
J. Appl. Prob. 45, 417–429 (2008)
Printed in England

© Applied Probability Trust 2008

BIAS AND OVERTAKING OPTIMALITY
FOR CONTINUOUS-TIME JUMP MARKOV
DECISION PROCESSES IN POLISH SPACES

QUANXIN ZHU,∗ ∗∗ South China Normal University

TOMÁS PRIETO-RUMEAU,∗ ∗∗∗ Universidad Nacional de Educación a Distancia

Abstract

In this paper we study the bias and the overtaking optimality criteria for continuous-time
jump Markov decision processes in general state and action spaces. The corresponding
transition rates are allowed to be unbounded, and the reward rates may have neither upper
nor lower bounds. Under appropriate hypotheses, we prove the existence of solutions to
the bias optimality equations, the existence of bias optimal policies, and an equivalence
relation between bias and overtaking optimality.
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1. Introduction

The long-run expected average reward criterion is one of the most popular performance
criteria for Markov decision processes (MDPs), and it has been extensively studied (see, e.g.
[1], [9, Chapter 5], [10, Chapter 10], and [19, Chapter 8]). But, on the other hand, the average
reward criterion turns out to be extremely underselective because an average reward optimal
policy may have an arbitrarily bad behavior for large, but finite, lengths of time. To overcome
this situation, more sensitive optimality criteria have been proposed. These include the variance-
minimization criterion (which selects an average reward optimal policy with minimal variation;
see, e.g. [11], [17], and [23]), the bias and the overtaking optimality criteria (that choose an
average optimal policy with the maximal expected reward growth as the time horizon goes to
∞; see, e.g. [7], [8], [10, p. 132], [12], [16], and [19, Chapter 10]), and the so-called discount-
sensitive criteria (which choose policies that are asymptotically optimal as the discount rate
converges to 0; see [7], [13], [15], [19, Chapter 10], and [22]), among others.

The bias and the overtaking optimality criteria, which we study in this paper, have been
widely studied for discrete-time MDPs [10], [19]. For continuous-time models, however, just
a few references deal with this issue. For instance, Puterman [18] studied controlled diffusions
on compact intervals and Jasso-Fuentes and Hernández-Lerma [12] considered general con-
trolled diffusions. Regarding jump processes with nonfinite state space, Prieto-Rumeau and
Hernández-Lerma [16] analyzed the case of a denumerable state space. In this paper we deal
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with continuous-time controlled jump Markov processes on a Polish (nondenumerable) state
space. The motivation is clear: the state space corresponding to many practical situations such
as, for instance, inventory and water-regulation problems, is not denumerable.

The model under consideration in this paper is fairly general. We deal with a controlled
jump Markov process with Polish state and action spaces. The transition rates and the reward
rate are allowed to be unbounded. Our theoretical background consists of the papers [4], [6],
[20], and [21], which analyze the discounted and the average reward optimality criteria for
general continuous-time jump MDPs. Then, starting from the results in these papers, we refine
the average reward optimality criterion and study bias and overtaking optimality.

With respect to reference [16], which analyzed the bias and the overtaking optimality criteria
for denumerable-state jump MDPs, it is worth noting that the corresponding proofs are greatly
simplified by the fact that the state space is denumerable. Therefore, the arguments in the
present paper are different from those in [16], though we basically reach similar results.
In this sense the present paper gives an answer to one of the open problems mentioned in
[16, Section 6], regarding the extension of the results therein to the case of a general jump
process.

The remainder of this paper is organized as follows. In Section 2 we introduce the control
model that we are interested in and state our assumptions. In Section 3 we define the optimality
criteria we will analyze, and we also state our main results, whose proofs are postponed to
Section 4. In Section 4 we also give more insight into the relation between overtaking and
bias optimality, and give some interesting results on bias optimality. Finally, we conclude in
Section 5 with some general remarks.

2. The control model

In this section we define the control model we will be dealing with and state our main
assumptions.

