Canad. J. Math. Vol. **64** (1), 2012 pp. 102–122 http://dx.doi.org/10.4153/CJM-2011-035-0 © Canadian Mathematical Society 2011

Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies

Dedicated to Professor Akio Kawauchi for his 60th birthday

Atsushi Ishii and Masahide Iwakiri

Abstract. We introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle cocycle invariants for spatial graphs and handlebody-links.

1 Introduction

In this paper, we introduce flowed spatial graphs and define quandle cocycle invariants for spatial graphs and handlebody-links. Carter, Jelsovsky, Kamada, Langford, and Saito [1] defined quandle cocycle invariants for links and surface-links. It was proved that a quandle cocycle invariant detects non-invertibility for surface-links in [1] and chirality for links in [2, 12]. We remark that the fundamental quandle cannot detect them, although the fundamental quandle is stronger than the fundamental group. A quandle cocycle invariant is useful in determining the triple point number, the triple point cancelling number, the *w*-index, and so on (cf. [4, 5, 13]).

A spatial graph is a finite graph embedded in the 3-sphere. An invariant for links is that for spatial graphs, since equivalent spatial graphs have the equivalent constituent links. Our invariant distinguishes spatial graphs whose constituent links are equivalent. The Yamada polynomial [16] is an invariant for spatial graphs without vertices of degree greater than 3, where we remark that the Yamada polynomial of a general spatial graph is an invariant as a flat vertex graph. Our invariant is defined for all spatial graphs and distinguishes spatial graphs whose Yamada polynomials coincide.

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere. We can use an invariant for 3-manifolds to distinguish handlebody-links. For example, the fundamental group of the exterior of a handlebody-link is an invariant. However, these invariants do not work for handlebody-links with homeomorphic exteriors, which implies that we cannot detect the chirality of a handlebody-link by using these invariants. In [3], the first author defined a weight sum invariant for handlebody-links by using Mochizuki's 3-cocycle and showed that the invariant can detect the chirality. The quandle cocycle invariant defined in this paper is a generalization of this invariant. We show that the quandle cocycle invariant is non-trivial

Received by the editors February 1, 2010.

Published electronically June 20, 2011.

AMS subject classification: 57M27, 57M15, 57M25.

Keywords: quandle cocycle invariant, knotted handlebody, spatial graph.

for the handlebody-link represented by Kinoshita's θ -curve, where we remark that the previous weight sum invariant is trivial for the handlebody-link.

103

There are two steps needed to define a quandle cocycle invariant. First we have to define a quandle coloring. It is not easy to define quandle colorings for spatial graphs and handlebody-links, since a suitable coloring condition for a vertex is unknown. In [3], the first author introduced an enhanced constituent link and defined a kei coloring, where a kei is a particular type of quandle. In this paper, we introduce a flow, which is a generalization of an enhanced constituent link. In the second step, we define a suitable quandle (co)homology and a quandle cocycle invariant. We define a new subcomplex of the rack chain complex. The quotient complex gives a (co)homology for spatial graphs and handlebody-links. We also show that our quandle cocycle invariant does not depend on the choice of the representative element of a cohomology class.

This paper consists of nine sections. In Section 2, we introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs. In Section 3, we recall the definitions of a quandle *X* and an *X*-set and define the type of a quandle. In Section 4, we define a quandle coloring for flowed spatial graphs. In Section 5, we give some examples for the quandle coloring. In Section 6, we introduce a quandle (co)homology for spatial graphs and handlebody-links. In Section 7, we define a quandle cocycle invariant for spatial graphs and handlebody-links. In Section 8, we evaluate a quandle cocycle invariant for spatial graphs and handlebody-links. In Section 9, we prove the theorems that were introduced in Section 7.

2 A Flow of a Spatial Graph

We introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs.

Let *G* be a finite graph without vertices of degree 0. A spatial graph L = f(G) is a graph *G* embedded in the 3-sphere S^3 . Two spatial graphs are *equivalent* if one can be transformed into the other by an isotopy of S^3 .

Let $\mathcal{E}(L)$ be the set of edges of L. Let \mathcal{O}_e be the set of two orientations of an edge $e \in \mathcal{E}(L)$. Let A be an abelian group. A map $\varphi_e : \mathcal{O}_e \to A$ is an A-flow of an edge e if $\varphi_e(-o) = -\varphi_e(o)$, where -o is the inverse of $o \in \mathcal{O}_e$. An A-flow φ_e is represented by a pair $(o, s) \in \mathcal{O}_e \times A$ up to the equivalence relation $(o, s) \sim (-o, -s)$; see Figure 2.1, where an element of A is represented with an underline. We fix an orientation o_e for each edge e of L. A collection $\varphi = \{\varphi_e\}_{e \in \mathcal{E}(L)}$ is an A-flow of L if we have

$$\sum_{e \in \mathcal{E}_{\rm in}(v)} \varphi_e(o_e) = \sum_{e \in \mathcal{E}_{\rm out}(v)} \varphi_e(o_e)$$

at any vertex v, where

 $\mathcal{E}_{in}(v) := \{ e \mid e \text{ is an edge incident to } v \text{ such that } o_e \text{ points to } v \},\\ \mathcal{E}_{out}(v) := \{ e \mid e \text{ is an edge incident to } v \text{ such that } -o_e \text{ points to } v \}.$

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press

A. Ishii and M. Iwakiri

We remark that the definition of an *A*-flow of *L* does not depend on the choice of the orientations o_e . We denote by Flow(*L*; *A*) the set of *A*-flows of *L*.

An *A*-flowed spatial graph (L, φ) is a pair of a spatial graph L and $\varphi \in Flow(L; A)$. Two *A*-flowed spatial graphs are *equivalent* if one can be transformed into the other by an ambient isotopy preserving an *A*-flow. We note that the two \mathbb{Z} -flowed spatial graphs depicted in Figure 2.2 are not equivalent.

By taking suitable subsets of Flow(L; A), we obtain many spatial graph invariants from an A-flowed spatial graph invariant. In the following proposition, we give some specific constructions of spatial graph invariants.

Proposition 2.1 Let Ψ be an invariant for A-flowed spatial graphs.

• Let *L* be a spatial graph. Let *B* be a subset of *A* such that B = -B. We set

 $Flow(L; B) := \{ \varphi \in Flow(L; A) \mid \varphi_e(\mathcal{O}_e) \subset B \text{ for any edge } e \text{ of } L \}.$

Then the multiset $\{\Psi(L, \varphi) \mid \varphi \in Flow(L; B)\}$ is an invariant of L.

• Let (L, O) be an oriented spatial graph, where O is an assignment of an orientation $O(e) \in \mathcal{O}_e$ to each edge e of L. Let B be a subset of A. We set

 $Flow(L, O; B) := \{ \varphi \in Flow(L; A) \mid \varphi_e(O(e)) \in B \text{ for any edge } e \text{ of } L \}.$

Then the multiset $\{\Psi(L, \varphi) | \varphi \in Flow(L, O; B)\}$ is an invariant of (L, O).

Then, for an A-flowed spatial graph invariant Ψ , we define the spatial graph invariant Ψ^{Σ} by

$$\Psi^{\Sigma}(L) = \{\Psi(L,\varphi) \mid \varphi \in \operatorname{Flow}(L;A)\}.$$

where we note that Σ is just a symbol. Proposition 2.1 follows immediately from the fact that Flow(L; B) and Flow(L, O; B) do not depend on the embedding f for L = f(G).

