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STRUCTURE OF RINGS WITH INVOLUTION APPLIED TO
GENERALIZED POLYNOMIAL IDENTITIES

LOUIS HALLE ROWEN

Introduction. In [14, §4], some theorems were obtained about generalized
polynomial identities in rings with involution, but the statements had to be
weakened somewhat because a structure theory of rings with involution had
not yet been developed sufficiently to permit proofs to utilize enough properties
of rings with involution. In this paper, such a theory is developed. The key
concept is that of the central closure of a ring with involution, given in § 1,
shown to have properties analogous to the central closure of a ring without
involution. In § 2, the theory of primitive rings with involution, first set forth
by Baxter-Martindale [5], is pushed forward, to enable a setting of generalized
identities in rings with involution which can parallel the non-involutory
situation.

1. Prime and semiprime rings with involution. All rings are associative
with 1. Let (R, *) denote a ring with involution, i.e., the ring R has an anti-
automorphism (x) of degree =2. Clearly () induces an automorphism of
degree <2 on cent R. If this automorphism is the identity then (x) is of the
first kind on (R, *); otherwise () is of the second kind on (R, ). Cent(R, *) =
{c € cent R|c* = ¢}. An ideal (B, *) of (R, *) is an ideal B of R stable under
(%). (R, %) is prime if the product of any two nonzero ideals (of (R, %)) is
nonzero; (R, %) is semiprime if (B, *)? # 0 for each nonzero ideal (B, *) of
(R, *). (Much of this terminology is due to Jacobson.) Clearly, if R is semi-
prime then (R, x) is semiprime; the converse, due to Martindale [9] (who
explored these objects under the terminology (*)-prime and (*)-semiprime)
can be seen easily (cf. [14, § 4]).

Given a subset 4 of R, let

Ann A = {r € Rlar = 0, all ¢ in 4},
and let
Ann’ A= {r € R|ra = 0, all a in 4}.

Suppose (R, *) is semiprime. If 4 is an ideal of R then Ann’ 4 = Ann 4, as
is well known. Moreover, if (4, *) is an ideal of (R, *) then (Ann 4)* C Ann 4
(indeed, (4 (Ann 4)*)* = (Ann A)A* C (Ann 4)4 = 0,s0 A(Ann 4)* = 0);
hence (Ann 4, ) is an ideal of (R, *).
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LeMMA 1. The following conditions are equivalent.

(1) (R, *) 1s prime;

(2) For each nonzero ideal (B, *) of (R, ), Ann B = 0;

(3) If ri,72 € R, 7y # 0, and if there exists an ideal (B, *) # 0 of (R, %)
such that riBry = ri*Bry = 0, then ro = 0;

(4) If ri,re € R, 7y # 0, and if riRry = r*Rry = 0, then r, = 0.

Proof. (1) & (2) is trivial.

(1), (2) = (3): 7o € Ann(Br,B + Bri*B), so we are done unless BriB =
Bri*B = 0. R is semiprime by (1), so R",\R + Rr*R € Ann B; hence r; = 0.

(3) = (4): This is immediate.

(4) = (1): If (4, ) and (B, *) are ideals of (R, *) with A # Oand 4B = 0,
then for any b in B, any nonzero a in 4, we have aRb = ¢*Rb = 0,s0b = 0
by (4).

LeEMMA 2. The following conditions are equivalent:

(1) (R, *) 1s semiprime;

(2) If r € R and there exists an ideal (J, *) such that AnnJ = 0 and rJr =
r*Jr =0, thenr = 0;

(3) If rRr = r*Rr = 0 then r = 0.

Proof. This parallels the proof of Lemma 1.

Now assume for the remainder of this paper that (R, %) is semiprime. An
ideal (J, *) of (R, *) is essential if J M B 5 0 for each nonzero ideal (B, *) of
(R, x). Clearly (J, %) is essential & Ann J = 0 & J is essential in R, and we
can apply Amitsur’s construction in [4] to obtain a ring of quotients for R:
Let

= {essential ideals of (R, %)}

and consider

T = {(f, DT € F and f: J — R is a right module homomorphism
(disregarding the involution)}.

