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1. Introduction

Consider the classical Hardy spaces HP(T) (1 ^p ^ oo) on the unit
circle T. We shall ignore completely the fact that the elements of HP(T)
can be extended via the Poisson formula to certain types of functions
analytic inside the unit disc. For our purposes, HP(T) is the closed ideal
in LP(T) consisting of those functions / e LV(T) for which f{n) = 0
( » = - l , - 2 , . - . ) .

Let 9? be a function (complex-valued) defined on Z (Z stands for the
group of the integers; Z+ for the subsemigroup of Z consisting of the
nonnegative integers.) We say that y is a multiplier from HV(T) to H"(T)
if, whenever / e HV(T), <pf is the Fourier transform of an element of H"(T).
More generally, if S^T) and S2(T) are sets of measures (or distributions)
on T (T may be replaced by other groups), we may define analogously
what is meant by saying that q> is a multiplier from SX{T) to S2(T).

A considerable amount is known about the properties and misbehaviour
of multipliers from Lp to L" (even when these spaces are defined over quite
general groups). Our purpose in § 2 is to show by means of simple counter-
examples that the multipliers from HP(T) to HQ(T) are, when p = 1,
considerably more pathological than those from LP(T) to Lq[T), and are
just as pathological as the latter when p > 1. Specifically, we construct
multipliers <p from HP(T) to Hq(T) (1 ^ p <: oo, 1 ^ q < oo) which have
the property that y restricted to Z+ is not the restriction to Z+ of any
Fourier-Stieltjes transform. Recall that the multipliers from LP(T) to L"(T)
whenp = 1 and 1 5S q < oo are precisely (i) the Fourier-Stieltjes transforms
when q = 1; and (ii) the Fourier transforms of elements of Lq'(T) when
1 < q < co. Cf. Edwards [1], Chapter 16.

Next, in § 3, we consider the following general situation. Let G be a
compact Abelian group with ordered dual X. X+ will stand for the set of
nonnegative elements of X. One may define the Hardy spaces on G relative
to normalised Haar measure on G and the order on X in the obvious way.
Cf. Rudin [4], Chapter 8. Let A(G) be the space of continuous functions
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24 G. I. Gaudry [2]

/ on G for which f(x) = 0 for XeX_ (= X\X+) and £ \f{x)\ < oo. In
Theorem 3.2 we characterise the multipliers from H1^) to A(G). This
yields a generalisation of the classical Hardy inequality (Hoffman [2],
pp. 70—71):

For al l /

In all that we do in §§ 3—5 the fundamentally important tools are: (i) the
general factorisation theorem for H1 functions (Theorem 3.1) due to Helson
and Lowdenslager; and (ii) the general M. Riesz theorem proved by Helson
(Theorem 4.2). See Rudin [4], Chapter 8.

Using the results of Helson and Lowdenslager, we generalise the
Calderon-Zygmund interpolation theorem for Hp spaces in § 4. The proof is
basically the same as that given by Zygmund in the case G = T (Zygmund
[7], Chapter XII (3.9)) even though the argument presented by Zygmund
depends heavily on the fact that the functions in HP(T) can be thought
of as analytic functions in the unit disc.

Finally in § 5 we use the interpolation theorem and the generalised
Hardy inequality to prove the generalised Hardy-Littlewood inequality.
In the classical case, the Hardy-Littlewood inequality states that for every
p : 1 < p 5S 2, there exists a constant Av such that

(Zygmund [7], (3.19); Edwards [1], 13.11.1).

2. Multipliers from HP(T) to H1(T)

Let (nk)™ be an increasing sequence of positive integers. We say that
(nk) is a Hadamard sequence if there exists a real number r > 1 such that
nk+1 ^ rnk for all k. We say that (nk) is a Paley sequence if it is a finite union
of Hadamard sequences. The reason for the adoption of the latter termino-
logy is contained in the following useful theorem of Paley and Rudin
(Rudin [5], Theorem 1).

2.1 THEOREM. Let {nk)f be an increasing sequence of positive integers.
Then

2l/K)|2<+oo
fc=i

for all f e H1^) if and only if (nk) is a Paley sequence.
Observe that any Paley sequence, being a finite union of Hadamard

sequences, is a Sidon set and is hence of type A(p) for all p : 0 < p < oo.
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For an explanation of the terminology and a proof of this assertion see
Rudin [6].

