by the same symbol $O(\alpha)$. We denote by χ_{0} the over-arc at a crossing χ of D. We denote by χ_{1}, χ_{2} the under-arcs at χ such that the co-orientation $O\left(\chi_{0}\right)$ points to χ_{2}.

An X-coloring of D is a map $C: \mathcal{A}(D) \rightarrow X$ satisfying the following conditions (Figure 4.1):

Figure 4.1
C_{1}. For a crossing χ, we have $C\left(\chi_{1}\right) *{ }^{\varphi_{x_{0}}}\left(O\left(\chi_{0}\right)\right) C\left(\chi_{0}\right)=C\left(\chi_{2}\right)$.
C_{2}. For a vertex ω, we have $C\left(\omega_{1}\right)=\cdots=C\left(\omega_{d}\right)$, where $\omega_{1}, \ldots, \omega_{d}$ are the arcs incident to ω.

An X-coloring C does not depend on the choice of the orientations $O(e)$, since the equality in C_{1} is equivalent to the equality

$$
C\left(\chi_{2}\right) *^{\varphi_{\chi_{0}}\left(-O\left(\chi_{0}\right)\right)} C\left(\chi_{0}\right)=C\left(\chi_{1}\right)
$$

We denote by $\operatorname{Col}_{X}(D)$ the set of X-colorings of D. For two diagrams D and E that locally differ, we denote by $\mathcal{A}(D, E)$ the set of arcs that D and E share.

Theorem 4.1 Let X be a quandle. Let D be a diagram of a $\mathbb{Z}_{\text {type } x}$-flowed spatial graph (L, φ). Let E be a diagram obtained by applying one of the $\mathbb{Z}_{\text {type } X}$-flowed R1-R6 moves to D once. For $C \in \operatorname{Col}_{X}(D)$, there is a unique X-coloring $C_{D, E} \in \operatorname{Col}_{X}(E)$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$.

By Lemma 2.5 \# $\operatorname{Col}_{X}(D)$ is an invariant of (L, φ), which is invariant under $\mathbb{Z}_{\text {type } X}$-flowed contraction moves, where $\# S$ is the number of elements in a set S. Then we put $\# \operatorname{Col}_{X}(L, \varphi):=\# \operatorname{Col}_{X}(D)$. When $\# \operatorname{Col}_{X}(L, \varphi)=\infty$, the number of nontrivial X-colorings of D may work, where an X-coloring C of D is trivial if $C: \mathcal{A}(D) \rightarrow X$ is a constant map. We call $C(\xi)$ the color of ξ.

Proof of Theorem 4.1 The color of an edge in $\mathcal{A}(E)-\mathcal{A}(D, E)$ is uniquely determined by the colors of edges in $\mathcal{A}(D, E)$, since we have $a *^{s} a=a$ for the $\mathbb{Z}_{\text {type }} x^{\text {-flowed }}$ R1, R4 moves, and

$$
\left(\cdots\left(\left(a *^{i_{1}} b\right) *^{i_{2}} b\right) \cdots\right) *^{i_{l}} b=a \quad\left(i_{1}+i_{2}+\cdots+i_{l}=0 \text { in } \mathbb{Z}_{\text {type } X}\right)
$$

for the $\mathbb{Z}_{\text {type } X}$-flowed R2, R5 moves, and

$$
\left(a *^{s} b\right) *^{t} c=\left(a *^{t} c\right) *^{s}\left(b *^{t} c\right)
$$

for the $\mathbb{Z}_{\text {type } X}$-flowed R 3 move, and C_{2} for the $\mathbb{Z}_{\text {type } X}$-flowed R6 moves.
We denote by $\mathcal{R}(D)$ the set of connected regions of the complement of the underlying immersed graph of D. An X_{Y}-coloring of D is a map

$$
C: \mathcal{A}(D) \cup \mathcal{R}(D) \rightarrow X \cup Y
$$

such that $\left.C\right|_{\mathcal{A}(D)}: \mathcal{A}(D) \rightarrow X$ is an X-coloring of D and that $\left.C\right|_{\mathcal{R}(D)}: \mathcal{R}(D) \rightarrow Y$ satisfies the following condition:

Figure 4.2
C_{3}. For regions α_{1}, α_{2} sharing an arc α such that the co-orientation $O(\alpha)$ points to α_{2}, we have

$$
C\left(\alpha_{1}\right) \tilde{*}^{\varphi_{\alpha}(O(\alpha))} C(\alpha)=C\left(\alpha_{2}\right)
$$

(see Figure 4.2). An X_{Y}-coloring C does not depend on the choice of the orientations $O(e)$, since the equality in C_{3} is equivalent to the equality

$$
C\left(\alpha_{2}\right) \tilde{*}^{\varphi_{\alpha}(-O(\alpha))} C(\alpha)=C\left(\alpha_{1}\right) .
$$

We denote by $\operatorname{Col}_{X}(D)_{Y}$ the set of X_{Y}-colorings of D. For two diagrams D and E that locally differ, we denote by $\mathcal{R}(D, E)$ the set of regions that D and E share. By $\widetilde{\mathrm{Q}}_{3}$, colors of regions are uniquely determined by those of arcs and one region. Therefore, by Theorem4.1 we have the following theorem.

Theorem 4.2 Let X be a quandle, and let Y be an X-set. Let D be a diagram of a $\mathbb{Z}_{\text {type } X_{Y}}$-flowed spatial graph (L, φ). Let E be a diagram obtained by applying one of the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R1-R6 moves to D once. For $C \in \operatorname{Col}_{X}(D)_{Y}$, there is a unique X_{Y} coloring $C_{D, E} \in \operatorname{Col}_{X}(E)_{Y}$ such that

$$
\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)} \quad \text { and }\left.\quad C\right|_{\mathcal{R}(D, E)}=\left.C_{D, E}\right|_{\mathcal{R}(D, E)} .
$$

This theorem implies that $\# \operatorname{Col}_{X}(D)_{Y}$ is an invariant of (L, φ). Unfortunately, this invariant is not important, since we have the equality $\# \operatorname{Col}_{X}(D)_{Y}=\# Y \# \operatorname{Col}_{X}(D)$. Theorem4.2 is used to define a quandle cocycle invariant for flowed spatial graphs in Section 7

5 Examples for a Quandle Coloring

We give some examples for a quandle coloring. We represent the multiplicity of an element of a multiset by a subscript with an underline. For example, $\left\{a_{\underline{1}}, b_{\underline{2}}, c_{\underline{3}}\right\}$ represents the multiset $\{a, b, b, c, c, c\}$.