If ' € _Z and J' C J, we let (f, J') denote the restriction from f to J'. There
is an equivalence ~ defined by: ( fi, J1) ~ (fe, Jo) if, for some J' C J, M J,,
(fu,J') = (fo, J'). Let Qo(R) =.9 /~, and let [ f, J] denote the equivalence
class of (f, J); then Qo(R) has a canonical ring structure given by [ f1, J1] +
[fa Jo] = [fi + fo, Ju N To) and [ fi1, J1][ f2, Jo] = [ f1 0 fe, J2J1]. Moreover,
there is a canonical injection R & Qy(R) given by 7+ [f,, R], where f,
denotes left multiplication by r. Let C = cent Qy(R). It has been shown in [4]
that [ f, J] € Cif and only if f : J — R is a bimodule homomorphism. (Indeed,
(&) is very easy; conversely, assume [f, J] € C. For any r in R, (ff, —
fefy J») = 0 for suitable J, in /, so for all x in J, xJ, C J, and (f(rx) —
7f(x)) € Ann J, = 0.) Hence () induces an automorphism on C by [ f, J]* =
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[f* J] where f*(x) = (f(x*))*, for all x in J. Let R = RC C Qy(R). R has
a well-defined involution given by (3 r«c)* = > r*c*, 7, in R, ¢; in C.
(Indeed, suppose 3. ri; = 0. Let ¢; = [ fi, Ji]; choosing suitably small J
in/ we may assume Y. 7;f;(x) = 0, for all x in J. Then for all x" in J,

0 = (X rfi)) s = (X falra))*s" = 2 f* (x*r*)a’
= x* (2 ¥ ().
Thus Y r*f*(x') € AnnJ = 0, all " in J, so (X 7*f*, J) =0.)(R, *) =
(RC, *) is called the central closure of (R, x) and C = cent(RC, %) is called
the extended centroid of (R, *). (Note that when R is prime, RC is merely the
central closure of R.)

THEOREM 1. If (R, *) is prime then its extended centroid C is a field and its
central closure (R, %) (= (RC, x)) is prime.

Proof. If [f,J] # 0 in C we claim f(J) € Z and f:J —f(J) is an iso-
morphism of ideals of (R, x). Indeed, for f(x) in f(J), (f(x))* = f*(x*) =
fx*) € f(J), so (f(J), *) is an ideal of (R, ). Also (ker f, *) is an ideal of
(R, *) and (kerf)f(J) = f((ker f)J) = f(ker f)J = 0, implying kerf = 0
since (R, *) is prime. Hence the claim is proved, and [ f, J]-! = [f~1, f(J)] € C,
so C is a field.

To prove (RC, *) is prime, we use criterion (4) of Lemma 1 and assume that

Srics#0, Y r/c/ € RC,
and
(X redR(E rici) = (2 r¥e*)R(E rici) = 0.
Then (3 ric)R(X ric/) = (X ri*e*)R(X r/c//) = 0. Let
co=[fo Jdyei/ =[f/Ti]
for all 7, j. Choosing J in/ suitably contained in the intersection of a suitable
finite number of elements of /, we may assume ¢; = [ f;, J], ¢;/ = [ f/, J],

and 0 = (Xi7:fd) (R(Z;r/f)x) = (Xar#f¥*) (R(XZ, 7/f/)x) for all x in J.

Since J? C R, we obtain
(Zrﬁﬁ](ZrﬁAx=Oam
1 7
(Z 71*ft*~7) J(Z Tf'fj') x =0,
1 7

forallxin J. Lety = (3 r,/f;)x, and choose x in J such that >, 7;f;(x;) & 0.
Then (3°;74fi(x1))Jy = 0 and, for all " in J,

0= et( 5 raree)) sy = (5 socetron)) s

= (Z{: fi*(xl*)ri*x,)-]y = Zi: (filer)*r )" Ty = Z (rof i(x1))*x" Ty.
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Setting @ = 3., 7:f,(x1), we have aJ*y = 0 and a*J%y = 0; hence y = 0 by
Lemma 1(3), i.e.,, (X 7/f/)x = 0 for all x in J, so 3 r/c/ = 0. Therefore
(RC, *) is prime.