We shall need one further result, viz. Rudin's extension of the F. and
M. Riesz theorem (Rudin [6], 5.7).

2.2 THEOREM. Let S be a subset of Z+ which is of type A(l), and suppose
that JX is a measure on T such that fi(n) = 0 for n e Z+\S. Then p is absolutely
continuous with respect to Lebesgue measure.

We now present our counterexample concerning multipliers.

2.3 THEOREM. Suppose that 1 rgl p sg oo, 1 rg 17 < oo. Then there exist
multipliers <p from HV(T) to H"(T) which have the property that q>\Z+ is not
the restriction to Z+ of any Fourier-Stieltjes transform.

PROOF. Let S = (%)J° be any Paley sequence in Z+ and let (ck) be a
bounded sequence such that ck does not tend to zero as k —> -j-°°- Define

By Theorem 2.1, if / eH'{T) (CH^T)),

Z\f(n)<p(n)\*<+oo.
neZ

(f(n)<p(n))neZ vanishes outside a Sidon set, and is an element of t2(Z).
Hence (Rudin [6], 3.1), it is the transform of a function which belongs to
L"{T) for every q : 1 ^ q < oo. So <p is a multiplier from H'(T) to Ha(T).
On the other hand, Theorem 2.2 shows that if cp\Z+ is the restriction to Z+

of a Fourier-Stieltjes transform p., then fj, is absolutely continuous with
respect to Lebesgue measure, so that (l(n) -> 0 as \n\ -*• +oo. But by
hypothesis, ck does not tend to zero as k -+ + a x Hence q>\Z+ is not the
restriction to Z+ of any Fourier-Stieltjes transform.

REMARKS, (i) In a recent note, Meyer [3] has exhibited an example
of a multiplier of H1^). His example is constructed as follows. Let (#jt)£L0

be a sequence of positive real numbers, x0 > 0, such that for some r > 1,
xk+1 S: rxk for all k. Let / be a function in ^(R) such that f(x) = 0 for
x $ [—x0, x0]. Then if (ck) is any bounded sequence, the function cp defined
by

!

00

ckf(n-xk), n^O

n < 0
is a multiplier from /f1(T) to H1^). It is, however, not very difficult to
show that any such cp must be bounded and must vanish outside a Paley
sequence; so Meyer's example is a particular case of the construction we
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have given in Theorem 2.3. (Whilst the argument presented by Meyer is
considerably more complicated than the rather simple one we have pre-
sented, it should be noted that Meyer needs the careful estimate of the
multiplier norm of cp which his argument yields for later application to a
problem in spectral synthesis; it appears that our simple argument does not
yield such information.)

(ii) In the same note, Meyer proves that if y> is a continuous function
on R, and if ^(R) is defined as the closed ideal in Z.1(/?) consisting of those
functions / whose Fourier transforms vanish outside [0, +<x>), then y> is a
multiplier of ^(R) if and only if (y(»/if))nS1 is a multiplier of HX(T) for
every positive integer K. It should be observed that by combining this
theorem with the fact that the Fourier-Stieltjes transforms of measures on
T are precisely the restrictions to Z of the Fourier-Stieltjes transforms of
bounded measures on R (Rudin [4], 2.7.2) one can exhibit multipliers y>
of ^(R) which have the property that y\[0, +oo) is not the restriction to
[0, +oo) of any Fourier-Stieltjes transform.

The situation when q = oo is very simple, as is shown by the following
theorem.

2.4 THEOREM. The multipliers from HP(T) to H°°(T) (1 ^ p ^ oo) are
precisely (i) the functions cp such that <p\Z+ is the restriction to Z+ of a Fourier-
Stieltjes transform when p = oo; (ii) the functions cp such that <p\Z+ is the
restriction to Z+ of the Fourier transform of an element of U' (G) when
1 ^ p < oo.