2.1. Model definition

If X is a Polish space (that is, a complete and separable metric space), we will denote by
B(X) its Borel σ -algebra.

We are concerned with the following control model:

{S, (A(x) ⊆ A, x ∈ S), q(· | x, a), r(x, a)}, (2.1)

where S and A are the state and the action spaces, respectively (assumed to be Polish spaces),
and A(x) is a Borel set, which denotes the set of available actions at state x ∈ S. We also
suppose that

K := {(x, a) : x ∈ S, a ∈ A(x)}
is a Borel subset of S × A.

The q(· | x, a) in (2.1) denote the transition rates, and so they satisfy the following proper-
ties: for each (x, a) ∈ K and D ∈ B(S),

(Q1) D �→ q(D | x, a) is a signed measure on B(S), and (x, a) �→ q(D | x, a) is Borel
measurable on K;

(Q2) 0 ≤ q(D | x, a) < ∞ whenever x �∈ D ∈ B(S);

(Q3) q(S | x, a) = 0 and 0 ≤ −q(x | x, a) < ∞.
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Also, the model is assumed to be stable, i.e.

q(x) := sup
a∈A(x)

{−q(x | x, a)} < ∞ for all x ∈ S. (2.2)

Finally, r(x, a), the reward rate, is assumed to be a real-valued measurable function on K .
(As r(x, a) is allowed to take positive and negative values, it can also be interpreted as a cost
rate.)

This model is a standard continuous-time controlled jump Markov process; see, e.g. [4], [6],
and [20].

2.2. Control policies

Now we introduce the class of admissible control policies. Let �m be the family of functions
πt (B | x) such that

1. for each x ∈ S and t ≥ 0, B �→ πt (B | x) is a probability measure on B(A(x)); and

2. for each x ∈ S and B ∈ B(A(x)), t �→ πt (B | x) is a Borel measurable function on
[0, ∞).

We say that π = (πt , t ≥ 0) ∈ �m is a randomized Markov policy. In particular, if
there exists a measurable function f : S → A, with f (x) ∈ A(x) for all x ∈ S, such that
πt ({f (x)} | x) = 1 for all t ≥ 0 and x ∈ S, then π is called a (deterministic) stationary policy,
and it is identified with f . The set of all stationary policies is denoted by F .

Given π = (πt , t ≥ 0) ∈ �m, we define the associated transition rates q(D | x, πt ) and
reward rates r(x, πt ) as follows. For each x ∈ S, D ∈ B(S), and t ≥ 0,

q(D | x, πt ) :=
∫

A(x)

q(D | x, a)πt (da | x), (2.3)

r(x, πt ) :=
∫

A(x)

r(x, a)πt (da | x). (2.4)

In particular, when π = f ∈ F , we will write q(D | x, πt ) and r(x, πt ) as q(D | x, f )

and r(x, f ), respectively. The integral in (2.3) is well defined and finite as a consequence of
property (Q3). Later, we will impose conditions ensuring that (2.4) is finite.

Definition 2.1. A randomized Markov policy π ∈ �m is said to be admissible if q(D | x, πt )

is continuous in t ≥ 0 for all D ∈ B(S) and x ∈ S.

We will denote by � the family of admissible policies. Obviously, � is nonempty since it
contains the set of stationary policies F .

2.3. Assumptions

By Lemma 2.1 of [6], for each π ∈ �, there exists a Q-process—that is, a possibly
substochastic and nonhomogeneous transition function Pπ (s, x, t, D)—with transition rates
q(D | x, πt ). This Q-process, however, might not be regular. To ensure the regularity of the
corresponding Q-process, we will borrow the following so-called drift condition from [6], [20],
and [21].

https://doi.org/10.1239/jap/1214950357 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950357


420 Q. ZHU AND T. PRIETO-RUMEAU

Assumption A. There exist a measurable function w1 ≥ 1 on S and constants b1 ≥ 0, c1 > 0,
M > 0, and M ′ > 0 such that

(a)
∫
S

w1(y)q(dy | x, a) ≤ −c1w1(x) + b1 for all (x, a) ∈ K;

(b) q(x) ≤ Mw1(x) for all x ∈ S, with q(x) as in (2.2);

(c) |r(x, a)| ≤ M ′w1(x) for all (x, a) ∈ K .