An analogous situation holds in general:

THEOREM 2. If (R, *) is semiprime then its central closure (R, %) is semiprime
and its extended centroid C is von Neumann regular.

Proof. The proof that (R, ) is semiprime follows the lines of the proof of
Theorem 1, using Lemma 2(2). The fact that C is von Neumann regular is
obtained analogously to Amitsur’s proof in [4] that Cis von Neumann regular.
A sketch: Let [ f, J] € C. Then there exist ideals (B, ), (B’, *) contained in
(J, *) such that

BNB =0, B@B c/f, fB)=0 and f: (B, *) — (f(B), %)

is an isomorphism. Choose (B'’, *) maximal with respect to f(B) M B"” = 0,
let J' = f(B) ® B” €/, and df:ﬁne f':J >R by f'(f(b)+") =b
for b in B, b"” in B". [f',J']7€ Cand [f,JI S, TS, J) =1[f,J], so C is

von Neumann regular.

Remark. 1f J € _# then (RJR, ) is essential in (R, x). Indeed, if
S re; € Ann RJR, v, in R, ¢; in C, we have (3 ri;)x = 0, all x in J. Let
ci=[fyJJ and let J/ = JMN (N:Jy). For all x in J', X rifi(x) =0, so
(X rifs, J’) = 0, implying > r,; = 0.

Using this remark, we can see that any bimodule homomorphism f:J — R
can be extended to f : RTJR — R by

f(Zl ?ix?,’) = Z{ Pof(x)P/,

which is well-defined, and in this way one shows that C is also the extended
centroid of (R, *).

(The theory becomes very easy when (R, ) is a Pl-algebra with involution,
in view of [13]; applying the reasoning of [13, § 3], one can decompose (R, *)
into a finite direct sum of Azumaya algebras of finite rank (with involution).
Moreover, if (R, *) is prime with a proper polynomial identity then (R, %) is
its simple algebra with involution of central quotients (cf. [12]).) We shall be
more interested here when (R, *) is not a Pl-algebra with involution. The
point of departure is

ProrosiTION 1. Suppose (R, *) is prime. If a,b € R and axb = bxa,
axb* = bxa*, all x in R, then either a = 0 or b = ca (in (R, %)) for some ¢ in C.

Proof (as in Martindale [10]). Assume a 5 0 and define a map f: (RaR +
Ra*R) — R by

f(E‘ x,ay,+ ; x,a*yj) = Zt x,-by,-l— ; ij*yj.
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To check that f is well-defined, suppose > x.ay, + > x,a*y; = 0. Then for
all 7 in R,
0=0br(C xay; + > xa*y;) = X brxay, + > brx,a*y,
= Y arxdy: + 2 arx by, = ar(C x by, + 2 x,0*y;);
likewise, for all 7 in R,
0 = b*r(X xay: + 2 x,a*y;) = a*r (X 2y, + X x,b*y;)

(noting that for all x in R, b*xa* = (ax*b)* = (bx*a)* = a*xb*). Hence, by
Lemma 1(3), X xby; + X x6*y; = 0, so f is well-defined. But f is a bi-
module homomorphism and

f((z: x40y + ; xia*yf)*) =f(§;4 yi*ax* + Z) y1*a*x¢*)

= Z yi*ba* + Z Y0¥ X = (Z xby: + Z ij*yj)*,
so [ f, RaR + Ra*R] € C. Clearly f(a) = b, so we are done.

THEOREM 3. If (R, %) and (R, ¥) are prime and (R, x) C (R’, x) (as rings
with involution), then for any ring H such that C € H C cent(R’, %),

(RH, *) (R % H, *)

with the involution given by (3 v: @ h)* = S y* @ hy, y:in R and h, in H.