PROOF, (i) Clearly, any <p of the stated form is a multiplier. Suppose
conversely that cp is a multiplier from H°°(T) to H°°(T), and consider the
corresponding operator L from H°°(T) to H°°(T) defined by (L/)A = <pf.
L is linear and, by the closed graph theorem, continuous. So

for all feH°°(T) and some finite constant K. L maps the set of 'analytic'
trigonometric polynomials into trigonometric polynomials. Consider then
the mapping a : / -> L/(0) on the set of analytic trigonometric polynomials,
the latter space being given the sup-norm topology. By (2.4.1) a is con-
tinuous. By the Hahn-Banach theorem, there exists a measure p on T
such that

(2.4.2) Lf(O) = M/J

for all analytic trigonometric polynomials, where fy(z) = f(—x). If in
(2.4.2) we take successively / = 1, eix, e2ix, • • •, we get cp\Z+ = fi\Z+.

(ii) The proof when p < oo is entirely similar to that for the case
p = oo.
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REMARK. This theorem generalises in an obvious way to the case
where T is replaced by a compact Abelian group with ordered dual.

3. Multipliers from ff\G) to A(G): Hardy's inequality

Let G be a compact Abelian group with ordered dual X (so that G is
connected: Rudin [4], Chapter 8). Write X+ for the semigroup consisting
of the nonnegative elements of X, and let HP(G) be the Hardy spaces defined
relative to normalised Haar measure dx on G and the given order on X.
Helson and Lowdenslager extended the classical factorisation theorem for
H1 functions to this general situation by using a Hilbert space argument.
We state their result in the following form. (See Rudin [4], 8.4.4 and its
proof.)

3.1 THEOREM. Suppose that f eHl{G) and /(0) ^ 0. Then there exist
functions f1, f2 in H2(G) with I/J2 = |/| (i = 1, 2) and f = flf2. In particular,
\\ft\\l=\\f\\i for each i.

Let A(G) be the subspace of HX(G) consisting of those continuous
functions / for which ^xex\f{x)\ < +°o . We norm A(G) by setting

/
The following result generalises the classical Hardy inequality and

characterises the multipliers q> from i?J(G) to A (G).

3.2 THEOREM. The multipliers from i?x(G) to A(G) are precisely those
functions <p on X with the property that <p\X+ and \q>\\X+ are both the restric-
tions to X+ of the Fourier transforms of elements of L°°(G). When <p is such a
function on X, there exists a constant K such that

(3-2.1) 2\<p(x)Hx)\<K\\f\\i (/eff'IG))

PROOF. The proof is implicit in the traditional proof of Hardy's in-
equality (as presented for example by Hoffman [2], pp. 70—71).

Suppose that <p is a multiplier. Then the same is true of \y\, so we may
as well suppose throughout that q> is nonnegative. When <p 5; 0 is a multi-
plier, the mapping L defined by

defines a linear mapping from H1^) to A(G). The closed graph theorem
shows that this map is continuous. So a function cp ^ 0 on X is a multiplier
if and only if there exists a constant K > 0 such that

(3-2.2) I>(x)i/(X)I ^ I l / H i {f e &(£))-

Clearly, if 95 is a multiplier, the mapping f ->2 <p(x)fix) defines a continuous
linear form on H1(G). It follows from the Hahn-Banach theorem that there
exists a function 0 e L°°(G) such that
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whence <p(x) = &(x) (x e -X+).
For the converse, let 0 be an element of L°°(G) with &(x) 2? 0 (x e -X+).

Suppose q>(%) = 0(%) on X+ and (say) 9?(%) = 0 on X_. For each finite
subset SCX, write *FS for a function in Z-1(G) with the following properties:
W $six) = 1 (zeS) ; (ii) £ 5 ^ 0; (iii) H ^ rg 2; (iv) Ws has finite
support. Such a function S^ always exists (Rudin [4], 2.6.8). An application
of Holder's inequality yields

= \j&(x)f*Vs(-x)dx

for al l /eff^G).
Suppose first of all that / e H1 (G) and that /(0) ^ 0. Then by Theorem

3.1, we can write f = gh, where g,heH*(G), and ||g||J = ||A||« = H/^.
Write G and # for the functions defined (d'apres Riesz-Fischer) by
G(%) = \g(x)\, 8{X) = to I- Then ||G||J = ||i?||22 = \\f\\,. Replacing / in
(3.2.3) by GH, and observing that (GH)*(X) ^ |/(*)|, we get

Ixes<p(x)\Hx)\ ^
(3-2.4) 5S

the last step by the Gauchy-Schwarz inequality. But (3.2.4) is true for any
finite subset S of X. Hence ^,xezV(x)\f{x)\ < +oo.