We state one lemma for constructions of *A*-flowed spatial graph invariants, since they play a critical role in Proposition 2.1. Two spatial graph diagrams represent an equivalent spatial graph if and only if they are related by a finite sequence of the R1–R5 moves depicted in Figure 2.3 ([8,16,17]). Then we have the following lemma. Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies

Figure 2.4

Lemma 2.2 Two A-flowed spatial graph diagrams represent an equivalent A-flowed spatial graph if and only if they are related by a finite sequence of the A-flowed R1–R5 moves, where the A-flowed R1–R5 moves are the R1–R5 moves preserving A-flows.

A handlebody-knot is a handlebody embedded in S^3 . A handlebody-link is a disjoint union of handlebody-knots. Two handlebody-links are *equivalent* if one can be transformed into the other by an isotopy of S^3 . When a handlebody-link *H* is a regular neighborhood of a spatial graph *L*, we say that *H* is *represented* by *L*. We note that two spatial graphs representing an equivalent handlebody-link are said to be neighborhood equivalent ([14]).

An (*A-flowed*) contraction move is a local change of an (*A*-flowed) spatial graph as described in Figure 2.4, where the replacement is applied in a disk embedded in S^3 . An (*A*-flowed) R6 move is the diagrammatic move corresponding to the (*A*-flowed) contraction move. Then we have the following theorem.

Theorem 2.3 ([3]) Two spatial graphs represent an equivalent handlebody-link if and only if they are related by a finite sequence of contraction moves and ambient isotopies.

By Proposition 2.1 and Theorem 2.3, we have the following proposition.

Proposition 2.4 Let Ψ be an invariant for A-flowed spatial graphs. If Ψ is invariant under A-flowed contraction moves, then the multiset $\Psi^{\Sigma}(L)$ is an invariant of a handlebody-link represented by a spatial graph L.

We state one lemma for constructions of A-flowed spatial graph invariants that are invariant under A-flowed contraction moves. By Lemma 2.2, we have the following lemma, since we may apply an A-flowed contraction move in a small disk by an isotopy of S^3 .

Lemma 2.5 Let D_1 and D_2 be diagrams of A-flowed spatial graphs (L_1, φ_1) and (L_2, φ_2) , respectively. The following statements are equivalent:

- Two A-flowed spatial graphs (L₁, φ₁) and (L₂, φ₂) are related by a finite sequence of A-flowed contraction moves and ambient isotopies preserving A-flows.
- Two diagrams D_1 and D_2 are related by a finite sequence of the A-flowed R1–R6 moves.

Remark 2.6 We do not need all spatial graphs to represent all handlebody-links. Spatial trivalent graphs are sufficient to represent all handlebody-links, where a spatial trivalent graph may contain circle components. An (*A-flowed*) *IH-move* is a local change of an (*A*-flowed) spatial trivalent graph as described in Figure 2.5, where the replacement is applied in a disk embedded in S^3 . Then, in Theorem 2.3, Proposition 2.4 and Lemma 2.5, we can replace spatial graphs and contraction moves with spatial trivalent graphs and IH-moves, respectively (see [3]).

3 A Quandle

We recall the definitions of a quandle *X* and an *X*-set, and define the type of a quandle.

A *quandle* ([6,9]) is a non-empty set X with a binary operation $* : X \times X \rightarrow X$ satisfying the following axioms:

Q₁. For any $a \in X$, a * a = a;

Q₂. For any $a \in X$, the map $S_a : X \to X$ defined by $S_a(x) = x * a$ is a bijection; Q₃. For any $a, b, c \in X$, (a * b) * c = (a * c) * (b * c).

We present some examples of quandles. A *trivial quandle* (X, *) is a non-empty set X with the binary operation defined by a * b = a. The *dihedral quandle of order p*, denoted by $(R_p, *)$, is the quandle consisting of the set $\mathbb{Z}_p(:=\mathbb{Z}/p\mathbb{Z})$ with the binary operation defined by a*b = 2b-a. The *tetrahedral quandle*, denoted by $(S_4, *)$, is the quandle consisting of the set $\mathbb{Z}_2[t, t^{-1}]/(t^2 + t + 1)$ with the binary operation defined by a * b = ta + (1 - t)b. In general, an *Alexander quandle* (M, *) is a Λ -module M with the binary operation defined by a*b = ta + (1-t)b, where $\Lambda := \mathbb{Z}[t, t^{-1}]$. Then the tetrahedral quandle is an Alexander quandle. We also remark that the dihedral quandle $(R_p, *)$ is isomorphic to the Alexander quandle $(\mathbb{Z}_p[t, t^{-1}]/(t + 1), *)$ as

quandles. An *n*-fold conjugation quandle (G, *) is a group G with the binary operation defined by $a * b = b^{-n}ab^n$.

107

The *associated group* of a quandle *X*, denoted by As(X), is defined by

$$As(X) = \langle x \in X \mid x * y = y^{-1}xy \ (x, y \in X) \rangle.$$

An *X*-set is a set *Y* equipped with an action of the associated group As(X) from the right. We denote by $y \tilde{*} g$ the image of an element $y \in Y$ by the action $g \in As(X)$. Then we have the following:

 \widetilde{Q}_2 . For any $a \in X$, the map $\widetilde{S}_a : Y \to Y$ defined by $\widetilde{S}_a(y) = y \tilde{*} a$ is a bijection; \widetilde{Q}_3 . For any $y \in Y$, $a, b \in X$, $(y \tilde{*} a) \tilde{*} b = (y \tilde{*} b) \tilde{*} (a * b)$.

We show examples for *X*-sets. We set Y := X and $y \notin a := y * a$. Then (Y, #) is an *X*-set. We set $Y := \{y\}$ and y # a := y. Then (Y, #) is an *X*-set.

For $i \in \mathbb{Z}$, we define $a *^i b := S_b^i(a)$, $y *^i a := \tilde{S}_a^i(y)$. The *type* of a quandle X is defined by

$$\operatorname{type} X := \min\{i \in \mathbb{Z}_{>0} \mid a *^{i} b = a \text{ for any } a, b \in X\}.$$

We set type $X := \infty$ if we do not have such a positive integer *i*. If *X* is finite, then type $X < \infty$. A trivial quandle is of type 1. The dihedral quandle $(R_p, *)$ is of type 2. A quandle of type 2 is called kei ([15]). The tetrahedral quandle $(S_4, *)$ is of type 3. We note that a quandle of type *n* is an *n*-quandle ([7]). In this paper, we set $\mathbb{Z}_{\infty} := \mathbb{Z}$. Then $a *^i b$ is well defined for $i \in \mathbb{Z}_{type X}$. We define

type
$$X_Y := \min\{i \in \mathbb{Z}_{>0} \mid a *^i b = a, y *^i a = y \text{ for any } a, b \in X, y \in Y\}.$$

We set type $X_Y := \infty$ if we do not have such a positive integer *i*. Then $a *^i b$ and $y \tilde{*}^i a$ are well-defined for $i \in \mathbb{Z}_{\text{type } X_Y}$.

4 A Quandle Coloring for Flowed Spatial Graphs

We define a quandle coloring for flowed spatial graphs. The number of quandle colorings is an invariant for flowed spatial graphs. We also define a coloring by using a quandle *X* and an *X*-set, which is used to define a quandle cocycle invariant in Section 7.

Let *X* be a quandle. Let *D* be a diagram of a $\mathbb{Z}_{\text{type }X}$ -flowed spatial graph (L, φ) . We denote by $\mathcal{A}(D)$ the set of arcs of *D*, where an arc is a piece of a curve such that its endpoint is an undercrossing or a vertex.

We choose an orientation $O(e) \in \mathcal{O}_e$ for each edge $e \in \mathcal{E}(L)$. Then (L, O, φ) is a $\mathbb{Z}_{type X}$ -flowed oriented spatial graph. For an arc α that originates from an edge e, we put $O(\alpha) := O(e)$, $\varphi_\alpha := \varphi_e$. To represent an orientation O(e) in D, we may use the co-orientation obtained by rotating the orientation $O(e) \pi/2$ counterclockwise. We denote it by the same symbol $O(\alpha)$. We denote by χ_0 the over-arc at a crossing χ of D. We denote by χ_1, χ_2 the under-arcs at χ such that the co-orientation $O(\chi_0)$ points to χ_2 .