Proof. Viewing (RH, x) C (R’, %), we see by the definition of tensor product
that there is a canonical homomorphism ¢ : (R ® g H, *) — (RH, %) given
by o(Xy: ® ki) = 3 yihs, y:in R, by in H, and (ker ¢, %) is an ideal of
(R ® ¢ H, *). We claim ¢ is an isomorphism. Otherwise, there is a nonzero
element > %1 y; ® h; in ker ¢ with # minimal; note that {k,1 <7 < u} are
then C-independent. For each x in R,

u—1

12_; Xy s — YixXy,) @ hy =

(yx ® 1) (Zl y1®h1~)— (Zl y1®h¢) (xy, ® 1) € ker ¢;
= i=

by induction on # we conclude y,xy; — yxy, = 0, for each ¢, each x in R.
Likewise,

u—1

;1 Xy * — yxy®) @ by =

(ux ® 1)(20 i @ h)* — (2 71 ® he) (wy* @ 1) € ker o,

$0 yuxy* — yaey* = 0, for all 4, all x in R. If y, = 0 then we are done by
induction on u; otherwise, by Proposition 1, there exist ¢, in C such that
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Vi = ¢y 1 £1 =u — 1. Then

;yi®hi iz_:lyu®ciht=yu®iz_:lcih1,

and v, Y. ch; =0 implies > ch; =0 since (R, *) is prime; hence
Yo ® i1 cihy = 0 after all, so ker ¢ = 0.

COROLLARY 1. Any collection of C-independent elements of (R, *) are
cent(R’, *)-independent in (R’, %), notation as in Theorem 3.

COROLLARY 2. If Y iy =0, y,in R, {hi]1 £ i < u} C-independent in
cent(R’, *), theny, = 0,1 <1 = u.

2. Primitive rings with involution. Let an irreducible (left) module M of
R be faithful for (R, %) if rM # 0 or r*M 5 0 for each nonzero r in R. Follow-
ing Baxter-Martindale [5], we call (R, *) primitive if (R, *) has a faithful
irreducible module.

LEmMMA 3. (R, ) is primitive if and only if R has a maximal left ideal which
contains no nonzgero ideals of (R, *).

Proof. Jacobson [7, p. 6] has shown a left R-module M is irreducible if and
only if there is a maximal left ideal J of R such that M ~ R/J (as left R-
modules). Let B = {r € R|rM = 0 and r*M = 0}. Clearly (B, %) is an ideal
of (R, *) and B C J; (B, ) = 0if and only if M is faithful for (R, *).

Now suppose a primitive ring R’ has a minimal left ideal. In this case all
minimal left ideals are isomorphic (as left R’-modules), and each faithful
irreducible (left) module is isomorphic to any given minimal left ideal (by
[7, Proposition 2, p. 45]). The sum of the minimal left ideals is the socle,
which is also the sum of all minimal right ideals of R’ and is contained in each
nonzero ideal of R’ by [7, Theorem 1, p. 65]. In view of this fact, we define
soc(R, *) to be the intersection of the nonzero ideals of (R, *).

Given a ring E, the opposite ring E° is defined as follows: The elements of
E° are {x°|x € E} with addition given by x;° 4+ x2° = (x; + x:)° and multi-
plication given by (x1°¢s°) = (xax1)°. Thus, x — x° is the canonical anti-
isomorphism from E to E°. If E has an involution (*), then (%) can be thought
of as an isomorphism from E to E° given by x — (x*)°. On the other hand,
the map x — x° induces a canonical involution on E @ E° given by (x1, x:°) —
(%2, x1°), called the exchange involution.

Consider D = End;zM. By Schur’s lemma, D is a division ring; we shall
view M as R — D bimodule. Also M is a left D°-module with action d°y = yd,
alldin D, y in M, called the opposite action. Note that (End Mp,)° ~ End M.
The structure of primitive rings with involution has the following neat charac-
terization:
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THEOREM 4. Let (R, x) be primitive with faithful irreducible module M, and
let D = Endz M.

(1) If R is primaitive then soc(R, x) = soc R.