Let K^{0} and K^{1} be the spatial handcuff graphs as shown in Figure 5.1, where we ignore flows and colors. We cannot use link invariants to distinguish K^{0} from K^{1}, since the constituent links of these spatial graphs coincide. The following example shows that K^{0} and K^{1} are not equivalent.

Example 5.1 For $s, t \in \mathbb{Z}_{2}, a, b \in R_{3}$, we denote by $C_{s, t}^{0}(a, b)$ (resp. $\left.C_{s, t}^{1}(a)\right)$ the R_{3}-coloring of the \mathbb{Z}_{2}-flowed spatial graph diagram $D_{s, t}^{0}\left(\operatorname{resp} . D_{s, t}^{1}\right)$ corresponding to

Figure 5.1
K^{0} (resp. K^{1}) depicted in Figure5.1 We note that type $R_{3}=2$. We have the equalities

$$
\begin{aligned}
\operatorname{Col}_{R_{3}}\left(D_{1,1}^{0}\right) & =\left\{C_{1,1}^{0}(a, b) \mid a, b \in R_{3}\right\}, & \# \operatorname{Col}_{R_{3}}\left(D_{1,1}^{0}\right)=9, \\
\operatorname{Col}_{R_{3}}\left(D_{s, t}^{0}\right) & =\left\{C_{s, t}^{0}(a, a) \mid a \in R_{3}\right\}, & \# \operatorname{Col}_{R_{3}}\left(D_{s, t}^{0}\right)=3
\end{aligned}
$$

for $(s, t) \in \mathbb{Z}_{2}^{2}-\{(1,1)\}$, which imply $\# \operatorname{Col}_{R_{3}}^{\Sigma}\left(K^{0}\right)=\left\{9,3_{\underline{3}}\right\}$. We have the equalities

$$
\operatorname{Col}_{R_{3}}\left(D_{s, t}^{1}\right)=\left\{C_{s, t}^{1}(a) \mid a \in R_{3}\right\}, \quad \# \operatorname{Col}_{R_{3}}\left(D_{s, t}^{1}\right)=3
$$

for $(s, t) \in \mathbb{Z}_{2}^{2}$, which imply $\# \operatorname{Col}_{R_{3}}^{\Sigma}\left(K^{1}\right)=\left\{3_{\underline{4}}\right\}$. Thus K^{0} and K^{1} are not equivalent. Furthermore, K^{0} and K^{1} represent nonequivalent handlebody-links.

Let K^{2} and K^{3} be the spatial θ-curves as shown in Figure 5.2, where we ignore flows and colors. The Yamada polynomials $R\left(K^{2}\right)$ and $R\left(K^{3}\right)$ coincide:

$$
\begin{aligned}
R\left(K^{2}\right) & =R\left(K^{3}\right)=\left(A^{4}-A^{2}+A+1-2 A^{-1}+A^{-2}+A^{-3}-A^{-4}\right)^{2} R(\theta) \\
R(\theta) & =-A^{2}-A-2-A^{-1}-A^{-2}
\end{aligned}
$$

We refer the reader to [16] for the definition and evaluation of the Yamada polynomial. The following example shows that K^{2} and K^{3} are not equivalent.

Example 5.2 For $s, t \in \mathbb{Z}_{2}, a, b \in R_{3}$, we denote by $C_{s, t}^{2}(a, b)$ (resp. $\left.C_{s, t}^{3}(a)\right)$ the R_{3} coloring of the \mathbb{Z}_{2}-flowed spatial graph diagram $D_{s, t}^{2}$ (resp. $D_{s, t}^{3}$) corresponding to K^{2} (resp. K^{3}) depicted in Figure5.2. We note that type $R_{3}=2$. We have the equalities

$$
\begin{aligned}
\operatorname{Col}_{R_{3}}\left(D_{1,1}^{2}\right) & =\left\{C_{1,1}^{2}(a, b) \mid a, b \in R_{3}\right\}, & \# \operatorname{Col}_{R_{3}}\left(D_{1,1}^{2}\right)=9, \\
\operatorname{Col}_{R_{3}}\left(D_{s, t}^{2}\right) & =\left\{C_{s, t}^{2}(a, a) \mid a \in R_{3}\right\}, & \# \operatorname{Col}_{R_{3}}\left(D_{s, t}^{2}\right)=3
\end{aligned}
$$

for $(s, t) \in \mathbb{Z}_{2}^{2}-\{(1,1)\}$, which imply $\# \operatorname{Col}_{R_{3}}^{\sum}\left(K^{2}\right)=\left\{9,3_{\underline{3}}\right\}$. We have the equalities

$$
\operatorname{Col}_{R_{3}}\left(D_{s, t}^{3}\right)=\left\{C_{s, t}^{3}(a) \mid a \in R_{3}\right\}, \quad \# \operatorname{Col}_{R_{3}}\left(D_{s, t}^{3}\right)=3
$$

for $(s, t) \in \mathbb{Z}_{2}^{2}$, which imply $\# \operatorname{Col}_{R_{3}}^{\Sigma}\left(K^{3}\right)=\left\{3_{\underline{4}}\right\}$. Thus K^{2} and K^{3} are not equivalent. Furthermore, K^{2} and K^{3} represent nonequivalent handlebody-links.

Figure 5.2

6 Quandle Homologies

Carter, Jelsovsky, Kamada, Langford, and Saito defined the quandle homology group $H_{*}^{Q}(X ; A)$ and the quandle cohomology group $H_{Q}^{*}(X ; A)$, and introduced quandle cocycle invariants. We note that a quandle 2-cocycle ϕ satisfies

$$
\begin{align*}
\phi(a, a) & =0 \tag{6.1}\\
\phi(a, c)+\phi(a * c, b * c) & =\phi(a, b)+\phi(a * b, c) \tag{6.2}
\end{align*}
$$

for any $a, b, c \in X$, and that a quandle 3-cocycle θ satisfies

$$
\begin{align*}
& \theta(a, a, b)=\theta(a, b, b)=0 \tag{6.3}\\
& \theta(a, c, d)+\theta(a * c, b * c, d)+\theta(a, b, c)= \tag{6.4}\\
& \quad \theta(a * b, c, d)+\theta(a, b, d)+\theta(a * d, b * d, c * d)
\end{align*}
$$

for any $a, b, c, d \in X$. For the details we refer the reader to [1]. In this section, we introduce a new (co)homology theory to define a quandle cocycle invariant for $\mathbb{Z}_{\text {type }} X_{Y}$-flowed spatial graphs.