Remark 2.1 of [6] gives a detailed discussion of Assumption A. In particular, Assump-
tionA(b) is not required when the transition rates are uniformly bounded, i.e. supx∈S q(x) < ∞.

For each initial state x ∈ S at time s ≥ 0 and π ∈ �, we denote by Pπ
s,x and Eπ

s,x the respective
probability measure and expectation operator determined by Pπ (s, x, t, D). In particular, if
s = 0, we write Eπ

0,x and Pπ
0,x as Eπ

x and Pπ
x , respectively. Therefore, for each π ∈ �, there

exists a Borel measurable S-valued Markov process with transition rates q(D | x, πt ), which
we will denote by {xπ

t }, or simply by {xt } when there is no risk of confusion.
If Assumption A holds then we obtain

Eπ
x [w1(xt )] ≤ exp(−c1t)w1(x) + b1

c1
for all π ∈ �, x ∈ S, t ≥ 0. (2.5)

For a proof, see [4, Theorem 3.1]. In particular, the integral in (2.4) is finite.
In addition to Assumption A, we need to impose further conditions. Assumptions B(a) and

(b), below, contain standard continuity-compactness hypotheses; see, e.g. [6], [20], [21], and
the references therein. Assumption B is also a standard assumption for discrete-time models;
see, e.g. [10, p. 44] and [22]. Assumption B(c) is used to ensure the application of Dynkin’s
formula. Obviously, Assumption B(c) is not required when supx∈S q(x) is finite.

Assumption B. For each x ∈ S,

(a) A(x) is compact;

(b) r(x, a) is continuous in a ∈ A(x), and the function
∫
S

u(y)q(dy | x, a) is continuous in
a ∈ A(x) for each bounded measurable function u on S, and also for u := w1, as in
Assumption A;

(c) there exist a nonnegative measurable function w2 on S and constants b2 ≥ 0, c2 > 0,
and M2 > 0 such that

q(x)w1(x) ≤ M2w2(x) and
∫

S

w2(y)q(dy | x, a) ≤ c2w2(x) + b2

for all (x, a) ∈ K .

For the function w1 in Assumption A, we define the weighted supremum norm ‖ · ‖w1 as
follows. Given a real-valued measurable function u on S,

‖u‖w1 := sup
x∈S

{ |u(x)|
w1(x)

}
,

and let Bw1(S) be the Banach space of functions with finite w1-norm. Using the weighted supre-
mum norm when dealing with unbounded reward and transition rates is a standard technique;
see, e.g. [6], [10, Chapter 8], [16], [20], and [22].
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Assumption C. For each f ∈ F , the Markov process {xt } with transition rates q(· | x, f )

is Harris recurrent and uniformly w1-exponentially ergodic (that is, there exists an invariant
probability measure µf on S such that

sup
f ∈F

| Ef
x [u(xt )] − µf (u)| ≤ Re−ρt‖u‖w1w1(x)

for all x ∈ S, u ∈ Bw1(S), and t ≥ 0, where the positive constants R and ρ do not depend
on f , and where µf (u) := ∫

S
u(y)µf (dy)).

Sufficient conditions forAssumption C as well as some examples can be found in [6] and [14].
These are generalizations of the stochastic monotonicity and the ‘Lyapunov-like inequality’
conditions. For a discrete-state space, a uniform integrability condition is given in [7] and [16].

3. Main results

In the following we assume that Assumptions A, B, and C are satisfied. First of all, we define
the main optimality criteria we are concerned with.

Given an admissible policy π ∈ �, an initial state x ∈ S, and a time horizon T ≥ 0, the
expected total reward of the policy π on [0, T ] is defined as

VT (x, π) := Eπ
x

[∫ T

0
r(xt , πt ) dt

]
.