An *X*-coloring of *D* is a map $C: \mathcal{A}(D) \to X$ satisfying the following conditions (Figure 4.1):

- C₁. For a crossing χ , we have $C(\chi_1) *^{\varphi_{\chi_0}(O(\chi_0))} C(\chi_0) = C(\chi_2)$.
- C₂. For a vertex ω , we have $C(\omega_1) = \cdots = C(\omega_d)$, where $\omega_1, \ldots, \omega_d$ are the arcs incident to ω .

An *X*-coloring *C* does not depend on the choice of the orientations O(e), since the equality in C_1 is equivalent to the equality

$$C(\chi_2) *^{\varphi_{\chi_0}(-O(\chi_0))} C(\chi_0) = C(\chi_1).$$

We denote by $Col_X(D)$ the set of *X*-colorings of *D*. For two diagrams *D* and *E* that locally differ, we denote by A(D, E) the set of arcs that *D* and *E* share.

Theorem 4.1 Let X be a quandle. Let D be a diagram of a $\mathbb{Z}_{type X}$ -flowed spatial graph (L, φ) . Let E be a diagram obtained by applying one of the $\mathbb{Z}_{type X}$ -flowed R1–R6 moves to D once. For $C \in Col_X(D)$, there is a unique X-coloring $C_{D,E} \in Col_X(E)$ such that $C|_{\mathcal{A}(D,E)} = C_{D,E}|_{\mathcal{A}(D,E)}$.

By Lemma 2.5, $\#Col_X(D)$ is an invariant of (L, φ) , which is invariant under $\mathbb{Z}_{\text{type }X}$ -flowed contraction moves, where #S is the number of elements in a set S. Then we put $\#Col_X(L, \varphi) := \#Col_X(D)$. When $\#Col_X(L, \varphi) = \infty$, the number of nontrivial X-colorings of D may work, where an X-coloring C of D is *trivial* if $C : \mathcal{A}(D) \to X$ is a constant map. We call $C(\xi)$ the *color* of ξ .

Proof of Theorem 4.1 The color of an edge in $\mathcal{A}(E) - \mathcal{A}(D, E)$ is uniquely determined by the colors of edges in $\mathcal{A}(D, E)$, since we have $a*^{s}a = a$ for the $\mathbb{Z}_{type X}$ -flowed R1, R4 moves, and

$$(\cdots ((a *^{i_1} b) *^{i_2} b) \cdots) *^{i_l} b = a \quad (i_1 + i_2 + \cdots + i_l = 0 \text{ in } \mathbb{Z}_{\text{type } X})$$

for the $\mathbb{Z}_{\text{type } X}$ -flowed R2, R5 moves, and

$$(a * b) * c = (a * c) * (b * c)$$

for the $\mathbb{Z}_{type X}$ -flowed R3 move, and C_2 for the $\mathbb{Z}_{type X}$ -flowed R6 moves.

We denote by $\Re(D)$ the set of connected regions of the complement of the underlying immersed graph of *D*. An *X*_{*Y*}*-coloring* of *D* is a map

$$C: \mathcal{A}(D) \cup \mathcal{R}(D) \to X \cup Y$$

such that $C|_{\mathcal{A}(D)} \colon \mathcal{A}(D) \to X$ is an X-coloring of D and that $C|_{\mathcal{R}(D)} \colon \mathcal{R}(D) \to Y$ satisfies the following condition:

109

Figure 4.2

C₃. For regions α_1, α_2 sharing an arc α such that the co-orientation $O(\alpha)$ points to α_2 , we have

$$C(\alpha_1)\,\tilde{*}^{\varphi_\alpha(O(\alpha))}C(\alpha) = C(\alpha_2)$$

(see Figure 4.2). An X_Y -coloring *C* does not depend on the choice of the orientations O(e), since the equality in C₃ is equivalent to the equality

$$C(\alpha_2)\,\tilde{*}^{\varphi_\alpha(-O(\alpha))}C(\alpha)=C(\alpha_1).$$

We denote by $Col_X(D)_Y$ the set of X_Y -colorings of D. For two diagrams D and E that locally differ, we denote by $\mathcal{R}(D, E)$ the set of regions that D and E share. By \widetilde{Q}_3 , colors of regions are uniquely determined by those of arcs and one region. Therefore, by Theorem 4.1 we have the following theorem.

Theorem 4.2 Let X be a quandle, and let Y be an X-set. Let D be a diagram of a $\mathbb{Z}_{type X_Y}$ -flowed spatial graph (L, φ) . Let E be a diagram obtained by applying one of the $\mathbb{Z}_{type X_Y}$ -flowed R1–R6 moves to D once. For $C \in Col_X(D)_Y$, there is a unique X_Y -coloring $C_{D,E} \in Col_X(E)_Y$ such that

$$C|_{\mathcal{A}(D,E)} = C_{D,E}|_{\mathcal{A}(D,E)}$$
 and $C|_{\mathcal{R}(D,E)} = C_{D,E}|_{\mathcal{R}(D,E)}$.

This theorem implies that $\#Col_X(D)_Y$ is an invariant of (L, φ) . Unfortunately, this invariant is not important, since we have the equality $\#Col_X(D)_Y = \#Y \#Col_X(D)$. Theorem 4.2 is used to define a quandle cocycle invariant for flowed spatial graphs in Section 7.

5 Examples for a Quandle Coloring

We give some examples for a quandle coloring. We represent the multiplicity of an element of a multiset by a subscript with an underline. For example, $\{a_{\underline{1}}, b_{\underline{2}}, c_{\underline{3}}\}$ represents the multiset $\{a, b, b, c, c, c\}$.

Let K^0 and K^1 be the spatial handcuff graphs as shown in Figure 5.1, where we ignore flows and colors. We cannot use link invariants to distinguish K^0 from K^1 , since the constituent links of these spatial graphs coincide. The following example shows that K^0 and K^1 are not equivalent.

Example 5.1 For $s, t \in \mathbb{Z}_2$, $a, b \in R_3$, we denote by $C_{s,t}^0(a, b)$ (resp. $C_{s,t}^1(a)$) the R_3 -coloring of the \mathbb{Z}_2 -flowed spatial graph diagram $D_{s,t}^0$ (resp. $D_{s,t}^1$) corresponding to

A. Ishii and M. Iwakiri

Figure 5.1

 K^0 (resp. K^1) depicted in Figure 5.1. We note that type $R_3 = 2$. We have the equalities

$$Col_{R_3}(D_{1,1}^0) = \{C_{1,1}^0(a,b) \mid a, b \in R_3\}, \qquad \#Col_{R_3}(D_{1,1}^0) = 9, \\ Col_{R_3}(D_{s,t}^0) = \{C_{s,t}^0(a,a) \mid a \in R_3\}, \qquad \#Col_{R_3}(D_{s,t}^0) = 3$$

for $(s,t) \in \mathbb{Z}_2^2 - \{(1,1)\}$, which imply $\#Col_{R_3}^{\Sigma}(K^0) = \{9,3_{\underline{3}}\}$. We have the equalities

$$Col_{R_3}(D^1_{s,t}) = \{C^1_{s,t}(a) \mid a \in R_3\},$$
 # $Col_{R_3}(D^1_{s,t}) = 3$

for $(s,t) \in \mathbb{Z}_2^2$, which imply $\#Col_{R_3}^{\Sigma}(K^1) = \{3_{\underline{4}}\}$. Thus K^0 and K^1 are not equivalent. Furthermore, K^0 and K^1 represent nonequivalent handlebody-links.