Let X be a quandle, and let Y be an X-set. Let $C_{n}^{R}(X)_{Y}$ be the free abelian group generated by $(n+1)$-tuples $\left(y, x_{1}, \ldots, x_{n}\right)$, where $y \in Y$ and $x_{1}, \ldots, x_{n} \in X$ if $n \geq 0$, and let $C_{n}^{R}(X)_{Y}=0$ otherwise. Put

$$
\begin{aligned}
& \left(y, x_{1}, \ldots, x_{n}\right)_{i, j}:=\left(y \tilde{*}^{j} x_{i}, x_{1} *^{j} x_{i}, \ldots, x_{i-1} *^{j} x_{i}, x_{i+1}, \ldots, x_{n}\right), \\
& \left(y, x_{1}, \ldots, x_{n}\right)_{i, j}^{+}:=\left(y \tilde{*}^{j} x_{i}, x_{1} *^{j} x_{i}, \ldots, x_{i-1} *^{j} x_{i}, x_{i}, \ldots, x_{n}\right) .
\end{aligned}
$$

We define a homomorphism $\partial_{n}: C_{n}^{R}(X)_{Y} \rightarrow C_{n-1}^{R}(X)_{Y}$ by

$$
\partial_{n}\left(y, x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}(-1)^{i}\left\{\left(y, x_{1}, \ldots, x_{n}\right)_{i, 0}-\left(y, x_{1}, \ldots, x_{n}\right)_{i, 1}\right\}
$$

for $n>0$, and $\partial_{n}=0$ otherwise. Then $C_{*}^{R}(X)_{Y}=\left\{C_{n}^{R}(X)_{Y}, \partial_{n}\right\}$ is a chain complex, since $\partial_{n-1} \circ \partial_{n}=0$.

Let $D_{n}^{Q}(X)_{Y}$ be the subgroup of $C_{n}^{R}(X)_{Y}$ generated by the elements of

$$
\left\{\left(y, x_{1}, \ldots, x_{n}\right) \in Y \times X^{n} \mid x_{i}=x_{i+1} \text { for some } i\right\}
$$

if $n>1$, and let $D_{n}^{Q}(X)_{Y}=0$ otherwise. Put $C_{n}^{Q}(X)_{Y}=C_{n}^{R}(X)_{Y} / D_{n}^{Q}(X)_{Y}$. Since $\partial_{n}\left(D_{n}^{Q}(X)_{Y}\right) \subset D_{n-1}^{Q}(X)_{Y}, C_{*}^{Q}(X)_{Y}=\left\{C_{n}^{Q}(X)_{Y}, \partial_{n}\right\}$ is a chain complex, where we denote the induced homomorphism by the same symbol ∂_{n}.

Let $D_{n}^{I}(X)_{Y}$ be the subgroup of $C_{n}^{R}(X)_{Y}$ generated by the elements of

$$
\left\{\sum_{j=0}^{\text {type } X_{Y}-1}\left(y, x_{1}, \ldots, x_{n}\right)_{i, j}^{+} \mid\left(y, x_{1}, \ldots, x_{n}\right) \in Y \times X^{n}, i=1, \ldots, n\right\}
$$

if $n>0$ and type $X_{Y}<\infty$, and let $D_{n}^{I}(X)_{Y}=0$ otherwise. Then we have the following lemma.

Lemma 6.1 We have $\partial_{n}\left(D_{n}^{I}(X)_{Y}\right) \subset D_{n-1}^{I}(X)_{Y}$.
Proof We may suppose that $n>0$ and type $X_{Y}<\infty$. Let

$$
\sigma=\sum_{j=0}^{\text {type } X_{Y}-1}\left(y, x_{1}, \ldots, x_{n}\right)_{i, j}^{+} \in D_{n}^{I}(X)_{Y}
$$

where $i \in\{1, \ldots, n\}$. We have $\sigma_{i, 0}=\sigma_{i, 1}$ by the equalities

$$
a *^{\text {type } X_{Y}} b=a, \quad y \tilde{*}^{\text {type } X_{Y}} a=y
$$

for any $a, b \in X, y \in Y$. $\operatorname{By}\left(a *^{s} b\right) *^{t} c=\left(a *^{t} c\right) *^{s}\left(b *^{t} c\right)$, we have

$$
\left(\left(y, x_{1}, \ldots, x_{n}\right)_{i, j}^{+}\right)_{k, 1}= \begin{cases}\left(\left(y, x_{1}, \ldots, x_{n}\right)_{k, 1}\right)_{i, j}^{+} & \text {if } k>i \\ \left(\left(y, x_{1}, \ldots, x_{n}\right)_{k, 1}^{+}\right)_{i-1, j}^{+} & \text {if } k<i\end{cases}
$$

Then $\sigma_{k, 1} \in D_{n-1}^{I}(X)_{Y}$ if $k \neq i$, where

$$
\sigma_{k, l}=\sum_{j=0}^{\text {type } X_{Y}-1}\left(\left(y, x_{1}, \ldots, x_{n}\right)_{i, j}^{+}\right)_{k, l} .
$$

Since $\sigma_{k, 0} \in D_{n-1}^{I}(X)_{Y}$ for $k \neq i$, we have

$$
\begin{aligned}
\partial_{n}(\sigma)= & \sum_{k=1}^{i-1}(-1)^{k} \sigma_{k, 0}+(-1)^{i} \sigma_{i, 0}+\sum_{k=i+1}^{n}(-1)^{k} \sigma_{k, 0} \\
& -\sum_{k=1}^{i-1}(-1)^{k} \sigma_{k, 1}-(-1)^{i} \sigma_{i, 1}-\sum_{k=i+1}^{n}(-1)^{k} \sigma_{k, 1} \in D_{n-1}^{I}(X)_{Y} .
\end{aligned}
$$

We put $C_{n}^{I}(X)_{Y}=C_{n}^{R}(X)_{Y} /\left(D_{n}^{Q}(X)_{Y}+D_{n}^{I}(X)_{Y}\right)$. Then $C_{*}^{I}(X)_{Y}=\left\{C_{n}^{I}(X)_{Y}, \partial_{n}\right\}$ is a chain complex. For an abelian group A, we define the chain and cochain complexes

$$
\begin{array}{ll}
C_{*}^{W}(X ; A)_{Y}=C_{*}^{W}(X)_{Y} \otimes A, & \partial=\partial \otimes \mathrm{id} \\
C_{W}^{*}(X ; A)_{Y}=\operatorname{Hom}\left(C_{*}^{W}(X)_{Y}, A\right), & \delta=\operatorname{Hom}(\partial, \mathrm{id}),
\end{array}
$$

where W is R, Q, or I. We denote by $H_{n}^{W}(X ; A)_{Y}$ and $H_{W}^{n}(X ; A)_{Y}$ the n-th homology group and the n-th cohomology group of $C_{*}^{W}(X ; A)_{Y}$ and $C_{W}^{*}(X ; A)_{Y}$, respectively. We note that, if type $X_{Y}=\infty$, then $C_{*}^{I}(X ; A)_{Y}=C_{*}^{Q}(X ; A)_{Y}$ and $C_{I}^{*}(X ; A)_{Y}=$ $C_{Q}^{*}(X ; A)_{Y}$.