As a consequence of Assumption A(c) and (2.5), VT (x, π) is finite.
We say that the admissible policy π overtakes π ′ ∈ � if, for every ε > 0 and every x ∈ S,

there exists T0 ≥ 0 such that VT (x, π) ≥ VT (x, π ′) − ε whenever T ≥ T0. Accordingly, we
give our next definition.

Definition 3.1. A policy f ∗ ∈ F is said to be overtaking optimal in F if it overtakes every
f ∈ F , that is,

lim inf
T →∞ [VT (x, f ∗) − VT (x, f )] ≥ 0

for all f ∈ F and x ∈ S.

We also need to define the expected average reward optimality criterion. Given x ∈ S and
π ∈ �, the corresponding expected average reward is defined as

V (x, π) := lim inf
T →∞

1

T
VT (x, π).

Observe that, by Assumption A(c) and (2.5), |V (x, π)| ≤ b1M
′/c1 for every x ∈ S and π ∈ �.

Also, by Assumption C, if f ∈ F then

V (x, f ) = lim
T →∞

1

T
VT (x, f ) =

∫
S

r(y, f )µf (dy) =: g(f ), (3.1)

which does not depend on the initial state x ∈ S. The constant g(f ) is usually referred to as
the gain of f .

Definition 3.2. A policy π∗ ∈ � is said to be expected average reward optimal (or average
optimal, in short) if V (x, π∗) ≥ V (x, π) for all π ∈ � and x ∈ S.
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Next, we state our main results in this paper. We start with the following theorem which
establishes the average reward optimality equation. Its proof can be found in [21, Theorem 4.1].

Theorem 3.1. Under Assumptions A, B, and C, the following statements hold.

(a) There exist a unique constant g∗, a function h∗ ∈ Bw1(S), and a stationary policy f ∗ ∈ F

satisfying the following average reward optimality equation (AROE):

g∗ = max
a∈A(x)

{
r(x, a) +

∫
S

h∗(y)q(dy | x, a)

}
(3.2)

= r(x, f ∗) +
∫

S

h∗(y)q(dy | x, f ∗) for all x ∈ S. (3.3)

(b) For all x ∈ S, g∗ = supπ∈� V (x, π) = supf ∈F g(f ).

(c) Any stationary policy f ∈ F reaching the maximum in (3.2) for every x ∈ S is average
optimal, and so f ∗ in (3.3) is average optimal.

Obviously, it follows from (3.1), the definition of overtaking optimality, and Theorem 3.1(b),
that an overtaking optimal policy in F is necessarily gain optimal. In this sense, overtaking
optimality is indeed a refinement of average reward optimality. Therefore, an overtaking optimal
policy is an average reward optimal stationary policy which, in addition, has the largest finite-
horizon reward growth. Of course, it remains to show that overtaking optimal policies exist.

We introduce the following notation. For each x ∈ S, let A∗(x) ⊆ A(x) be the set of actions
a∗ ∈ A(x) that attain the maximum in (3.2), i.e.

A∗(x) :=
{
a∗ ∈ A(x) : g∗ = r(x, a∗) +

∫
S

h∗(y)q(dy | x, a∗)
}
.

By Assumption B(a) and (b), the sets A∗(x) are nonempty and compact.

Definition 3.3. We denote by Fao the set of average optimal deterministic stationary policies.
A stationary policy f ∗ ∈ F is called canonical if it attains the maximum in (3.2), i.e. f ∗(x) ∈
A∗(x) for each x ∈ S. The set of canonical policies is denoted by Fca.

By Theorem 3.1, the sets Fao and Fca are nonempty and, in addition, Fca ⊆ Fao. The
inclusion is, in general, strict; see the counterexample in [5].