Let K^2 and K^3 be the spatial θ -curves as shown in Figure 5.2, where we ignore flows and colors. The Yamada polynomials $R(K^2)$ and $R(K^3)$ coincide:

$$R(K^{2}) = R(K^{3}) = (A^{4} - A^{2} + A + 1 - 2A^{-1} + A^{-2} + A^{-3} - A^{-4})^{2}R(\theta)$$
$$R(\theta) = -A^{2} - A - 2 - A^{-1} - A^{-2}.$$

We refer the reader to [16] for the definition and evaluation of the Yamada polynomial. The following example shows that K^2 and K^3 are not equivalent.

Example 5.2 For $s, t \in \mathbb{Z}_2$, $a, b \in R_3$, we denote by $C_{s,t}^2(a, b)$ (resp. $C_{s,t}^3(a)$) the R_3 coloring of the \mathbb{Z}_2 -flowed spatial graph diagram $D_{s,t}^2$ (resp. $D_{s,t}^3$) corresponding to K^2 (resp. K^3) depicted in Figure 5.2. We note that type $R_3 = 2$. We have the equalities

$$\begin{aligned} Col_{R_3}(D_{1,1}^2) &= \{C_{1,1}^2(a,b) \mid a, b \in R_3\}, \\ Col_{R_3}(D_{s,t}^2) &= \{C_{s,t}^2(a,a) \mid a \in R_3\}, \end{aligned} \qquad \begin{aligned} \#Col_{R_3}(D_{1,1}^2) &= 9, \\ \#Col_{R_3}(D_{s,t}^2) &= \{C_{s,t}^2(a,a) \mid a \in R_3\}, \end{aligned}$$

for $(s,t) \in \mathbb{Z}_2^2 - \{(1,1)\}$, which imply $\#Col_{R_3}^{\Sigma}(K^2) = \{9,3_{\underline{3}}\}$. We have the equalities

$$Col_{R_3}(D_{s,t}^3) = \{C_{s,t}^3(a) \mid a \in R_3\},$$
 $\#Col_{R_3}(D_{s,t}^3) = 3$

for $(s,t) \in \mathbb{Z}_2^2$, which imply $\#Col_{R_3}^{\Sigma}(K^3) = \{3_{\underline{4}}\}$. Thus K^2 and K^3 are not equivalent. Furthermore, K^2 and K^3 represent nonequivalent handlebody-links.

Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies

111

Figure 5.2

6 Quandle Homologies

Carter, Jelsovsky, Kamada, Langford, and Saito defined the quandle homology group $H^Q_*(X; A)$ and the quandle cohomology group $H^*_Q(X; A)$, and introduced quandle cocycle invariants. We note that a quandle 2-cocycle ϕ satisfies

$$(6.1) \qquad \qquad \phi(a,a) = 0,$$

(6.2)
$$\phi(a, c) + \phi(a * c, b * c) = \phi(a, b) + \phi(a * b, c)$$

for any *a*, *b*, *c* \in *X*, and that a quandle 3-cocycle θ satisfies

(6.3)
$$\theta(a, a, b) = \theta(a, b, b) = 0.$$

(6.4)
$$\theta(a,c,d) + \theta(a*c,b*c,d) + \theta(a,b,c) =$$

$$\theta(a*b,c,d) + \theta(a,b,d) + \theta(a*d,b*d,c*d)$$

for any $a, b, c, d \in X$. For the details we refer the reader to [1]. In this section, we introduce a new (co)homology theory to define a quandle cocycle invariant for $\mathbb{Z}_{type X_Y}$ -flowed spatial graphs.

Let *X* be a quandle, and let *Y* be an *X*-set. Let $C_n^R(X)_Y$ be the free abelian group generated by (n + 1)-tuples (y, x_1, \ldots, x_n) , where $y \in Y$ and $x_1, \ldots, x_n \in X$ if $n \ge 0$, and let $C_n^R(X)_Y = 0$ otherwise. Put

$$(y, x_1, \dots, x_n)_{i,j} := (y \,\tilde{*}^j x_i, x_1 \,*^j x_i, \dots, x_{i-1} \,*^j x_i, x_{i+1}, \dots, x_n),$$

$$(y, x_1, \dots, x_n)_{i,j}^+ := (y \,\tilde{*}^j x_i, x_1 \,*^j x_i, \dots, x_{i-1} \,*^j x_i, x_i, \dots, x_n).$$

We define a homomorphism $\partial_n : C_n^R(X)_Y \to C_{n-1}^R(X)_Y$ by

$$\partial_n(y, x_1, \dots, x_n) = \sum_{i=1}^n (-1)^i \{ (y, x_1, \dots, x_n)_{i,0} - (y, x_1, \dots, x_n)_{i,1} \}$$

for n > 0, and $\partial_n = 0$ otherwise. Then $C^R_*(X)_Y = \{C^R_n(X)_Y, \partial_n\}$ is a chain complex, since $\partial_{n-1} \circ \partial_n = 0$.

Let $D_n^Q(X)_Y$ be the subgroup of $C_n^R(X)_Y$ generated by the elements of

$$\{(y, x_1, \ldots, x_n) \in Y \times X^n \mid x_i = x_{i+1} \text{ for some } i\}$$

if n > 1, and let $D_n^Q(X)_Y = 0$ otherwise. Put $C_n^Q(X)_Y = C_n^R(X)_Y / D_n^Q(X)_Y$. Since $\partial_n(D_n^Q(X)_Y) \subset D_{n-1}^Q(X)_Y$, $C_*^Q(X)_Y = \{C_n^Q(X)_Y, \partial_n\}$ is a chain complex, where we denote the induced homomorphism by the same symbol ∂_n .

Let $D_n^I(X)_Y$ be the subgroup of $C_n^R(X)_Y$ generated by the elements of

$$\left\{\sum_{j=0}^{\text{type } X_Y-1} (y, x_1, \ldots, x_n)_{i,j}^+ \mid (y, x_1, \ldots, x_n) \in Y \times X^n, \ i = 1, \ldots, n\right\}$$

if n > 0 and type $X_Y < \infty$, and let $D_n^I(X)_Y = 0$ otherwise. Then we have the following lemma.

Lemma 6.1 We have $\partial_n(D_n^I(X)_Y) \subset D_{n-1}^I(X)_Y$.

Proof We may suppose that n > 0 and type $X_Y < \infty$. Let

$$\sigma = \sum_{j=0}^{\operatorname{type} X_Y - 1} (y, x_1, \dots, x_n)_{i,j}^+ \in D_n^I(X)_Y,$$

where $i \in \{1, \ldots, n\}$. We have $\sigma_{i,0} = \sigma_{i,1}$ by the equalities

$$a *^{\operatorname{type} X_Y} b = a, \quad y \,\tilde{*}^{\operatorname{type} X_Y} a = y$$

for any $a, b \in X$, $y \in Y$. By (a * b) * c = (a * c) * (b * c), we have

$$((y, x_1, \dots, x_n)_{i,j}^+)_{k,1} = \begin{cases} ((y, x_1, \dots, x_n)_{k,1})_{i,j}^+ & \text{if } k > i, \\ ((y, x_1, \dots, x_n)_{k,1})_{i-1,j}^+ & \text{if } k < i. \end{cases}$$

Then $\sigma_{k,1} \in D_{n-1}^{I}(X)_{Y}$ if $k \neq i$, where

$$\sigma_{k,l} = \sum_{j=0}^{\operatorname{type} X_Y - 1} \left((y, x_1, \dots, x_n)_{i,j}^+ \right)_{k,l}.$$