A map $f \in C_{R}^{2}(X ; A)_{Y}$ induces a 2-cocycle of $C_{Q}^{*}(X ; A)_{Y}$ if and only if f satisfies the conditions

$$
\begin{align*}
& f(y, a, a)=0, \tag{6.5}\\
& f(y, b, c)+f(y \tilde{*} b, a * b, c)+f(y, a, b) \tag{6.6}\\
& \quad=f(y \tilde{*} a, b, c)+f(y, a, c)+f(y \tilde{*} c, a * c, b * c),
\end{align*}
$$

for any $y \in Y$ and $a, b, c \in X$. We suppose that type $X_{Y}<\infty$. A map $f \in C_{R}^{2}(X ; A)_{Y}$ induces a 2-cocycle of $C_{I}^{*}(X ; A)_{Y}$ if and only if f satisfies the conditions (6.5), (6.6) and

$$
\begin{equation*}
\sum_{i=0}^{\text {type } X_{Y}-1} f\left(y \tilde{*}^{i} a, a, b\right)=\sum_{i=0}^{\text {type } X_{Y}-1} f\left(y \tilde{*}^{i} b, a *^{i} b, b\right)=0 \tag{6.7}
\end{equation*}
$$

for any $y \in Y$ and $a, b \in X$. Then, by the equalities (6.1)-(6.4), we have the following proposition, which is useful in finding 2-cocycles of $C_{I}^{*}(X ; A)_{Y}$.

Proposition 6.2 Let X be a quandle such that type $X<\infty$. For a quandle 2-cocycle ϕ, we define $1 \otimes \phi \in C_{R}^{2}(X ; A)_{\{y\}}$ by $(1 \otimes \phi)(y, a, b)=\phi(a, b)$ for $a, b \in X$. Then $1 \otimes \phi$ is a 2 -cocycle of $C_{Q}^{*}(X ; A)_{\{y\}}$. Furthermore, if ϕ satisfies

$$
\operatorname{type} X \phi(a, b)=\sum_{i=0}^{\text {type } X-1} \phi\left(a *^{i} b, b\right)=0
$$

for any $a, b \in X$, then $1 \otimes \phi$ is a 2-cocycle of $C_{I}^{*}(X ; A)_{\{y\}}$.
A quandle 3-cocycle θ is a 2-cocycle of $C_{Q}^{*}(X ; A)_{X}$. Furthermore, if θ satisfies

$$
\sum_{i=0}^{\text {type } X-1} \theta\left(a *^{i} b, b, c\right)=\sum_{i=0}^{\text {type } X-1} \theta\left(a *^{i} c, b *^{i} c, c\right)=0
$$

for any $a, b, c \in X$, then θ is a 2-cocycle of $C_{I}^{*}(X ; A)_{X}$.

Example 6.3 (dihedral quandle R_{p}) Let p be an odd prime. The quandle cohomology group $H_{Q}^{3}\left(R_{p} ; \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}$ is generated by the cohomology class [θ_{p}] defined by

$$
\theta_{p}(x, y, z)=(x-y) \frac{y^{p}+(2 z-y)^{p}-2 z^{p}}{p}
$$

where we remark that the right-hand side of the equality represents a polynomial with coefficients in \mathbb{Z}_{p}. We call θ_{p} Mochizuki's 3-cocycle [10]. We note that type $R_{p}=2$. Since we have the equalities

$$
\begin{aligned}
\theta_{p}(x, y, z)+\theta_{p}(x * y, y, z) & =((x-y)+(y-x)) \frac{y^{p}+(2 z-y)^{p}-2 z^{p}}{p}=0 \\
\theta_{p}(x, y, z)+\theta_{p}(x * z, y * z, z) & =((x-y)+(y-x)) \frac{y^{p}+(2 z-y)^{p}-2 z^{p}}{p}=0
\end{aligned}
$$

θ_{p} is a 2-cocycle of $C_{I}^{*}\left(R_{p} ; \mathbb{Z}_{p}\right)_{R_{p}}$.
T. Satoh and the authors discussed the cohomology group $H_{I}^{3}\left(R_{p} ; \mathbb{Z}_{p}\right)_{R_{p}}$ in Osaka, and showed that $H_{I}^{3}\left(R_{3} ; \mathbb{Z}_{3}\right)_{R_{3}} \cong \mathbb{Z}_{3}$ by direct calculation.

Example 6.4 (tetrahedral quandle $\left.S_{4}\right)$ Put $A:=\mathbb{Z}_{2}\left[t, t^{-1}\right] /\left(t^{2}+t+1\right)$. The quandle cohomology group $H_{Q}^{3}\left(S_{4} ; A\right) \cong A^{3}$ is generated by the cohomology classes $\left[f_{1}\right],\left[f_{2}\right],\left[f_{3}\right]$ defined by

$$
\begin{aligned}
& f_{1}(x, y, z)=(x-y)(y-z)^{2} \\
& f_{2}(x, y, z)=t(x-y)(y-z) z \\
& f_{3}(x, y, z)=t^{2}(x-y)^{2}(y-z)^{2} z^{2}
\end{aligned}
$$

(see [11]). We note that type $S_{4}=3$. Since we have the equalities

$$
\begin{aligned}
& f_{2}(x, y, z)+f_{2}(x * y, y, z)+f_{2}\left(x *^{2} y, y, z\right) \\
& \quad=t\left((x-y)+(t x-t y)+\left(t^{2} x-t^{2} y\right)\right)(y-z) z \\
& \quad=0 \\
& f_{2}(x, y, z)+f_{2}(x * z, y * z, z)+f_{2}\left(x *^{2} z, y *^{2} z, z\right) \\
& \quad=t(x-y)(y-z) z+t(t x-t y)(t y-t z) z+t\left(t^{2} x-t^{2} y\right)\left(t^{2} y-t^{2} z\right) z \\
& \quad=0
\end{aligned}
$$

f_{2} is a 2-cocycle of $C_{I}^{*}\left(S_{4} ; A\right)_{S_{4}}$. Similarly, f_{3} is a 2-cocycle of $C_{I}^{*}\left(S_{4} ; A\right)_{S_{4}}$.