Remark 3.1. In principle, the sets A∗(x), as well as Fca, depend on the function h∗ in (3.2).
Thus, in what follows, we suppose that h∗ in the solution of the AROE, (3.2), remains fixed. In
fact, it will be shown later (see Remark 4.1, below) that h∗ is unique up to additive constants
and, therefore, neither A∗(x) nor Fca depend on the particular solution h∗.

Our main result is the following.

Theorem 3.2. Suppose that Assumptions A, B, and C hold, and let (g∗, h∗) ∈ R × Bw1(S) be
a solution of the AROE. Then the following statements hold.

(a) There exist a policy f ∗ ∈ Fca, a unique constant σ ∗ ∈ R, and a function V ∗ ∈ Bw1(S)

satisfying

σ ∗ = max
a∈A∗(x)

{
−h∗(x) +

∫
S

V ∗(y)q(dy | x, a)

}
(3.4)

= −h∗(x) +
∫

S

V ∗(y)q(dy | x, f ∗) for all x ∈ S. (3.5)
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(b) Any policy f ∗ ∈ F attaining the maximum in (3.4) for every x ∈ S is overtaking optimal
in F , and so f ∗ in (3.5) is overtaking optimal in F .

Theorem 3.2 shows that we can determine an overtaking optimal policy by solving two
nested AROE-like equations: first we solve the AROE, (3.2), and second we restrict ourselves
to the sets A∗(x) for x ∈ S and then solve (3.4). The two nested equations (3.2) and (3.4) are
known as the bias optimality equations. The reason why they are so named will be made clear
in Section 4.

4. Proofs

In this section our plan is the following. First, we define the bias of a stationary policy
and the bias optimality criterion, which we prove to be equivalent to the overtaking optimality
criterion. Then we prove that there exist bias optimal policies which, in addition, are canonical.
Finally, we prove our main result, Theorem 3.2, and propose another characterization of bias
optimality in Theorem 4.2.

Throughout this section, we suppose that Assumptions A, B, and C are satisfied.

4.1. Bias optimality

In the spirit of potential concepts in [2] and [3], for a given f ∈ F and the corresponding
invariant probability measure µf , we define the potential or bias of f ∈ F as

hf (x) :=
∫ ∞

0
(Ef

x [r(xt , f )] − g(f )) dt for all x ∈ S.

By Assumption C, the bias of f is finite and, in addition, |hf (x)| ≤ RM ′w1(x)/ρ. Moreover,
since µf is an invariant probability measure, it follows that

µf (hf ) = 0 for all f ∈ F. (4.1)

Our next lemma, which is taken from Lemma 3.2 of [21], characterizes the bias of f by
means of the Poisson equation.

Lemma 4.1. ([21, Lemma 3.2].) Let f ∈ F be any stationary policy. Then the following
statements hold.

(a) The function hf is in Bw1(S), where w1 is as in Assumption A, and ‖hf ‖w1 ≤ RM ′/ρ.

(b) The pair (g(f ), hf ) is the unique solution in R × Bw1(S) of the Poisson equation for f ,
i.e.

g = r(x, f ) +
∫

S

h(y)q(dy | x, f ) for all x ∈ S, (4.2)

for which µf (h) = 0.

Now we provide an interpretation of the bias. For each x ∈ S, f ∈ F , and T ≥ 0, by the
Poisson equation, (4.2), and Dynkin’s formula, we have

Ef
x [hf (xT )] − hf (x) = Ef

x

[∫ T

0

∫
S

hf (y)q(dy | xt , f ) dt

]

= T g(f ) − Ef
x

[∫ T

0
r(xt , f ) dt

]

= T g(f ) − VT (x, f ),
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and so
VT (x, f ) = T g(f ) + hf (x) − Ef

x [hf (xT )]. (4.3)

By Assumption C and since µf (hf ) = 0 (recall (4.1)),

lim
T →∞ Ef

x [hf (xT )] = 0.

This shows that the total expected reward VT (x, f ) is, asymptotically as T → ∞, a straight
line with slope g(f ) and ordinate hf (x). Hence, intuitively, in order to find an overtaking
optimal policy in F , we should try to maximize the bias hf (x) among the class of stationary
policies with maximal gain, that is, maximize the bias in Fao. This leads to our next definition.