Since $\sigma_{k,0} \in D_{n-1}^{I}(X)_{Y}$ for $k \neq i$, we have

$$\partial_n(\sigma) = \sum_{k=1}^{i-1} (-1)^k \sigma_{k,0} + (-1)^i \sigma_{i,0} + \sum_{k=i+1}^n (-1)^k \sigma_{k,0} - \sum_{k=1}^{i-1} (-1)^k \sigma_{k,1} - (-1)^i \sigma_{i,1} - \sum_{k=i+1}^n (-1)^k \sigma_{k,1} \in D_{n-1}^I(X)_Y.$$

We put $C_n^I(X)_Y = C_n^R(X)_Y / (D_n^Q(X)_Y + D_n^I(X)_Y)$. Then $C_*^I(X)_Y = \{C_n^I(X)_Y, \partial_n\}$ is a chain complex. For an abelian group *A*, we define the chain and cochain complexes

113

$C^W_*(X;A)_Y = C^W_*(X)_Y \otimes A,$	$\partial = \partial \otimes \mathrm{id};$
$C_W^*(X;A)_Y = \operatorname{Hom}(C_*^W(X)_Y,A),$	$\delta = \operatorname{Hom}(\partial, \operatorname{id})$

where *W* is *R*, *Q*, or *I*. We denote by $H_n^W(X; A)_Y$ and $H_W^n(X; A)_Y$ the *n*-th homology group and the *n*-th cohomology group of $C_*^W(X; A)_Y$ and $C_W^*(X; A)_Y$, respectively. We note that, if type $X_Y = \infty$, then $C_*^I(X; A)_Y = C_*^Q(X; A)_Y$ and $C_I^*(X; A)_Y = C_O^Q(X; A)_Y$.

A map $f \in C^2_R(X;A)_Y$ induces a 2-cocycle of $C^*_Q(X;A)_Y$ if and only if f satisfies the conditions

(6.5)
$$f(y, a, a) = 0,$$

(6.6)
$$f(y, b, c) + f(y \tilde{*} b, a * b, c) + f(y, a, b)$$

$$= f(y \tilde{\ast} a, b, c) + f(y, a, c) + f(y \tilde{\ast} c, a \ast c, b \ast c),$$

for any $y \in Y$ and $a, b, c \in X$. We suppose that type $X_Y < \infty$. A map $f \in C^2_R(X; A)_Y$ induces a 2-cocycle of $C^*_I(X; A)_Y$ if and only if f satisfies the conditions (6.5), (6.6) and

(6.7)
$$\sum_{i=0}^{\text{type } X_Y - 1} f(y \,\tilde{\ast}^i a, a, b) = \sum_{i=0}^{\text{type } X_Y - 1} f(y \,\tilde{\ast}^i b, a \,\ast^i b, b) = 0,$$

for any $y \in Y$ and $a, b \in X$. Then, by the equalities (6.1)–(6.4), we have the following proposition, which is useful in finding 2-cocycles of $C_I^*(X; A)_Y$.

Proposition 6.2 Let X be a quandle such that type $X < \infty$. For a quandle 2-cocycle ϕ , we define $1 \otimes \phi \in C_R^2(X;A)_{\{y\}}$ by $(1 \otimes \phi)(y, a, b) = \phi(a, b)$ for $a, b \in X$. Then $1 \otimes \phi$ is a 2-cocycle of $C_O^*(X;A)_{\{y\}}$. Furthermore, if ϕ satisfies

type
$$X\phi(a,b) = \sum_{i=0}^{\text{type } X-1} \phi(a*^i b,b) = 0$$

for any $a, b \in X$, then $1 \otimes \phi$ is a 2-cocycle of $C_I^*(X; A)_{\{y\}}$. A quandle 3-cocycle θ is a 2-cocycle of $C_O^*(X; A)_X$. Furthermore, if θ satisfies

$$\sum_{i=0}^{\text{type } X-1} \theta(a *^{i} b, b, c) = \sum_{i=0}^{\text{type } X-1} \theta(a *^{i} c, b *^{i} c, c) = 0$$

for any $a, b, c \in X$, then θ is a 2-cocycle of $C_I^*(X; A)_X$.

Example 6.3 (dihedral quandle R_p) Let p be an odd prime. The quandle cohomology group $H^3_Q(R_p; \mathbb{Z}_p) \cong \mathbb{Z}_p$ is generated by the cohomology class $[\theta_p]$ defined by

$$\theta_p(x, y, z) = (x - y) \frac{y^p + (2z - y)^p - 2z^p}{p},$$

where we remark that the right-hand side of the equality represents a polynomial with coefficients in \mathbb{Z}_p . We call θ_p *Mochizuki's* 3-*cocycle* [10]. We note that type $R_p = 2$. Since we have the equalities

$$\theta_p(x, y, z) + \theta_p(x * y, y, z) = \left((x - y) + (y - x) \right) \frac{y^p + (2z - y)^p - 2z^p}{p} = 0,$$

$$\theta_p(x, y, z) + \theta_p(x * z, y * z, z) = \left((x - y) + (y - x) \right) \frac{y^p + (2z - y)^p - 2z^p}{p} = 0,$$

 θ_p is a 2-cocycle of $C_I^*(R_p; \mathbb{Z}_p)_{R_p}$.

T. Satoh and the authors discussed the cohomology group $H_I^3(R_p; \mathbb{Z}_p)_{R_p}$ in Osaka, and showed that $H_I^3(R_3; \mathbb{Z}_3)_{R_3} \cong \mathbb{Z}_3$ by direct calculation.

Example 6.4 (tetrahedral quandle S_4) Put $A := \mathbb{Z}_2[t, t^{-1}]/(t^2 + t + 1)$. The quandle cohomology group $H^3_Q(S_4; A) \cong A^3$ is generated by the cohomology classes $[f_1], [f_2], [f_3]$ defined by

$$f_1(x, y, z) = (x - y)(y - z)^2,$$

$$f_2(x, y, z) = t(x - y)(y - z)z,$$

$$f_3(x, y, z) = t^2(x - y)^2(y - z)^2z^2$$

(see [11]). We note that type $S_4 = 3$. Since we have the equalities

$$\begin{aligned} f_2(x, y, z) + f_2(x * y, y, z) + f_2(x *^2 y, y, z) \\ &= t \left((x - y) + (tx - ty) + (t^2 x - t^2 y) \right) (y - z) z \\ &= 0, \\ f_2(x, y, z) + f_2(x * z, y * z, z) + f_2(x *^2 z, y *^2 z, z) \\ &= t(x - y)(y - z) z + t(tx - ty)(ty - tz) z + t(t^2 x - t^2 y)(t^2 y - t^2 z) z \\ &= 0, \end{aligned}$$

 f_2 is a 2-cocycle of $C_I^*(S_4; A)_{S_4}$. Similarly, f_3 is a 2-cocycle of $C_I^*(S_4; A)_{S_4}$.

7 A Quandle Cocycle Invariant for Flowed Spatial Graphs

A quandle cocycle invariant is a weight sum invariant. We define the Boltzmann weight at a crossing, and then we define a quandle cocycle invariant for flowed spatial graphs.