7 A Quandle Cocycle Invariant for Flowed Spatial Graphs

A quandle cocycle invariant is a weight sum invariant. We define the Boltzmann weight at a crossing, and then we define a quandle cocycle invariant for flowed spatial graphs.

$$
\sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f\left(\left(y \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right)
$$

$$
-\sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f\left(\left(y \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right)
$$

Figure 7.1

Let X be a quandle, and let Y be an X-set. Let f be a 2 -cocycle of $C_{I}^{*}(X ; A)_{Y}$. Let D be a diagram of a $\mathbb{Z}_{\text {type } X_{Y}}$-flowed spatial graph (L, φ). We choose an orientation $O(e) \in \mathcal{O}_{e}$ for each edge $e \in \mathcal{E}(L)$ (such that $\varphi_{e}(O(e)) \geq 0$ if type $X_{Y}=\infty$). Then (L, O, φ) is a $\mathbb{Z}_{\text {type } X_{Y}}$ flowed oriented spatial graph. We denote by $\epsilon(\chi) \in\{1,-1\}$ the sign of a crossing χ of D. We denote by $\chi_{i, 1}, \chi_{i, 2}$ the regions sharing a crossing χ and the under-arc χ_{i} such that the co-orientation $O\left(\chi_{i}\right)$ points to $\chi_{i, 2}$. We put

$$
\bar{f}(y, a, s, b, t):=\sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f\left(\left(y \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right)
$$

where we remark that $\bar{f}(y, a, s, b, t)=0$ if $s=0$ or $t=0$. For an X_{Y}-coloring $C \in \operatorname{Col}_{X}(D)_{Y}$, the Boltzmann weight $B_{f}(\chi ; C)$ at a crossing χ is defined by

$$
\begin{equation*}
B_{f}(\chi ; C)=\epsilon(\chi) \bar{f}\left(C\left(\chi_{1,1}\right), C\left(\chi_{1}\right), \varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right), C\left(\chi_{0}\right), \varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)\right) \tag{7.1}
\end{equation*}
$$

where we regard $\varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right)$ and $\varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)$ as integers in $\left\{0,1, \ldots\right.$, type $\left.X_{Y}-1\right\}$ (see Figure 7.1).

Lemma 7.1 The Boltzmann weight $B_{f}(\chi ; C)$ does not depend on the choice of the orientations $O(e)$.

Proof If $\varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right)=0$ or $\varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)=0$, then the Boltzmann weight $B_{f}(\chi ; C)=0$ does not depend on the choice of the orientations, since we have $\varphi_{\chi_{1}}\left(-O\left(\chi_{1}\right)\right)=0$ or $\varphi_{\chi_{0}}\left(-O\left(\chi_{0}\right)\right)=0$. Then we may suppose that $\varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right) \neq 0$, $\varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right) \neq 0$ and type $X_{Y}<\infty$. For the orientations $O\left(\chi_{0}\right),-O\left(\chi_{1}\right),-O\left(\chi_{2}\right)$, the Boltzmann weight $B_{f}(\chi ; C)$ is given by

$$
\begin{equation*}
-\epsilon(\chi) \bar{f}\left(C\left(\chi_{1,2}\right), C\left(\chi_{1}\right), \varphi_{\chi_{1}}\left(-O\left(\chi_{1}\right)\right), C\left(\chi_{0}\right), \varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)\right) \tag{7.2}
\end{equation*}
$$

For the orientations $-O\left(\chi_{0}\right), O\left(\chi_{1}\right), O\left(\chi_{2}\right)$, the Boltzmann weight $B_{f}(\chi ; C)$ is given by

$$
\begin{equation*}
-\epsilon(\chi) \bar{f}\left(C\left(\chi_{2,1}\right), C\left(\chi_{2}\right), \varphi_{\chi_{2}}\left(O\left(\chi_{2}\right)\right), C\left(\chi_{0}\right), \varphi_{\chi_{0}}\left(-O\left(\chi_{0}\right)\right)\right) \tag{7.3}
\end{equation*}
$$

For the orientations $-O\left(\chi_{0}\right),-O\left(\chi_{1}\right),-O\left(\chi_{2}\right)$, the Boltzmann weight $B_{f}(\chi ; C)$ is given by

$$
\begin{equation*}
\epsilon(\chi) \bar{f}\left(C\left(\chi_{2,2}\right), C\left(\chi_{2}\right), \varphi_{\chi_{2}}\left(-O\left(\chi_{2}\right)\right), C\left(\chi_{0}\right), \varphi_{\chi_{0}}\left(-O\left(\chi_{0}\right)\right)\right) \tag{7.4}
\end{equation*}
$$

The values (7.1)-(7.4) coincide by the cocycle condition (6.7) and the following equalities:

$$
\begin{aligned}
C\left(\chi_{1,2}\right) & =y \tilde{*}^{s} a, C\left(\chi_{2,1}\right)=y \tilde{*}^{t} b, C\left(\chi_{2,2}\right)=\left(y \tilde{*}^{s} a\right) \tilde{*}^{t} b, \\
C\left(\chi_{2}\right) & =a *^{t} b, \\
\varphi_{\chi_{1}}\left(-O\left(\chi_{1}\right)\right) & =\operatorname{type} X_{Y}-s, \varphi_{\chi_{2}}\left(O\left(\chi_{2}\right)\right)=s, \\
\varphi_{\chi_{2}}\left(-O\left(\chi_{2}\right)\right) & =\operatorname{type} X_{Y}-s, \varphi_{\chi_{0}}\left(-O\left(\chi_{0}\right)\right)=\operatorname{type} X_{Y}-t,
\end{aligned}
$$

where $y=C\left(\chi_{1,1}\right), a=C\left(\chi_{1}\right), s=\varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right), b=C\left(\chi_{0}\right)$, and $t=\varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)$. For example, the values (7.1) and (7.2) coincide, since we have

$$
\begin{aligned}
& -\sum_{i=0}^{\text {type } X_{Y}-s-1} \sum_{j=0}^{t-1} f\left(\left(\left(y \tilde{*}^{j} a\right) \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right) \\
& =-\sum_{i=s}^{\text {type } X_{Y}-1} \sum_{j=0}^{t-1} f\left(\left(y \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right) \\
& =\sum_{j=0}^{t-1}\left(-\sum_{i=s}^{\text {type } X_{Y}-1} f\left(\left(y \tilde{*}^{j} b\right) \tilde{*}^{i}\left(a *^{j} b\right), a *^{j} b, b\right)\right) \\
& =\sum_{j=0}^{t-1} \sum_{i=0}^{s-1} f\left(\left(y \tilde{*}^{j} b\right) \tilde{*}^{i}\left(a *^{j} b\right), a *^{j} b, b\right) \\
& =\sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f\left(\left(y \tilde{*}^{i} a\right) \tilde{*}^{j} b, a *^{j} b, b\right) .
\end{aligned}
$$

We set

$$
B_{f}(C):=\sum_{\chi} B_{f}(\chi ; C)
$$

where χ runs over all crossings of D. Then we define the multiset

$$
\Phi_{f}(D):=\left\{B_{f}(C) \mid C \in \operatorname{Col}_{X}(D)_{Y}\right\}
$$

Theorem 7.2 Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of $C_{I}^{*}(X ; A)_{Y}$. Let D be a diagram of a $\mathbb{Z}_{\mathrm{type}} X_{Y}$-flowed spatial graph (L, φ). The multiset $\Phi_{f}(D)$ is an invariant of (L, φ), which is invariant under $\mathbb{Z}_{\text {type } X_{Y}}$-flowed contraction moves.