Definition 4.1. A policy f̄ in Fao is called bias optimal if

hf̄ (x) = sup
f ∈Fao

hf (x) for all x ∈ S.

We call h̄(x) := supf ∈Fao
hf (x) for x ∈ S the optimal bias function, which is finite as a

consequence of Lemma 4.1(a).

The relation between bias and overtaking optimal policies is made clear in the next result.

Theorem 4.1. Suppose that Assumptions A, B, and C hold. An average reward optimal policy
f̄ ∈ Fao is overtaking optimal in F if and only if it is bias optimal.

Proof. Let f̄ ∈ Fao be a bias optimal policy. Let us prove that f̄ is overtaking optimal in F .
To this end, fix an arbitrary f ∈ F . Then, for each x ∈ S and T ≥ 0, it follows from (4.3) that

VT (x, f̄ ) − VT (x, f ) = T (g(f̄ ) − g(f )) + hf̄ (x) − hf (x)

− (Ef̄
x [hf̄ (xT )] − Ef

x [hf (xT )]), (4.4)

where, by Assumption C and (4.1), for every x ∈ S,

lim
T →∞ Ef

x [hf (xT )] = µf (hf ) = 0 and lim
T →∞ Ef̄

x [hf̄ (xT )] = µf̄ (hf̄ ) = 0. (4.5)

On the other hand, byTheorem 3.1, we haveg(f̄ ) = g∗ ≥ g(f ). Therefore, one of the following
statements hold:

(i) either g(f̄ ) > g(f ); or

(ii) g(f̄ ) = g(f ) and hf̄ (x) ≥ hf (x) for every x ∈ S (by Definition 4.1).

In either case, letting T → ∞ in (4.4) and recalling (4.5), we obtain

lim
T →∞[VT (x, f̄ ) − VT (x, f )] ≥ 0 for all x ∈ S,

which implies that f̄ is overtaking optimal in F .
Conversely, suppose that f̄ ∈ Fao is overtaking optimal in F , i.e.

lim inf
T →∞ [VT (x, f̄ ) − VT (x, f )] ≥ 0 for all x ∈ S and f ∈ F,
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and let us prove that f̄ is bias optimal. The proof will proceed by contradiction. Hence, suppose
that there exist x ∈ S and f ′ ∈ Fao such that hf̄ (x) < hf ′(x). Since both f̄ and f ′ are average
optimal, g(f̄ ) = g(f ′) = g∗. Thus, it follows, from (4.4) and (4.5), that

lim
T →∞[VT (x, f̄ ) − VT (x, f ′)] < 0,

which contradicts the fact that f̄ overtakes f . This completes the proof.

4.2. Bias optimality in the class of canonical policies

In our next results we show that, when dealing with bias optimal policies, we can in fact
restrict ourselves to the class of canonical policies. In what follows recall that h∗ ∈ Bw1(S) is
taken from the AROE, (3.2).

Proposition 4.1. The following results hold.

(a) If f is any stationary policy in Fao then hf (·) ≤ h∗(·) + µf (−h∗).

(b) Let f be any stationary policy in Fao. Then, hf (·) = h∗(·) + µf (−h∗) if and only if
f ∈ Fca.

(c) If f is any stationary policy in Fao \ Fca then there exists a canonical policy f̄ ∈ Fca
such that µf̄ = µf and, consequently,

sup
f ∈Fca

µf (−h∗) = sup
f ∈Fao

µf (−h∗).

Proof. (a) Since f is a stationary policy in Fao, by Theorem 3.1(b), g(f ) = g∗. Hence, the
Poisson equation, (4.2), for f becomes

g∗ = r(x, f ) +
∫

S

hf (y)q(dy | x, f ) for all x ∈ S. (4.6)

On the other hand, it follows from (3.2) that

g∗ = max
a∈A(x)

{
r(x, a) +

∫
S

h∗(y)q(dy | x, a)

}

≥ r(x, f ) +
∫

S

h∗(y)q(dy | x, f ) for all x ∈ S,

which together with (4.6) gives∫
S

(hf (y) − h∗(y))q(dy | x, f ) ≥ 0 for all x ∈ S.