Let *X* be a quandle, and let *Y* be an *X*-set. Let *f* be a 2-cocycle of $C_I^*(X; A)_Y$. Let *D* be a diagram of a $\mathbb{Z}_{\text{type } X_Y}$ -flowed spatial graph (L, φ) . We choose an orientation $O(e) \in \mathcal{O}_e$ for each edge $e \in \mathcal{E}(L)$ (such that $\varphi_e(O(e)) \ge 0$ if type $X_Y = \infty$). Then (L, O, φ) is a $\mathbb{Z}_{\text{type } X_Y}$ -flowed oriented spatial graph. We denote by $\epsilon(\chi) \in \{1, -1\}$ the sign of a crossing χ of *D*. We denote by $\chi_{i,1}, \chi_{i,2}$ the regions sharing a crossing χ and the under-arc χ_i such that the co-orientation $O(\chi_i)$ points to $\chi_{i,2}$. We put

$$\bar{f}(y, a, s, b, t) := \sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f((y \, \tilde{*}^i a) \, \tilde{*}^j b, a \, *^j b, b),$$

where we remark that $\overline{f}(y, a, s, b, t) = 0$ if s = 0 or t = 0. For an X_Y -coloring $C \in Col_X(D)_Y$, the Boltzmann weight $B_f(\chi; C)$ at a crossing χ is defined by

(7.1)
$$B_f(\chi;C) = \epsilon(\chi) \overline{f} \left(C(\chi_{1,1}), C(\chi_1), \varphi_{\chi_1} \left(O(\chi_1) \right), C(\chi_0), \varphi_{\chi_0} \left(O(\chi_0) \right) \right)$$

where we regard $\varphi_{\chi_1}(O(\chi_1))$ and $\varphi_{\chi_0}(O(\chi_0))$ as integers in $\{0, 1, \dots, \text{type } X_Y - 1\}$ (see Figure 7.1).

Lemma 7.1 The Boltzmann weight $B_f(\chi; C)$ does not depend on the choice of the orientations O(e).

Proof If $\varphi_{\chi_1}(O(\chi_1)) = 0$ or $\varphi_{\chi_0}(O(\chi_0)) = 0$, then the Boltzmann weight $B_f(\chi; C) = 0$ does not depend on the choice of the orientations, since we have $\varphi_{\chi_1}(-O(\chi_1)) = 0$ or $\varphi_{\chi_0}(-O(\chi_0)) = 0$. Then we may suppose that $\varphi_{\chi_1}(O(\chi_1)) \neq 0$, $\varphi_{\chi_0}(O(\chi_0)) \neq 0$ and type $X_Y < \infty$. For the orientations $O(\chi_0), -O(\chi_1), -O(\chi_2)$, the Boltzmann weight $B_f(\chi; C)$ is given by

(7.2)
$$-\epsilon(\chi)\tilde{f}\Big(C(\chi_{1,2}),C(\chi_1),\varphi_{\chi_1}\big(-O(\chi_1)\big),C(\chi_0),\varphi_{\chi_0}\big(O(\chi_0)\big)\Big).$$

For the orientations $-O(\chi_0)$, $O(\chi_1)$, $O(\chi_2)$, the Boltzmann weight $B_f(\chi; C)$ is given by

(7.3)
$$-\epsilon(\chi)\bar{f}\Big(C(\chi_{2,1}),C(\chi_2),\varphi_{\chi_2}\big(O(\chi_2)\big),C(\chi_0),\varphi_{\chi_0}\big(-O(\chi_0)\big)\Big).$$

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press

For the orientations $-O(\chi_0)$, $-O(\chi_1)$, $-O(\chi_2)$, the Boltzmann weight $B_f(\chi; C)$ is given by

(7.4)
$$\epsilon(\chi) f(C(\chi_{2,2}), C(\chi_2), \varphi_{\chi_2}(-O(\chi_2)), C(\chi_0), \varphi_{\chi_0}(-O(\chi_0)))$$

The values (7.1)–(7.4) coincide by the cocycle condition (6.7) and the following equalities:

$$C(\chi_{1,2}) = y \,\tilde{*}^{s}a, \, C(\chi_{2,1}) = y \,\tilde{*}^{t}b, \, C(\chi_{2,2}) = (y \,\tilde{*}^{s}a) \,\tilde{*}^{t}b,$$

$$C(\chi_{2}) = a \,*^{t}b,$$

$$\varphi_{\chi_{1}}(-O(\chi_{1})) = \text{type} \, X_{Y} - s, \, \varphi_{\chi_{2}}(O(\chi_{2})) = s,$$

$$\varphi_{\chi_{2}}(-O(\chi_{2})) = \text{type} \, X_{Y} - s, \, \varphi_{\chi_{0}}(-O(\chi_{0})) = \text{type} \, X_{Y} - t,$$

where $y = C(\chi_{1,1})$, $a = C(\chi_1)$, $s = \varphi_{\chi_1}(O(\chi_1))$, $b = C(\chi_0)$, and $t = \varphi_{\chi_0}(O(\chi_0))$. For example, the values (7.1) and (7.2) coincide, since we have

$$-\sum_{i=0}^{\text{type } X_Y-s-1} \sum_{j=0}^{t-1} f\Big(\left((y\bar{*}^{i}a)\bar{*}^{j}a \right) \bar{*}^{j}b, a *^{j}b, b \Big)$$

$$= -\sum_{i=s}^{\text{type } X_Y-1} \sum_{j=0}^{t-1} f\big((y\bar{*}^{i}a)\bar{*}^{j}b, a *^{j}b, b \big)$$

$$= \sum_{j=0}^{t-1} \left(-\sum_{i=s}^{\text{type } X_Y-1} f((y\bar{*}^{j}b)\bar{*}^{i}(a *^{j}b), a *^{j}b, b) \right)$$

$$= \sum_{j=0}^{t-1} \sum_{i=0}^{s-1} f\big((y\bar{*}^{j}b)\bar{*}^{i}(a *^{j}b), a *^{j}b, b \big)$$

$$= \sum_{i=0}^{s-1} \sum_{j=0}^{t-1} f\big((y\bar{*}^{i}a)\bar{*}^{j}b, a *^{j}b, b \big).$$

We set

$$B_f(C) := \sum_{\chi} B_f(\chi; C),$$

where χ runs over all crossings of *D*. Then we define the multiset

$$\Phi_f(D) := \{B_f(C) \mid C \in Col_X(D)_Y\}.$$

Theorem 7.2 Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of $C_I^*(X; A)_Y$. Let D be a diagram of a $\mathbb{Z}_{type X_Y}$ -flowed spatial graph (L, φ) . The multiset $\Phi_f(D)$ is an invariant of (L, φ) , which is invariant under $\mathbb{Z}_{type X_Y}$ -flowed contraction moves.

Then we put $\Phi_f(L, \varphi) := \Phi_f(D)$.

Theorem 7.3 The invariant $\Phi_f(L, \varphi)$ does not depend on the choice of a representative element of $[f] \in H^2_I(X; A)_Y$.

8 An Example for a Quandle Cocycle Invariant

We give an example for a quandle cocycle invariant. Let *K* be Kinoshita's θ -curve as shown in Figure 8.1, where we ignore flows and colors. Kinoshita's θ -curve has the following significant property. When we remove any one edge from Kinoshita's θ -curve, then the remainder is trivial. The following example shows that *K* is nontrivial. We note that the invariant introduced in [3] does not work for this spatial graph.