(2) Suppose R is not primitive. Let U = {r € R|rM = 0}. R is a subdirect
product of R, and R,, where Ry = R/U has faithful irreducible left module M
(with action (r + U)y =ry, 7 in R and vy in M) and Ry, = R/U* has
faithful irreducible right module M (with action y(r + U*) = r*y, r in R and y
in M). Let D, = Endg, M, Dy = End Mg,, and let E = End Mp. Dy~ D,
Dy~ D°, End Mp, & E, Endp,M =~ E°, and, under these identifications, R,
is a dense subring of E and R, is a dense subring of E°. Let (0) be the exchange
involution on E ® E°, and define ¢: (R, %) > (E ® E°0) by o(r) =
(r + U, r 4+ U*). ¢ is an injection in the category of rings with involution, and
¢(R) is a dense subring of E ® E° (i.e. for any ¢, given y,, . .., y, D-linearly
independent in M, and given arbitrary yi,...,y/,y/,...,y/ in M,
there exists » in R such that ry; = v/, r*y, = 9/, 1 £ j < t). Finally,
¢(soc(R, *)) = soc R; ® soc Ry and soc R; = (soc R,)°.

Proof. (1) R is a minimal right ideal if and only if R7* = (#R)* is a minimal
left ideal, so clearly (soc R)* = soc R, implying (soc R, *) = soc(R, *).

(2) Baxter-Martindale [5] have shown in a straightforward argument that,
with the given actions, M is a faithful, irreducible left R;-module and right
Rs-module. For all r in R, y in M, d in D, ((r + U)y)d = (ry)d = r(yd) =
(r + U)(vd), so we can view d in D,; conversely, for all d in D;, (ry)d =
(r + U)y)d = (r + U)(yd) = r(yd), so D =~ D,. Likewise, for d in D°,
dly(r + U*)) = d(r*y) = r*(dy) = (dy) (r + U*), so we can view d in D,,
and, as before, we get D° &~ D,. Now End M,, ~ End M, ~ (End,,M)° ~
(Endp,M)°, and, by the density theorem, R, is dense in E and R, is dense in
E° Nowg¢: R— R, ® R, C E® E’isclearly an injection of rings. Moreover,
o(r*) = (r* + U, r* 4+ U*), and one can check as before that (r + U)° =r* + U*
and (r + U*)° = r* + U, implying ¢ is an injection of rings with involution.

Now (U 4+ U*) = (U+ U*)/U) @ (U + U*)/U*; since a nonzero
ideal of a primitive ring is dense, this implies (U + U*), and hence ¢(R),
is dense in E @ E°. Moreover, soc(R, *x) € U + U*, an ideal of (R, %),
implying soc(R, ) = U{ideals of (R, %) contained in (U + U*)}. Likewise,
soc R; = U{ideals of R; contained in (U + U*)/U} and soc R, = U{ideals
of R, contained in (U + U*)/U*}. Hence, ¢(soc(R, %)) = soc R; @ soc R..
Moreover, for each minimal ideal (B 4+ U)/U of R;,, ((B+ U)/U)* =
(B* + U*)/U* is a minimal ideal of R, and vice versa, so soc R; = (soc R;)°.

Note for ¢ in cent(R, ), that there is an element ¢ in EndzM given by
t(y) =c¢y, vy in M (notation as in Theorem 4), yielding an injection
¥ : cent(R, x) & cent D given by y(¢) = ¢, all ¢ in cent(R, ). Also note
that, in the notation of Theorem 4, U = {r € R|rM = 0} is a primitive ideal
of R such that U M U* = 0, so any primitive ring with involution is quasi-
primitive in the sense of [14].
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3. Generalized identities in rings with involution. Let W and R be rings.
In [14, § 1], R is called a W-algie if R is a W — W bimodule such that the
canonical map ¢ : W — R given by w — w - 1 is actually a ring homomorphism
with ¢(cent W) C cent R. It was shown in [14, § 1] that

WiX} = W{Xy, X, .. .},

the free product of W with the free algebra C{X} (where C = cent W), is a
free object in the category of W-algies. An element f(X,, ..., X,) in W{X}
which lies in the kernel of each algie homomorphism ¢ : W{X} - R is a GI
of R. f is multilinear if each indeterminate occurring in f occurs exactly once
in each monomial of f; explicitly a multilinear GI can be written in the form

f(le .. me) = 42 wthwlwi2X1r2 e wimemwi,m+1y

7 ranging over permutations of (1,...,m). The generalized monomial f of f
is the sum of those monomials of f for which = is a fixed permutation; clearly f
is the sum of its generalized monomials f,. f is R-proper if at least one of its
generalized monomials is not a GI of R. It is shown in [14, § 1-§ 3] that proper
GI's are the fundamental concepts in the theory of algies with GI.