When feH1{G) and /(0) = 0, replace / in (3.2.4) by f+l/n and let
n -> +oo. So we deduce that y is a multiplier from ^{G) to A(G). This
completes the proof of the theorem.

3.3 COROLLARY. / / <p ;> 0 on X+ is the restriction to X+ of the transform
of a function in LCO(G), the same is true of ip and \rp\ for any function rp defined
on X+ for which \y>\ ^ <p.

3.4 COROLLARY. If <p Sg OonX has the property that <p\X+ is the restriction
to X+ of the Fourier transform of a function in L°°(G), then for any function
W in L°°(G) for which \P{%)\ ^ <p(x) (x e X+), we have the Parseval formula

I$(X)HX) =jGf(x)W(~x)dx (feIP(G))

the series being absolutely convergent (rather than simply summable).

REMARKS, (i) The classical Hardy inequality results when one takes
0{eix) = i(n—x) on G = T in Theorem 3.2.
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(ii) Consider the multipliers from HP(G) to A(G) when 1 < p ^ oo
(regarded as functions on X+). When p Ss 2, it is not difficult to see that
these are precisely the functions cp e fz(X+). One half of the proof is obvious.
For the other half, suppose cp is a multiplier from HP(G) to A (G) (with p
unrestricted); then cp is a multiplier from CA(G) into A(G). cp is therefore
on X+ an element of P{X+) (Rudin [4], 8.7.8).

On the other hand, when 1 < p < 2 and G = T, there are multipliers
cp from HP(G) into A (G) which are not in ta(X+) for any q < 2. This is
easily seen by choosing cp ̂ \JQ<2t

q(X+), cpef2(X+) with 95 vanishing off
a Paley sequence. The problem of characterising the multipliers from
HP(G) into A (G) when 1 < p < 2 would appear to remain open.

4. The Riesz-Thorin theorem for HP spaces

The well known Riesz-Thorin convexity theorem has the following
w-dimensional formulation (Zygmund [7], Chapter XII (3.3)).

4.1 THEOREM. Let pu, • • •, pni, P12, ' ' ',pnz
 an& <7i an^ #2 be real

numbers in the range [1, 00]. Let E and E1: • • •, En be measure spaces with
measures //, and vx, • • •, vn respectively. Suppose that T is an operator defined
on all n-tuples (hu • • -, hn) of functions hu each ht being vrsimple, that T
has range in L"1 n LQ*(E; [i) and that T is multilinear. If T is of types

(Pu> • • ••Pm'.ii) and (Pa, • • -.Pni; <?&)'•

I T O > • • •, K)\\Qi,, ^ Mi n IWI, , , . , , (* = ! . 2 ) .
then for 0 < t < 1, there exists a constant Mt such that

ni|A,||
3 = 1

for (p1, • • - , p n ; q) defined by

1 t l—t 1 t l—t
- = - H , - = — + - — (* = 1, • • • , » ) .
1 ?1 ?2 Pi Pil Pi2

Calderon and Zygmund applied Theorem 4.1 to interpolation in Hp

spaces over the circle group. The relevant theorem, given in (3.9), Chapter
XII, of Zygmund [7], relies heavily on the fact that they are working in
the context of the circle group, and so can regard the functions in H" as
analytic functions in the disc. We now show that by using Theorem 3.1 in
conjunction with Helson's version of the M. Riesz theorem, one can prove
the interpolation theorem for Hp spaces over the general groups we are
concerned with. First we record the enunciation of the general M. Riesz
theorem.
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4.2 THEOREM. (M. Riesz, Helson) (Rudin [4], 8.7.2) For each trigono-
metric polynomial f on G define the analytic contraction fc of f by fc(x) = 0
{%eXJ), fc(x) = fix) (xeX+)- Then tor each p satisfying 1 < p < co,
there exists a constant Cn such that

for all trigonometric polynomials f. Hence the mapping f —»fc can be extended
continuously to the whole of LV(G).

4.3 THEOREM. (Riesz-Thorin theorem for Hp spaces) Let G be a compact
Abelian group with ordered dual X and (E; p) a measure space.