Then we put $\Phi_{f}(L, \varphi):=\Phi_{f}(D)$.
Theorem 7.3 The invariant $\Phi_{f}(L, \varphi)$ does not depend on the choice of a representative element of $[f] \in H_{I}^{2}(X ; A)_{Y}$.

8 An Example for a Quandle Cocycle Invariant

We give an example for a quandle cocycle invariant. Let K be Kinoshita's θ-curve as shown in Figure 8.1, where we ignore flows and colors. Kinoshita's θ-curve has the following significant property. When we remove any one edge from Kinoshita's θ curve, then the remainder is trivial. The following example shows that K is nontrivial. We note that the invariant introduced in [3] does not work for this spatial graph.

Example 8.1 Put $X:=S_{4}, Y:=S_{4}$. For $r, s \in \mathbb{Z}_{3}, y, a, b \in S_{4}$, we denote by $C_{r, s}(y, a, b)$ the S_{4}-coloring of the \mathbb{Z}_{3}-flowed spatial graph diagram $D_{r, s}$ depicted in Figure 8.1 We note that type $X_{Y}=$ type $S_{4}=3$. We have

$$
\begin{aligned}
\operatorname{Col}_{X}\left(D_{1,1}\right)_{Y} & =\left\{C_{1,1}(y, a, b) \mid y, a, b \in S_{4}\right\}, \\
\operatorname{Col}_{X}\left(D_{2,2}\right)_{Y} & =\left\{C_{2,2}(y, a, b) \mid y, a, b \in S_{4}\right\}, \\
\operatorname{Col}_{X}\left(D_{r, s}\right)_{Y} & =\left\{C_{r, s}(y, a, a) \mid y, a \in S_{4}\right\}
\end{aligned}
$$

for $(r, s) \in \mathbb{Z}_{3}^{2}-\{(1,1),(2,2)\}$.
Let f_{2} be the 2-cocycle of $C_{I}^{*}\left(S_{4} ; A\right)_{S_{4}}$ defined in Example 6.4 By the equality

$$
B_{f_{2}}\left(C_{1,1}(y, a, b)\right)=t(a-b)^{3}= \begin{cases}0 & \text { if } a=b \\ t & \text { otherwise }\end{cases}
$$

we have $\Phi_{f_{2}}\left(D_{1,1}\right)=\left\{0_{16}, t_{4 \underline{8}}\right\}$, where we refer the reader to Section 5 for the notation of the multiset $\left\{0_{\underline{16}}, t_{\underline{48}}\right\}$. By the equality

$$
B_{f_{2}}\left(C_{2,2}(y, a, b)\right)=t(a-b)^{3}= \begin{cases}0 & \text { if } a=b \\ t & \text { otherwise }\end{cases}
$$

we have $\Phi_{f_{2}}\left(D_{2,2}\right)=\left\{0_{\underline{16}}, t_{48}\right\}$. By the equality $B_{f_{2}}\left(C_{r, s}(y, a, a)\right)=0$, we have $\Phi_{f_{2}}\left(D_{r, s}\right)=\left\{0_{\underline{16}}\right\}$ for $(r, s) \in \overline{\mathbb{Z}_{3}^{2}}-\{(1,1),(2,2)\}$. Then we have

$$
\Phi_{f_{2}}^{\Sigma}(K)=\left\{\Phi_{f_{2}}\left(D_{r, s}\right) \mid r, s \in \mathbb{Z}_{3}\right\}=\left\{\left\{0_{\underline{16}}, t_{\underline{48}}\right\}_{\underline{2}},\left\{0_{\underline{\underline{16}}}\right\}_{\underline{\mathbb{Z}}}\right\} \neq\left\{\left\{0_{\underline{\underline{16}}}\right\}_{\underline{\underline{g}}}\right\},
$$

where we remark that $\Phi_{f_{2}}^{\Sigma}$ of the trivial spatial θ-curve is $\left\{\left\{0_{\underline{16}}\right\}_{\underline{9}}\right\}$. Thus K is nontrivial. Furthermore, K represents a nontrivial handlebody-link.

9 Proofs of Theorems 7.2 and 7.3

We state one lemma and prove Theorems 7.2 and 7.3 for type $X_{Y}<\infty$. The proofs for type $X_{Y}=\infty$ are easier than those for type $X_{Y}<\infty$.

We suppose that type $X_{Y}<\infty$. Let (L, O, φ) be a $\mathbb{Z}_{\text {type } X_{Y}}$-flowed oriented spatial graph, and let D be a diagram of (L, O, φ). We denote by \bar{D} the diagram obtained by replacing an edge $e \in \mathcal{E}(L)$ with $\varphi_{e}(O(e))$ parallel edges if $\varphi_{e}(O(e)) \neq 0$ and two antiparallel edges otherwise as shown in Figure 9.1. Let (\bar{L}, \bar{O}) be the oriented

Figure 8.1
spatial graph represented by \bar{D}. We define a $\mathbb{Z}_{\text {type } X_{Y}}$-flow $\bar{\varphi}$ of \bar{L} by $\bar{\varphi}_{e}(\bar{O}(e))=1$ for $e \in \mathcal{E}(\bar{L})$. We denote the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed oriented spatial graph diagram obtained by adding $\bar{\varphi}$ to the diagram \bar{D} by the same symbol \bar{D}. A $\mathbb{Z}_{\text {type } X_{Y}}$ flowed oriented spatial graph (L, O, φ) is single if $\varphi(O(e))=1$ for any edge $e \in \mathcal{E}(L)$. Then $(\bar{L}, \bar{O}, \bar{\varphi})$ is single.