Analogously, (R, *) is a (W, x)-algie with involution if R is a W-algie such
that the canonical map ¢ is a homomorphism of rings with involution such
that ¢(cent(W, %)) C cent(R, *). In this case we consider the free product
(of rings) of W with the free algebra of rings with involution. W{X} is seen
to have an involution () induced by (*) on Wand X * = Xo;, Xo* = Xoy1,
1 22 <. Any fin (W{X}, *) lying in the kernel of each homomorphism
¥ (WX}, %) > (R, #) is a GI of (R, *).

Now write V;, = Xq9;1, V¥ = X9, 1 £ 1 < 00, and call

f(Yl) Yl*v sy me Ym*)

multilinear if the sum of the degrees of ¥, and YV * in each monomial of f is 1,
for each 7. A multilinear element f(V,, V\*, ..., V,, V,*) in (W{X}, %) is
proper if f(X1, ..., Xs,) is proper. Clearly any proper GI of R is a (proper)
GI of (R, %) because each homomorphism ¢ : (W{X}, %) — (R, %) induces a
homomorphism ¢ : W{X} — R. The major result of [14, §4] is a partial
converse, namely [14, Theorem 10]: if (¥, %) is prime with a proper GI then
W has a proper GI. The proof there sacrifices categorial consistency for speed.
Since the necessary concepts have been developed here, we give somewhat
stronger results (which parallel what is known for GI in rings without involu-
tion). The following results from [1] are quoted:

If P is a primitive ring with faithful irreducible module M, let D = EndM.
Viewing P C End M, C End Mz ~ EndzM and D C EndzM, let F be a
maximal subfield of D and let P, = PFin EndzM; if W C P let Wp = WF
in EndzM. Note that Pr is primitive with faithful irreducible module M
(which has centralizer F), and by Jacobson’s structure theorem {7, p. 75],
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Wr M soc(Pr) = {set of finite-ranked transformations of EndzM in Wy}.
Since any D-independent set is obviously F-independent, we observe that
soc(Pr) NP C soc P, so WM soc(Pr) € WM socP. So suppose W C P
and P is a W-algie satisfying each GI of W. From [14] we shall need

[14, Theorem 2]: If W satisfies a proper GI then Wy M soc(Pr) # 0. If
Wge M soc(Pr) # 0 and if each GI of Wy is a GI of Pg, then W M soc Pz # 0
and the dimension of D over its center is finite.

[14, Proposition 6]: If (R, %) is primitive but R is not primitive and if
fXy, Xo*, .., Xy X0¥) is a GI of (R, ) then f(X1, Xo, ..., Xop_1, Xon) 18
a GI of R.

[14, Proposition 4]: If P is primitive, if (P, *) is a primitive (W, %)-algie
with involution satisfying each GI of (W, %), and if (W, %) satisfies a proper
GI, then Wz M soc(Py) # 0.

To proceed further we need a structure theorem inspired by Martindale [11].
(A semiprimitive ring with involution is a subdirect product of primitive rings
with involution.)

THEOREM 5. Suppose (W, x) is prime and view (W, %) as a (W, *)-algie with
nvolution. (W, *) can be embedded in a primitive (W, *)-algie with involution
satisfying each multilinear GI of (W, ).

Proof. We give a sequence of (W, x)-algies with involution (4, *), (42, *),
and (43, %), each satisfying every multilinear GI of (W, %), and such that the
canonical map (W, x) — (4, %), given by w—w-1, is an embedding,
1 <4 < 3. It will turn out that (4, *) has no nonzero nil ideals, (4., *) is
semiprimitive, and (A3, *) is primitive.

Let (7', *) be the complete direct product of a countably infinite number of
copies of (44, ), and let N = sum of the nil ideals of 7. Clearly N* C N;
let (W, %) = (T/N, *). By [11, Theorem 2.5], A, has no nil ideals. Let
Ay = Ai[\], X an indeterminate commuting with 4, and define an involution
(x¥) on A, by (3 aN)* = 3 a*\, a;in A, (well-known to be well-defined).
A, is semiprimitive by {7, p. 10]; hence (4s, *) is semiprimitive by Baxter-
Martindale [5]. Note that (W, ) C (44, x) € (A4,, *) are (I, x)-algies with
involution, satisfying each multilinear GI of (W, *).