Suppose that 1 ^ pt < oo, 1 f^= qi ^ oo for i = 1,2, and that T is a
linear operator defined on the analytic trigonometric polynomials on G and
with range in LQl n LQ<*(E',//,). Suppose further that there exist constants
Mx and M2 such that

(i = 1, 2) for all analytic trigonometric polynomials f. Then if 0 < t < 1,
and

1 t 1—t 1 t 1—t

P Pi P2 ' 1 1l ?2

there exists a constant M such that

(4-3.2) \\Tt\\q.^M\\f\\,

for all analytic trigonometric polynomials f.

PROOF. Suppose without loss of generality that p1 ^ p2. Observe that
T can be extended uniquely to the whole of HPl(G) so that (4.3.1) continues
to hold for all / e HP'(G) (for both pairs of exponents).

The idea of the proof is as follows. The mapping /->-/,. defined say on
the set of simple functions on G, is continuous in the Lv norm when
1 < p < oo, but it is not continuous in the L1 norm. If both px and p2 were
greater than one, we could prove the present theorem simply by applying
the one-dimensional form of the Riesz-Thorin theorem to the map T'
defined on LP'(G) by T'(f) = T(fc). This map would then be continuous
for the pairs {pit q{) (i = 1, 2) by virtue of the M. Riesz theorem.

It is in order to avoid difficulties when either p± = 1 or p2 = 1 that
we use the n-dimensional (in fact 2-dimensional) form of the Riesz-Thorin
theorem.

Observe that 2pi > 1 for each *'. Let (A1, h2) be an ordered pair of
functions each of which is a simple function on G. Define 7" on the set of
all such ordered pairs as follows:
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T'(h1,h2) = T(huhu)

T is defined: for hu, h2ce H2p' (i = 1,2) since 2pi > 1 and therefore
hlch2ee HP'(G) by Holder's inequality. Since 2pi > 1, it is obvious from
the hypotheses concerning T and Holder's inequality that T' (which is
bilinear) is of type (2plt 2p1; qx) and of type (2p2, 2p2; q2). By Theorem
4.1, T' is of type (2p, 2p; q): i.e. there exists a constant M such that

for all pairs (h1, h2) of simple functions on G. Since p < oo, T' can be ex-
tended to the whole of L2V\G) XL2P{G) whilst preserving (4.3.3).

If now / is an analytic trigonometric polynomial and /(0) =£ 0, we can
write / = /x/2 where ft e H2(G) and |/,.|a = |/| (i = 1, 2). Since / is a trigono-
metric polynomial, we have f e LP(G); and since [/J25 = \f\p, it follows
that /,. e ff»(G) and that ||/€Mi, = ||/||p. Clearly ft e H*{G) implies fie = ft

for each i. It follows from (4.3.3) that

= M l I/I I,

for all analytic trigonometric polynomials / with /(0) ^ 0. When /(0) = 0,
simply replace / by f+l/n in the above, and let n -> +oo. So we have
established (4.3.2).

5. The generalised Hardy-Littlewood inequality

With Theorem 4.3 at our disposal, we can now easily prove the general-
ised Hardy-Littlewood inequality.

5.1 THEOREM. Let G be a compact Abelian group with ordered dual X.
Then if 0 eL°°(G) and $>{%) 5; 0 on X+, there exists, for each p in the range
1 < p ^ 2, a constant A v such that

for all feL*{G).

PROOF. Let E be the measure space X+ with the discrete measure /u:
<"({*}) = &ix)z- The generalised Hardy inequality (Theorem 3.2. Cf.
(3.2.1)) asserts that the mapping T: / -> (fj0)\X+ is continuous from
i?x(G) to L1(E;/J,). (We adopt the usual convention that 0-<x = 0 for
any nonnegative extended real number a.) The Plancherel theorem asserts
that this same map is continuous from H2(G) to L2(E; fi). T is clearly
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linear. It follows from Theorem 4.3 that T is continuous from HV(G) to
LP(E; fi): i.e. there exists a constant Mv such that

But for 1 < p 5S 2, the mapping g ->• ge is continuous from LV(G) to HP(G)
(Theorem 4.2); so there exists a constant ^4P such that (5.1.1) holds. This
proves the theorem.
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