Lemma 9.1 Let (L, O, φ) be a $\mathbb{Z}_{\text {type } X_{Y}}$-flowed oriented spatial graph, and let D be a diagram of (L, O, φ). Then we have $\Phi_{f}(D)=\Phi_{f}(\bar{D})$.

Proof Let χ be a crossing of D. Put $s:=\varphi_{\chi_{1}}\left(O\left(\chi_{1}\right)\right), t:=\varphi_{\chi_{0}}\left(O\left(\chi_{0}\right)\right)$. We denote by $\bar{\chi}_{(i, j)}(i=0, \ldots, s-1, j=0, \ldots, t-1)$ the crossings that originate from χ (see Figure 9.1). For $C \in \operatorname{Col}_{X}(D)_{Y}$, there is a unique X_{Y}-coloring $\bar{C} \in \operatorname{Col}_{X}(\bar{D})_{Y}$ such that parallel (antiparallel) arcs that originate from an $\operatorname{arc} \alpha$ of D have the same color as α. This correspondence gives a bijection between $\operatorname{Col}_{X}(D)_{Y}$ and $\operatorname{Col}_{X}(\bar{D})_{Y}$. By the equality $B_{f}(\chi ; C)=\sum_{i=0}^{s-1} \sum_{j=0}^{t-1} B_{f}\left(\bar{\chi}_{(i, j)} ; \bar{C}\right)$, we have $\Phi_{f}(D)=\Phi_{f}(\bar{D})$.
Proof of Theorem 7.2 By Lemma 2.5, it is sufficient to show that $\Phi_{f}(D)$ is invariant under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R1-R6 moves. We have the invariance under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R6 move immediately, since the Boltzmann weight is a weight at a crossing.

If D_{1} and D_{2} are related by a finite sequence of the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R1-R5 moves, then so are $\overline{D_{1}}$ and $\overline{D_{2}}$. By Lemma 9.1 it is sufficient to show that $\Phi_{f}(D)$ is invariant under the $\mathbb{Z}_{\text {type } X_{Y}}$ flowed R1-R5 moves preserving orientations for a diagram D of a single $\mathbb{Z}_{\text {type } X_{Y}}$-flowed oriented spatial graph.

The invariance under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R1, R4 moves follows from (6.5). The invariance under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R2 move follows from the signs of the crossings that appear in the diagram for the move. The invariance under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R3 move follows from (6.6). The invariance under the $\mathbb{Z}_{\text {type } X_{Y}}$-flowed R 5 move follows from (6.7), since the number of edges incident and directed in minus the number of edges incident and directed out vanishes modulo type X_{Y}.

Proof of Theorem7.3 If 2-cocycles f_{1}, f_{2} of $C_{I}^{*}(X ; A)_{Y}$ are cohomologous, then f_{1} f_{2} is null-cohomologous. By the equality $B_{f_{1}}(C)-B_{f_{2}}(C)=B_{f_{1}-f_{2}}(C)$, it is sufficient to show that

$$
\begin{equation*}
B_{f}(C)=0 \tag{9.1}
\end{equation*}
$$

Figure 9.1
for a null-cohomologous 2-cocycle f of $C_{I}^{*}(X ; A)_{Y}$. Let g be a 1-cocycle of $C_{I}^{*}(X ; A)_{Y}$ such that $f=\delta^{1} g$. Furthermore, by Lemma 9.1 it is sufficient to show the equality (9.1) for a diagram D of a single $\mathbb{Z}_{\text {type } X_{Y}}$-flowed oriented spatial graph (L, O, φ).

We denote by $\mathcal{S A}(D)$ the set of curves obtained from D by removing (small neighborhoods of) crossings and vertices. We call a curve in $\mathcal{S} \mathcal{A}(D)$ a semi-arc of D. We note that a semi-arc is obtained by dividing an over-arc at crossings. For a semi-arc α that originates from an $\operatorname{arc} \hat{\alpha}$, we define the orientation and the color of α by those of $\hat{\alpha}: O(\alpha):=O(\hat{\alpha}), C(\alpha):=C(\hat{\alpha})$.

For a semi-arc α, there is a unique region R_{α} facing α such that the orientation $O(\alpha)$ points from the region R_{α}. Then we define $b(\alpha):=g\left(C\left(R_{\alpha}\right), C(\alpha)\right)$. For a semi-arc α whose endpoint χ is a crossing or a vertex, we define

$$
\epsilon(\alpha ; \chi):= \begin{cases}1 & \text { if the orientation } O(\alpha) \text { points to } \chi \\ -1 & \text { otherwise }\end{cases}
$$

We denote by $\chi_{(1)}, \chi_{(2)}$ the semi-arcs that originate from under-arcs at a crossing χ such that the co-orientation $O\left(\chi_{0}\right)$ points to $\chi_{(2)}$. We denote by $\chi_{(3)}, \chi_{(4)}$ the semiarcs which originate from over-arcs at a crossing χ such that the co-orientation $O\left(\chi_{1}\right)$

Figure 9.2
$\left(=O\left(\chi_{2}\right)\right)$ points to $\chi_{(4)}$. For a crossing χ, we have

$$
\begin{align*}
B_{f}(\chi ; C)= & \epsilon(\chi) f\left(C\left(\chi_{1,1}\right), C\left(\chi_{1}\right), C\left(\chi_{0}\right)\right) \tag{9.2}\\
= & \epsilon(\chi)\left(\delta^{1} g\right)\left(C\left(\chi_{1,1}\right), C\left(\chi_{1}\right), C\left(\chi_{0}\right)\right) \\
= & \epsilon(\chi) g\left(C\left(\chi_{1,1}\right), C\left(\chi_{1}\right)\right)-\epsilon(\chi) g\left(C\left(\chi_{1,1}\right) \tilde{*} C\left(\chi_{0}\right), C\left(\chi_{1}\right) \tilde{*} C\left(\chi_{0}\right)\right) \\
& -\epsilon(\chi) g\left(C\left(\chi_{1,1}\right), C\left(\chi_{0}\right)\right)+\epsilon(\chi) g\left(C\left(\chi_{1,1}\right) \tilde{*} C\left(\chi_{1}\right), C\left(\chi_{0}\right)\right) \\
= & \epsilon(\chi) g\left(C\left(\chi_{1,1}\right), C\left(\chi_{(1)}\right)\right)-\epsilon(\chi) g\left(C\left(\chi_{1,1}\right) \tilde{*} C\left(\chi_{(0)}\right), C\left(\chi_{(2)}\right)\right) \\
& -\epsilon(\chi) g\left(C\left(\chi_{1,1}\right), C\left(\chi_{(3)}\right)\right)+\epsilon(\chi) g\left(C\left(\chi_{1,1}\right) \tilde{*} C\left(\chi_{(1)}\right), C\left(\chi_{(4)}\right)\right) \\
= & \sum_{i=1}^{4} \epsilon\left(\chi_{(i)} ; \chi\right) b\left(\chi_{(i)}\right) .
\end{align*}
$$