The next step uses ultraproducts in a manner introduced by Amitsur [2]
(cf. also Herstein [6, pp. 97—99]). Let {(Py, *)|\ € A} be the set of primitive
ideals of (A4s, %), and write (7%, *) = (Ao/ (P M P\*), x), a primitive algie
with involution for each X in A. A filter on A is a collection % of subsets of A
such that (i) ¢ € F, (ii) if Ax € F and A D A, then Ay € F; (iii) if A, € F
and Ag € F thenA, M Ag € % . Itis well-known in logic (cf. Herstein [6, p. 98])
that any filter.# can be embedded in an ultrafilter# ' which has the additional
property that for each A, C A, either A, € ZF or (A — Ay) €F . Given an
ultrafilter % ’ one defines the wultraproduct of the (I, %) as follows: Let
(1", %) = Il\ea (T, ). Writing a typical element of 77 as (x(\)), we define
an equivalence ~ on 77 by (x1(\)) ~ (xa(N)) if {X € Alxi(N) = x.(\)} € &
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Likewise, letting M, be a faithful irreducible module of 73, we set
M' = Il cx M, and define ~ on M’ in the same way. Let [(x(\)] denote the
equivalence class of (x(\)) under ~ in T’/~; let [(y(\))] denote the equi-
valence class of (y(\)) in M’/~. We claim that 77/~ becomes a (W, x)-algie
with involution, satisfying each GI of (W, %), when endowed with operations

wl(x(\))] = [(wx(N\))], win W;

[ ()] + [x2(M)] = [((e1 4 x2) (M) ];
[er O] (M)] = [(xax2 (M)

[aOO)T* = [(x(\)*)], and M’/~ becomes a faithful irreducible (77/~, *)-
module when given the operation [(x(\))][(y(N\))] = [(xy(\))], [(x(N))] in
(T"/~, %), [(y(N\))]in M'/~. Indeed, this is true because all relevant sentences
are elementary. For example, ‘M, is a faithful irreducible (73, *)-module”
can be written as

((Vy € M)Wy € My)(Fx € (T, %) 1xy =3")) A (Vx € (1), *)
x=0V (y € My:xy#0Vx*y #£0))).

Furthermore, .# can be chosen in the following manner (as in Amitsur
[2, Theorem 3]): Embed (W, %) in (77, %) in the natural way (w — (@(\))
where @(\) = w, all X in A), and let A, = {X\ € Alw & P\ Py*} for each
nonzero w in W. Observe that A, = A, Since (W, ) is prime, given nonzero
wi, we in W, there exists (by Lemma 1) w in W such that w,ww, # 0 or
w*ww, # 0. Hence,-# = {all subsets of A containing finite intersections of
the A,, w # 0 in W} is a filter. Embedding % in an ultrafilter % ’, one has
(W, %) C (1”7/~, %) in the given construction, so we let (43, *) = (17/~, %),
which is primitive with faithful irreducible module M".

We are finally ready to improve [14, Theorems 9 and 10].

THEOREM 6. Let (R, *) be a prime (R, *)-algie with involution satisfying
a proper GI.

(i) The central closure (R, %) of (R, %) is primitive.

(ii) Let M be a faithful irreducible module of (R, %) and let D = End M.
Then D is finite dimensional over its center and R (M soc (R, x) #= 0.

Proof. (i) Let us embed (R, %) in a primitive (R, )-algie with involution
(P, %) satisfying each multilinear GI of (R, %), as in Theorem 5, and let
f( X4, X%, ..., X, X0*) be a proper GI of (R, %). Clearly f is also a proper
GI of (P, ).