Example 8.1 Put $X := S_4$, $Y := S_4$. For $r, s \in \mathbb{Z}_3$, $y, a, b \in S_4$, we denote by $C_{r,s}(y, a, b)$ the S_4 -coloring of the \mathbb{Z}_3 -flowed spatial graph diagram $D_{r,s}$ depicted in Figure 8.1. We note that type $X_Y = \text{type } S_4 = 3$. We have

$$Col_X(D_{1,1})_Y = \{C_{1,1}(y, a, b) \mid y, a, b \in S_4\},\$$
$$Col_X(D_{2,2})_Y = \{C_{2,2}(y, a, b) \mid y, a, b \in S_4\},\$$
$$Col_X(D_{r,s})_Y = \{C_{r,s}(y, a, a) \mid y, a \in S_4\}$$

for $(r, s) \in \mathbb{Z}_3^2 - \{(1, 1), (2, 2)\}.$

Let f_2 be the 2-cocycle of $C_I^*(S_4; A)_{S_4}$ defined in Example 6.4. By the equality

$$B_{f_2}(C_{1,1}(y, a, b)) = t(a - b)^3 = \begin{cases} 0 & \text{if } a = b, \\ t & \text{otherwise} \end{cases}$$

we have $\Phi_{f_2}(D_{1,1}) = \{0_{\underline{16}}, t_{\underline{48}}\}$, where we refer the reader to Section 5 for the notation of the multiset $\{0_{16}, t_{48}\}$. By the equality

$$B_{f_2}(C_{2,2}(y, a, b)) = t(a - b)^3 = \begin{cases} 0 & \text{if } a = b, \\ t & \text{otherwise,} \end{cases}$$

we have $\Phi_{f_2}(D_{2,2}) = \{0_{\underline{16}}, t_{\underline{48}}\}$. By the equality $B_{f_2}(C_{r,s}(y, a, a)) = 0$, we have $\Phi_{f_2}(D_{r,s}) = \{0_{\underline{16}}\}$ for $(r, s) \in \mathbb{Z}_3^2 - \{(1, 1), (2, 2)\}$. Then we have

$$\Phi_{f_2}^{\Sigma}(K) = \{ \Phi_{f_2}(D_{r,s}) \mid r, s \in \mathbb{Z}_3 \} = \{ \{ 0_{\underline{16}}, t_{\underline{48}} \}_{\underline{2}}, \{ 0_{\underline{16}} \}_{\underline{7}} \} \neq \{ \{ 0_{\underline{16}} \}_{\underline{9}} \},\$$

where we remark that $\Phi_{f_2}^{\Sigma}$ of the trivial spatial θ -curve is $\{\{0_{\underline{16}}\}_{\underline{9}}\}$. Thus *K* is non-trivial. Furthermore, *K* represents a nontrivial handlebody-link.

9 Proofs of Theorems 7.2 and 7.3

We state one lemma and prove Theorems 7.2 and 7.3 for type $X_Y < \infty$. The proofs for type $X_Y = \infty$ are easier than those for type $X_Y < \infty$.

We suppose that type $X_Y < \infty$. Let (L, O, φ) be a $\mathbb{Z}_{type X_Y}$ -flowed oriented spatial graph, and let D be a diagram of (L, O, φ) . We denote by \overline{D} the diagram obtained by replacing an edge $e \in \mathcal{E}(L)$ with $\varphi_e(O(e))$ parallel edges if $\varphi_e(O(e)) \neq 0$ and two antiparallel edges otherwise as shown in Figure 9.1. Let $(\overline{L}, \overline{O})$ be the oriented

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press

Figure 8.1

spatial graph represented by \overline{D} . We define a $\mathbb{Z}_{\text{type }X_Y}$ -flow $\overline{\varphi}$ of \overline{L} by $\overline{\varphi}_e(\overline{O}(e)) = 1$ for $e \in \mathcal{E}(\overline{L})$. We denote the $\mathbb{Z}_{\text{type }X_Y}$ -flowed oriented spatial graph diagram obtained by adding $\overline{\varphi}$ to the diagram \overline{D} by the same symbol \overline{D} . A $\mathbb{Z}_{\text{type }X_Y}$ -flowed oriented spatial graph (L, O, φ) is *single* if $\varphi(O(e)) = 1$ for any edge $e \in \mathcal{E}(L)$. Then $(\overline{L}, \overline{O}, \overline{\varphi})$ is single.

Lemma 9.1 Let (L, O, φ) be a $\mathbb{Z}_{type X_Y}$ -flowed oriented spatial graph, and let D be a diagram of (L, O, φ) . Then we have $\Phi_f(D) = \Phi_f(\overline{D})$.

Proof Let χ be a crossing of D. Put $s := \varphi_{\chi_1}(O(\chi_1)), t := \varphi_{\chi_0}(O(\chi_0))$. We denote by $\overline{\chi}_{(i,j)}$ (i = 0, ..., s - 1, j = 0, ..., t - 1) the crossings that originate from χ (see Figure 9.1). For $C \in Col_X(D)_Y$, there is a unique X_Y -coloring $\overline{C} \in Col_X(\overline{D})_Y$ such that parallel (antiparallel) arcs that originate from an arc α of D have the same color as α . This correspondence gives a bijection between $Col_X(D)_Y$ and $Col_X(\overline{D})_Y$. By the equality $B_f(\chi; C) = \sum_{i=0}^{s-1} \sum_{j=0}^{t-1} B_f(\overline{\chi}_{(i,j)}; \overline{C})$, we have $\Phi_f(D) = \Phi_f(\overline{D})$.

Proof of Theorem 7.2 By Lemma 2.5, it is sufficient to show that $\Phi_f(D)$ is invariant under the $\mathbb{Z}_{\text{type } X_Y}$ -flowed R1–R6 moves. We have the invariance under the $\mathbb{Z}_{\text{type } X_Y}$ -flowed R6 move immediately, since the Boltzmann weight is a weight at a crossing.

If D_1 and D_2 are related by a finite sequence of the $\mathbb{Z}_{\text{type } X_Y}$ -flowed R1–R5 moves, then so are $\overline{D_1}$ and $\overline{D_2}$. By Lemma 9.1, it is sufficient to show that $\Phi_f(D)$ is invariant under the $\mathbb{Z}_{\text{type } X_Y}$ -flowed R1–R5 moves preserving orientations for a diagram D of a single $\mathbb{Z}_{\text{type } X_Y}$ -flowed oriented spatial graph.

The invariance under the $\mathbb{Z}_{type X_Y}$ -flowed R1, R4 moves follows from (6.5). The invariance under the $\mathbb{Z}_{type X_Y}$ -flowed R2 move follows from the signs of the crossings that appear in the diagram for the move. The invariance under the $\mathbb{Z}_{type X_Y}$ -flowed R3 move follows from (6.6). The invariance under the $\mathbb{Z}_{type X_Y}$ -flowed R5 move follows from (6.7), since the number of edges incident and directed in minus the number of edges incident and directed out vanishes modulo type X_Y .

Proof of Theorem 7.3 If 2-cocycles f_1 , f_2 of $C_I^*(X; A)_Y$ are cohomologous, then $f_1 - f_2$ is null-cohomologous. By the equality $B_{f_1}(C) - B_{f_2}(C) = B_{f_1-f_2}(C)$, it is sufficient to show that

$$(9.1) B_f(C) = 0$$

Figure 9.1

for a null-cohomologous 2-cocycle f of $C_I^*(X; A)_Y$. Let g be a 1-cocycle of $C_I^*(X; A)_Y$ such that $f = \delta^1 g$. Furthermore, by Lemma 9.1, it is sufficient to show the equality (9.1) for a diagram D of a single $\mathbb{Z}_{type X_Y}$ -flowed oriented spatial graph (L, O, φ) .