See Figure 9.2 for the last equality.
For semi-arcs $\omega_{(1)}, \ldots, \omega_{\left(d_{\omega}\right)}$ incident to a vertex ω of degree d_{ω}, we show the equality

$$
\begin{equation*}
\sum_{i=1}^{d_{\omega}} \epsilon\left(\omega_{(i)} ; \omega\right) b\left(\omega_{(i)}\right)=0 \tag{9.3}
\end{equation*}
$$

For integers i and j such that $R_{\omega_{(i)}}=R_{\omega_{(j)}}$, we have the equalities

$$
\epsilon\left(\omega_{(i)} ; \omega\right)=-\epsilon\left(\omega_{(j)} ; \omega\right), \quad g\left(C\left(R_{\omega_{(i)}}\right), C\left(\omega_{(i)}\right)\right)=g\left(C\left(R_{\omega_{(j)}}\right), C\left(\omega_{(j)}\right)\right)
$$

which imply that

$$
\epsilon\left(\omega_{(i)} ; \omega\right) b\left(\omega_{(i)}\right)+\epsilon\left(\omega_{(j)} ; \omega\right) b\left(\omega_{(j)}\right)=0 .
$$

Then we may suppose that the orientations of all semi-arcs agree with each other. Thus we have

$$
\sum_{i=1}^{d_{\omega}} \epsilon\left(\omega_{(i)} ; \omega\right) b\left(\omega_{(i)}\right)= \pm \sum_{k=0}^{n \text { type } X_{Y}-1} b\left(\omega_{\left(i_{k}\right)}\right)=0
$$

for some positive integer n, where the last equality follows from the equality

$$
\sum_{i=0}^{\text {type } X_{Y}-1} g\left(y \tilde{\varkappa}^{i} a, a\right)=0 .
$$

By equalities (9.2) and (9.3), we have

$$
\begin{aligned}
B_{f}(C) & =\sum_{\chi: \text { crossing }} B_{f}(\chi ; C) \\
& =\sum_{\chi: \text { crossing }} \sum_{i=1}^{4} \epsilon\left(\chi_{(i)} ; \chi\right) b\left(\chi_{(i)}\right)+\sum_{\omega: \text { vertex }} \sum_{i=1}^{d_{\omega}} \epsilon\left(\omega_{(i)} ; \omega\right) b\left(\omega_{(i)}\right) \\
& =\sum_{\alpha: \text { semi-arc }}(b(\alpha)-b(\alpha))=0 .
\end{aligned}
$$

Acknowledgments The authors would like to thank Toshio Harikae, Seiichi Kamada, Kengo Kishimoto, Takao Satoh, and Kokoro Tanaka for their helpful comments.

References

[1] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Amer. Math. Soc. 355(2003), no. 10, 3947-3989. http://dx.doi.org/10.1090/S0002-9947-03-03046-0
[2] J. S. Carter, S. Kamada, and M. Saito, Geometric interpretations of quandle homology. J. Knot Theory Ramifications 10(2001), no. 3, 345-386. http://dx.doi.org/10.1142/S0218216501000901
[3] A. Ishii, Moves and invariants for knotted handlebodies. Algebr. Geom. Topol. 8(2008), no. 3, 1403-1418. http://dx.doi.org/10.2140/agt.2008.8.1403
[4] M. Iwakiri, Triple point cancelling numbers of surface links and quandle cocycle invariants. Topology Appl. 153(2006), no. 15, 2815-2822. http://dx.doi.org/10.1016/j.topol.2005.12.001
[5] The lower bound of the w-indices of surface links via quandle cocycle invariants. Trans. Amer. Math. Soc. 362(2010), no. 3, 1189-1210. http://dx.doi.org/10.1090/S0002-9947-09-04769-2
[6] D. Joyce, A classifying invariant of knots, the knot quandle. J. Pure Appl. Alg. 23(1982), no. 1, 37-65. http://dx.doi.org/10.1016/0022-4049(82)90077-9
[7] , Simple quandles. J. Algebra 79(1982), no. 2, 307-318. http://dx.doi.org/10.1016/0021-8693(82)90305-2
[8] L. H. Kauffman, Invariants of graphs in three-space. Trans. Amer. Math. Soc. 311(1989), no. 2, 697-710. http://dx.doi.org/10.1090/S0002-9947-1989-0946218-0
[9] S. V. Matveev, Distributive groupoids in knot theory. Mat. Sb. (N.S.) 119(161)(1982), no. 1, 78-88, 160.
[10] T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles. J. Pure Appl. Algebra 179(2003), no. 3, 287-330. http://dx.doi.org/10.1016/S0022-4049(02)00323-7
[11] \longrightarrow, The 3-cocycles of the Alexander quandles $\mathbb{F}_{q}[T] /(T-\omega)$. Algebr. Geom. Topol. 5(2005), 183-205. http://dx.doi.org/10.2140/agt.2005.5.183
[12] C. Rourke and B. Sanderson, There are two 2-twist-spun trefoils. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.3250
[13] S. Satoh and A. Shima, The 2-twist-spun trefoil has the triple point number four. Trans. Amer. Math. Soc. 356(2004), no. 3, 1007-1024. http://dx.doi.org/10.1090/S0002-9947-03-03181-7
[14] S. Suzuki, On linear graphs in 3-sphere. Osaka J. Math. 7(1970), 375-396.
[15] M. Takasaki, Abstraction of symmetric transformations. (Japanese) Tôhoku Math. J. 49(1943), 145-207.
[16] S. Yamada, An invariant of spatial graphs. J. Graph Theory 13(1989), no. 5, 537-551. http://dx.doi.org/10.1002/jgt.3190130503
[17] D. N. Yetter, Category theoretic representations of knotted graphs in S^{3}. Adv. Math. 77(1989), no. 2, 137-155. http://dx.doi.org/10.1016/0001-8708(89)90017-0

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
e-mail: aishii@math.tsukuba.ac.jp
Graduate School of Science and Engineering, Saga University, 1, Saga, 840-8502, Japan
e-mail: iwakiri@ms.saga-u.ac.jp

[^0]: Received by the editors February 1, 2010.
 Published electronically June 20, 2011.
 AMS subject classification: 57M27, 57M15, 57M25.
 Keywords: quandle cocycle invariant, knotted handlebody, spatial graph.