Case 1. P is not primitive. Then, by Theorem 4, (P, *) can be embedded as
a dense subring of (£ @ E’ o) where E is a ring of endomorphisms of a vector
space M’ over a division ring D; by the density, each GI of (P, *) can be
seen to be a GI of (£ @ E’ 0). Now let F be a maximal subfield of D and let
Ep be the F-subalgebra of EndzM’ generated by E. Since (E%)r, =~ (Er)°
and since F &~ F°, we may replace F by {(a, @) in Er® (Er)°|a € F}, which
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we shall instead call F. Thus, F = cent(Eyr @ (Er)? 0) and, by Theorem 3,
(Rp, 0) & (R ® ¢ F, *), where C is the extended centroid of (R, %) (and thus
of (R, %) also). Let m, m, denote the respective projections of Er @ (Er)°
onto Ez, (Er)°.

Since f (X1, X1*, ..., X, X,¥) isa GI of (Er @ (Er)°, 0), a trivial applica-
tion of [14, Proposition 6] shows f(X;, X2, ..., Xon_1, Xon) is a proper GI
of Er @ (Ep)°. Clearly f(X1, ..., Xon) is proper either for Ep or for (Er)’;
without loss of generality we assume f(X;, ..., Xs,) is proper for Ez. By
[14, Theorem 2], there exists nonzero () in m, (Rr) M soc Ep. We claim that
Ry N soc(Er ® (ErF)° 0) # 0. Indeed, let w = 3% 7:ay, 7; in R, «, in F.
For each 7 in R, wrw* € Rr N soc(Er ® (Er)°, 0) so we are done unless
wRw* = 0,i.e. (Zirw)R(E;7*a;) = 0. Let {a/} be a C-base for F, and let
awo; = B, By in C. Then, for each 7 in R,

;; (rgr*Bij:)e, = 0, implying ; ror*By =0
since Rekx~xR®cF. So X,rXw*By. is a GI for (R, *), thus for
(Er @ (Ep)° 0), implying (X ra)x(X;7*a;) =0, for each x in
(Er ® (Ep)° 0). Hence 7 (w)Epm1(w*) = 0, so m1(w*) = 0 since Ey is prime.
But this means that me(w) =0, so 0 # w € RN soc(Er ® (Er)°, 0), as
claimed. (Incidentally, a similar argument shows (R, %) is prime, but we do
not need this fact.)

Now we choose w = 3% i ria;, 7; in R, a; in F, with « minimal such that
0# w € Rp N soc(Er ® (Ep)°, 0). (In particular, 7, # 0.) We claim « = 1.
Otherwise, for each 7 in R,

u—1

> (rary — rariay

i=1

= (Z hai)”u - 71/( Z riat) € RF‘ N SOC(EF @ (EF)Or 0).

i=1 i=1

Hence, by induction (in view of Theorem 3, Corollary 2), rr, = rurr,, all 1.
Moreover,

u—1
Z (ft*ffu - ru*rri)ai
=1

= (Z riat)*rr,, — ru*r( Z r;a,) € RrNsoc(Er ® (EF)’,0),

i=1 i=1

so r*rry, = r,*rr;, all i. By Proposition 1, 7; = ¢, for suitable ¢; in C, so
w = r,(> c;y). Hence u = {, as claimed, so w = rie;. But

ar™'w € RN soc(Er ® (Er)° 0),

which is therefore nonzero. A proof analogous to [11, Theorem 2.10] shows
(R, *) is primitive.
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Case 11. P is primitive. By [14, Proposition 4], Ry M soc Py # 0; hence R
is primitive by [11, Theorems 2.9 and 2.10], so certainly (R, *) is primitive.

(ii) By part (i), we may assume P = R. If R is primitive then soc Ry # 0
by [14, Proposition 4], so by [14, Theorem 2], R M soc Ry # 0 and D is
finite dimensional over its center. It follows easily from Theorem 4 that
R Nsoc(R, *) # 0.

Hence we are done unless R is not primitive, i.e. case I of part (i), with
P = R and M’ = M. Since E satisfies a proper GI, D is finite dimensional
over its center, by [14, Theorem 2]. Moreover, obviously Ry = Ry, and the
identical argument as in part (i) case I, shows R M soc(Er ® (Er)°, 0) # 0.
Hence 0# RN (RN soc(Er ® (EF)° 0) € RN soc(R, x) (in light of
Theorem 4).
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