Then, using Dynkin’s formula, we obtain, for every t ≥ 0,

Ef
x [hf (xt ) − h∗(xt )] ≥ hf (x) − h∗(x) for all x ∈ S.

Now, letting t → ∞ and by Assumption C, we have

µf (hf − h∗) ≥ hf (x) − h∗(x) for all x ∈ S.

Thus, recalling (4.1), it follows that

µf (−h∗) ≥ hf (x) − h∗(x) for all x ∈ S,

which yields statement (a).
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(b) Suppose that hf (·) = h∗(·)+µf (−h∗). Since f ∈ Fao, it follows that (g∗, h∗) is a solution
of the Poisson equation for f , that is, f satisfies (3.3) and, therefore, f is canonical.

Conversely, if f ∈ Fca then, from Definition 3.3,

g∗ = r(x, f ) +
∫

S

h∗(y)q(dy | x, f ) for all x ∈ S.

Now, using an argument similar to that in the proof of statement (a) and replacing the inequalities
with the corresponding equalities, we see that statement (b) is true.

(c) The proof of statement (c) is similar to the proof of Lemma 5.2(b) of [11] (or Lemma 11.3.12
of [10]). In fact, from the proof of [21, Theorem 4.2] we see that, for every stationary policy
f in Fao \ Fca, there exist some constant k and a Borel set N = Nf in S such that µf (N) = 0
and

hf (x) = h∗(x) + k for all x ∈ Nc, (4.7)

where Nc denotes the complement of N . Then, for the canonical policy f ∗ ∈ Fca in Theo-
rem 3.1, we define a new policy f̄ as

f̄ := f ∗ on N and f̄ := f on Nc.

Thus, from (4.7) we claim that f̄ is canonical and

q(· | x, f̄ ) = q(· | x, f ) for all x ∈ Nc.

This, together with the definition of the invariant probability measure, yields the desired result.

Combining Proposition 4.1 with Definition 4.1, we can easily obtain the following results,
which we state without proof.

Proposition 4.2. Under Assumptions A, B, and C, the following statements hold.

(a) The optimal bias function satisfies h̄(x) = supf ∈Fca
hf (x) for every x ∈ S.

(b) For every x ∈ S,

h̄(x) = h∗(x) + sup
f ∈Fca

µf (−h∗), (4.8)

and, therefore, h̄ ∈ Bw1(S).

(c) A canonical policy f̄ ∈ Fca is bias optimal if and only if it attains the maximum in (4.8),
i.e. µf̄ (−h∗) = supf ∈Fca

µf (−h∗).

Hence, Proposition 4.2 shows that, when looking for bias optimal policies, we can restrict
ourselves to the class of canonical policies Fca (in lieu of the class Fao).

Remark 4.1. From Proposition 4.1(c) and (4.8), we deduce that if h∗
1 and h∗

2 in Bw1(S) are
two solutions of the AROE, (3.2), then, for every x ∈ S,

h∗
1(x) − h∗

2(x) = sup
f ∈Fao

µf (−h∗
2) − sup

f ∈Fao

µf (−h∗
1).

Since the definition of Fao does not depend on the solution of the AROE, it follows that the
solution h∗ of (3.2) is unique up to additive constants. Therefore, Fca does not depend on the
particular solution h∗ (cf. Remark 3.1).
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Finally, we prove the main result in this paper.

Proof of Theorem 3.2. (a) We consider the Markov control model

M̄ := {S, A, (A∗(x) : x ∈ S), q(· | x, a), r∗(x, a)},
where

r∗(x, a) := −h∗(x) for all (x, a) ∈ K.