We denote by SA(D) the set of curves obtained from *D* by removing (small neighborhoods of) crossings and vertices. We call a curve in SA(D) a *semi-arc* of *D*. We note that a semi-arc is obtained by dividing an over-arc at crossings. For a semi-arc α that originates from an arc $\hat{\alpha}$, we define the orientation and the color of α by those of $\hat{\alpha}: O(\alpha) := O(\hat{\alpha}), C(\alpha) := C(\hat{\alpha}).$

For a semi-arc α , there is a unique region R_{α} facing α such that the orientation $O(\alpha)$ points from the region R_{α} . Then we define $b(\alpha) := g(C(R_{\alpha}), C(\alpha))$. For a semi-arc α whose endpoint χ is a crossing or a vertex, we define

$$\epsilon(\alpha; \chi) := \begin{cases} 1 & \text{if the orientation } O(\alpha) \text{ points to } \chi, \\ -1 & \text{otherwise.} \end{cases}$$

We denote by $\chi_{(1)}, \chi_{(2)}$ the semi-arcs that originate from under-arcs at a crossing χ such that the co-orientation $O(\chi_0)$ points to $\chi_{(2)}$. We denote by $\chi_{(3)}, \chi_{(4)}$ the semiarcs which originate from over-arcs at a crossing χ such that the co-orientation $O(\chi_1)$

 $(= O(\chi_2))$ points to $\chi_{(4)}$. For a crossing χ , we have

$$(9.2) B_{f}(\chi;C) = \epsilon(\chi)f(C(\chi_{1,1}), C(\chi_{1}), C(\chi_{0})) = \epsilon(\chi)(\delta^{1}g)(C(\chi_{1,1}), C(\chi_{1}), C(\chi_{0})) = \epsilon(\chi)g(C(\chi_{1,1}), C(\chi_{1})) - \epsilon(\chi)g(C(\chi_{1,1}) * C(\chi_{0}), C(\chi_{1}) * C(\chi_{0})) - \epsilon(\chi)g(C(\chi_{1,1}), C(\chi_{0})) + \epsilon(\chi)g(C(\chi_{1,1}) * C(\chi_{1}), C(\chi_{0})) = \epsilon(\chi)g(C(\chi_{1,1}), C(\chi_{1})) - \epsilon(\chi)g(C(\chi_{1,1}) * C(\chi_{0}), C(\chi_{2}))) - \epsilon(\chi)g(C(\chi_{1,1}), C(\chi_{0})) + \epsilon(\chi)g(C(\chi_{1,1}) * C(\chi_{0}), C(\chi_{0})) = \sum_{i=1}^{4} \epsilon(\chi_{(i)}; \chi)b(\chi_{(i)}).$$

See Figure 9.2 for the last equality.

For semi-arcs $\omega_{(1)}, \ldots, \omega_{(d_{\omega})}$ incident to a vertex ω of degree d_{ω} , we show the equality

(9.3)
$$\sum_{i=1}^{d_{\omega}} \epsilon(\omega_{(i)}; \omega) b(\omega_{(i)}) = 0.$$

For integers *i* and *j* such that $R_{\omega_{(i)}} = R_{\omega_{(i)}}$, we have the equalities

$$\epsilon(\omega_{(i)};\omega) = -\epsilon(\omega_{(j)};\omega), \quad g\big(C(R_{\omega_{(i)}}),C(\omega_{(i)})\big) = g\big(C(R_{\omega_{(j)}}),C(\omega_{(j)})\big),$$

which imply that

$$\epsilon(\omega_{(i)};\omega)b(\omega_{(i)}) + \epsilon(\omega_{(j)};\omega)b(\omega_{(j)}) = 0$$

Then we may suppose that the orientations of all semi-arcs agree with each other. Thus we have

$$\sum_{i=1}^{d_{\omega}} \epsilon(\omega_{(i)};\omega)b(\omega_{(i)}) = \pm \sum_{k=0}^{n \text{ type } X_Y - 1} b(\omega_{(i_k)}) = 0$$

for some positive integer *n*, where the last equality follows from the equality

$$\sum_{i=0}^{\operatorname{type} X_Y - 1} g(y \, \tilde{*}^i a, a) = 0.$$

By equalities (9.2) and (9.3), we have

$$B_f(C) = \sum_{\chi: \text{ crossing}} B_f(\chi; C)$$

= $\sum_{\chi: \text{ crossing}} \sum_{i=1}^4 \epsilon(\chi_{(i)}; \chi) b(\chi_{(i)}) + \sum_{\omega: \text{ vertex}} \sum_{i=1}^{d_\omega} \epsilon(\omega_{(i)}; \omega) b(\omega_{(i)})$
= $\sum_{\alpha: \text{ semi-arc}} (b(\alpha) - b(\alpha)) = 0.$

Acknowledgments The authors would like to thank Toshio Harikae, Seiichi Kamada, Kengo Kishimoto, Takao Satoh, and Kokoro Tanaka for their helpful comments.

References

- J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, *Quandle cohomology and state-sum invariants of knotted curves and surfaces*. Trans. Amer. Math. Soc. 355(2003), no. 10, 3947–3989. http://dx.doi.org/10.1090/S0002-9947-03-03046-0
- [2] J. S. Carter, S. Kamada, and M. Saito, *Geometric interpretations of quandle homology*. J. Knot Theory Ramifications **10**(2001), no. 3, 345–386. http://dx.doi.org/10.1142/S0218216501000901
- [3] A. Ishii, Moves and invariants for knotted handlebodies. Algebr. Geom. Topol. 8(2008), no. 3, 1403–1418. http://dx.doi.org/10.2140/agt.2008.8.1403
- [4] M. Iwakiri, Triple point cancelling numbers of surface links and quandle cocycle invariants. Topology Appl. 153(2006), no. 15, 2815–2822. http://dx.doi.org/10.1016/j.topol.2005.12.001
- [5] _____, The lower bound of the w-indices of surface links via quandle cocycle invariants. Trans. Amer. Math. Soc. 362(2010), no. 3, 1189–1210. http://dx.doi.org/10.1090/S0002-9947-09-04769-2
- [6] D. Joyce, A classifying invariant of knots, the knot quandle. J. Pure Appl. Alg. 23(1982), no. 1, 37–65. http://dx.doi.org/10.1016/0022-4049(82)90077-9
- [7] _____, Simple quandles. J. Algebra **79**(1982), no. 2, 307–318. http://dx.doi.org/10.1016/0021-8693(82)90305-2
- [8] L. H. Kauffman, *Invariants of graphs in three-space*. Trans. Amer. Math. Soc. **311**(1989), no. 2, 697–710. http://dx.doi.org/10.1090/S0002-9947-1989-0946218-0
- [9] S. V. Matveev, *Distributive groupoids in knot theory*. Mat. Sb. (N.S.) 119(161)(1982), no. 1, 78–88, 160.
- [10] T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles. J. Pure Appl. Algebra 179(2003), no. 3, 287–330. http://dx.doi.org/10.1016/S0022-4049(02)00323-7
- [11] _____, *The 3-cocycles of the Alexander quandles* $\mathbb{F}_q[T]/(T-\omega)$. Algebr. Geom. Topol. 5(2005), 183–205. http://dx.doi.org/10.2140/agt.2005.5.183
- [12] C. Rourke and B. Sanderson, *There are two 2-twist-spun trefoils*. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.3250
- [13] S. Satoh and A. Shima, *The 2-twist-spun trefoil has the triple point number four*. Trans. Amer. Math. Soc. **356**(2004), no. 3, 1007–1024. http://dx.doi.org/10.1090/S0002-9947-03-03181-7
- [14] S. Suzuki, On linear graphs in 3-sphere. Osaka J. Math. 7(1970), 375-396.
- [15] M. Takasaki, Abstraction of symmetric transformations. (Japanese) Tôhoku Math. J. 49(1943), 145–207.

121

A. Ishii and M. Iwakiri

- [16] S. Yamada, *An invariant of spatial graphs*. J. Graph Theory **13**(1989), no. 5, 537–551. http://dx.doi.org/10.1002/jgt.3190130503
- [17] D. N. Yetter, *Category theoretic representations of knotted graphs in S*³. Adv. Math. 77(1989), no. 2, 137–155. http://dx.doi.org/10.1016/0001-8708(89)90017-0

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan e-mail: aishii@math.tsukuba.ac.jp

Graduate School of Science and Engineering, Saga University, 1, Saga, 840-8502, Japan e-mail: iwakiri@ms.saga-u.ac.jp