The control model M̄ is the same as M except that A(x) and r(x, a) have been replaced with
A∗(x) and h∗.

Recall that A∗(x) is compact for each x ∈ S. On the other hand, since h∗ ∈ Bw1(S), there
exists a constant M∗ such that |r∗(x, a)| ≤ M∗w1(x) for all (x, a) ∈ K . Hence, it is easy
to check that the new control model M̄ satisfies Assumptions A, B, and C, replacing r(x, a)

and A(x) with r∗(x, a) and A∗(x). Therefore, by Theorem 3.1, there exist a unique constant
σ ∗ ∈ R, a function V ∗ ∈ Bw1(S), and a canonical policy f ∗ ∈ Fca such that

σ ∗ = max
a∈A∗(x)

{
−h∗(x) +

∫
S

V ∗(y)q(dy | x, a)

}

= −h∗(x) +
∫

S

V ∗(y)q(dy | x, f ∗) for all x ∈ S

and

σ ∗ = µf ∗(−h∗) = sup
f ∈Fca

µf (−h∗). (4.9)

(b) If f ∗ ∈ Fca attains the maximum in (3.5) for every x ∈ S then, by (4.9) and Proposition 4.2,
it is bias optimal and it follows from Theorem 4.1 that it is also overtaking optimal.

In Theorem 3.2 we establish the bias optimality equations and the existence of a bias optimal
(and, hence, overtaking optimal) policy. Moreover, from Theorem 3.2 we conclude that a
canonical policy is bias optimal if it satisfies the bias optimality equations. It is natural to
question if there exists an equivalent relation between bias optimality and the bias optimality
equations. Actually, if this conclusion is true, we only need to prove that a bias optimal policy
must satisfy the bias optimality equations. Obviously, when the state space is denumerable,
from the argument in [16] we can easily obtain the conclusion. However, the state space in this
paper is not denumerable, and so an attempt to answer this problem faces significant technical
difficulties. In this sense the following result proposes another condition which is equivalent
to bias optimality.

Theorem 4.2. Suppose that Assumptions A, B, and C hold. A canonical policy f̄ ∈ Fca is bias
optimal if and only if µf̄ (h̄) = 0, where h̄ is the optimal bias function.

Proof. Suppose that f̄ ∈ Fca is an arbitrary bias optimal policy. By Definition 4.1 we have

h̄(x) = hf̄ (x) for all x ∈ S.

Then, integrating this equation with respect to µf̄ and by (4.1), we obtain µf̄ (h̄) = 0, as we
wanted to prove.
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Conversely, suppose that a canonical policy f̄ ∈ Fca satisfies µf̄ (h̄) = 0. It follows from
Proposition 4.2(b) that

h̄(x) = h∗(x) + sup
f ∈Fca

µf (−h∗) for all x ∈ S.

We integrate this equation with respect to µf̄ and then we obtain

µf̄ (−h∗) = sup
f ∈Fca

µf (−h∗).

Hence, from Proposition 4.2(c), f̄ is bias optimal. This completes the proof.

5. Concluding remarks

In the previous sections we have studied continuous-time jump MDPs in general state
and action spaces under the bias and the overtaking optimality criteria. We have proved the
existence of a solution to the bias optimality equations, and we have also shown, within the
class of canonical policies, the equivalence between bias and overtaking optimal policies (see
Theorems 3.2, 4.1, and 4.2).

As mentioned throughout the paper, we have not characterized the whole family of bias
optimal policies because, in general, the sets of canonical and average optimal policies do not
coincide. In this sense one of the main contributions of this paper is to prove that there always
exist bias optimal policies that are canonical (see Proposition 4.2), a subtle result far from being
evident.

To conclude, we believe that the results in this paper give a satisfactory answer to the open
question proposed in [16] regarding the generalization of bias and overtaking optimality from
jump MDPs with denumerable state space to jump MDPs with general state space. Finally,
proving the existence of overtaking optimal policies for classes of policies larger than F still
remains an open issue.
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