STRUCTURE OF RINGS WITH INVOLUTION APPLIED TO GENERALIZED POLYNOMIAL IDENTITIES

LOUIS HALLE ROWEN

Introduction. In [14, §4], some theorems were obtained about generalized polynomial identities in rings with involution, but the statements had to be weakened somewhat because a structure theory of rings with involution had not yet been developed sufficiently to permit proofs to utilize enough properties of rings with involution. In this paper, such a theory is developed. The key concept is that of the central closure of a ring with involution, given in § 1, shown to have properties analogous to the central closure of a ring without involution. In § 2, the theory of primitive rings with involution, first set forth by Baxter-Martindale [5], is pushed forward, to enable a setting of generalized identities in rings with involution which can parallel the non-involutory situation.

1. Prime and semiprime rings with involution. All rings are associative with 1 . Let $(R, *)$ denote a ring with involution, i.e., the ring R has an antiautomorphism (*) of degree $\leqq 2$. Clearly (*) induces an automorphism of degree $\leqq 2$ on cent R. If this automorphism is the identity then (*) is of the first kind on $(R, *)$; otherwise (*) is of the second kind on $(R, *)$. Cent $(R, *)=$ $\left\{c \in \operatorname{cent} R \mid c^{*}=c\right\}$. An ideal $(B, *)$ of $(R, *)$ is an ideal B of R stable under $(*) .(R, *)$ is prime if the product of any two nonzero ideals (of $(R, *)$) is nonzero; $(R, *)$ is semiprime if $(B, *)^{2} \neq 0$ for each nonzero ideal $(B, *)$ of $(R, *)$. (Much of this terminology is due to Jacobson.) Clearly, if R is semiprime then $(R, *)$ is semiprime; the converse, due to Martindale [9] (who explored these objects under the terminology ($*$)-prime and ($*$)-semiprime) can be seen easily (cf. $[\mathbf{1 4}, \S 4]$).

Given a subset A of R, let

$$
\text { Ann } A \equiv\{r \in R \mid a r=0, \text { all } a \text { in } A\}
$$

and let
$\mathrm{Ann}^{\prime} A \equiv\{r \in R \mid r a=0$, all a in $A\}$.
Suppose $(R, *)$ is semiprime. If A is an ideal of R then $\operatorname{Ann}^{\prime} A=\operatorname{Ann} A$, as is well known. Moreover, if $(A, *)$ is an ideal of $(R, *)$ then $(\operatorname{Ann} A)^{*} \subseteq \operatorname{Ann} A$ (indeed, $\left(A(\operatorname{Ann} A)^{*}\right)^{*}=(\operatorname{Ann} A) A^{*} \subseteq(\operatorname{Ann} A) A=0$, so $\left.A(\operatorname{Ann} A)^{*}=0\right)$; hence $(\operatorname{Ann} A, *)$ is an ideal of $(R, *)$.

Received November 23, 1973 and in revised form, October 10, 1974.

Lemma 1. The following conditions are equivalent.
(1) $(R, *)$ is prime;
(2) For each nonzero ideal $(B, *)$ of $(R, *)$, Ann $B=0$;
(3) If $r_{1}, r_{2} \in R, r_{1} \neq 0$, and if there exists an ideal $(B, *) \neq 0$ of $(R, *)$ such that $r_{1} B r_{2}=r_{1}{ }^{*} B r_{2}=0$, then $r_{2}=0$;
(4) If $r_{1}, r_{2} \in R, r_{1} \neq 0$, and if $r_{1} R r_{2}=r_{1}{ }^{*} R r_{2}=0$, then $r_{2}=0$.

Proof. (1) $\Leftrightarrow(2)$ is trivial.
(1), (2) $\Rightarrow(3): r_{2} \in \operatorname{Ann}\left(B r_{1} B+B r_{1}{ }^{*} B\right)$, so we are done unless $B r_{1} B=$ $B r_{1}{ }^{*} B=0 . R$ is semiprime by (1), so $R r_{1} R+R r_{1}{ }^{*} R \subseteq$ Ann B; hence $r_{1}=0$.
$(3) \Rightarrow(4)$: This is immediate.
$(4) \Rightarrow(1)$: If $(A, *)$ and $(B, *)$ are ideals of $(R, *)$ with $A \neq 0$ and $A B=0$, then for any b in B, any nonzero a in A, we have $a R b=a^{*} R b=0$, so $b=0$ by (4).

Lemma 2. The following conditions are equivalent:
(1) $(R, *)$ is semiprime;
(2) If $r \in R$ and there exists an ideal $(J, *)$ such that Ann $J=0$ and $r J r=$ $r^{*} J r=0$, then $r=0$;
(3) If $r R r=r^{*} R r=0$ then $r=0$.

Proof. This parallels the proof of Lemma 1.
Now assume for the remainder of this paper that $(R, *)$ is semiprime. An ideal $(J, *)$ of $(R, *)$ is essential if $J \cap B \neq 0$ for each nonzero ideal $(B, *)$ of $(R, *)$. Clearly $(J, *)$ is essential \Leftrightarrow Ann $J=0 \Leftrightarrow J$ is essential in R, and we can apply Amitsur's construction in [4] to obtain a ring of quotients for R : Let

$$
\mathscr{J}=\{\text { essential ideals of }(R, *)\}
$$

and consider
$\mathscr{T}=\{(f, J) \mid J \in \mathscr{J}$ and $f: J \rightarrow R$ is a right module homomorphism (disregarding the involution) $\}$.

If $J^{\prime} \in \mathscr{J}$ and $J^{\prime} \subseteq J$, we let (f, J^{\prime}) denote the restriction from f to J^{\prime}. There is an equivalence \sim defined by: $\left(f_{1}, J_{1}\right) \sim\left(f_{2}, J_{2}\right)$ if, for some $J^{\prime} \subseteq J_{1} \cap J_{2}$, $\left(f_{1}, J^{\prime}\right)=\left(f_{2}, J^{\prime}\right)$. Let $Q_{0}(R)=\mathscr{T} / \sim$, and let $[f, J]$ denote the equivalence class of (f, J); then $Q_{0}(R)$ has a canonical ring structure given by [f_{1}, J_{1}] + $\left[f_{2}, J_{2}\right]=\left[f_{1}+f_{2}, J_{1} \cap J_{2}\right]$ and $\left[f_{1}, J_{1}\right]\left[f_{2}, J_{2}\right]=\left[f_{1} \circ f_{2}, J_{2} J_{1}\right]$. Moreover, there is a canonical injection $R \hookrightarrow Q_{0}(R)$ given by $r \mapsto\left[f_{r}, R\right]$, where f_{r} denotes left multiplication by r. Let $C=\operatorname{cent} Q_{0}(R)$. It has been shown in [4] that $[f, J] \in C$ if and only if $f: J \rightarrow R$ is a bimodule homomorphism. (Indeed, (\Leftarrow) is very easy; conversely, assume $[f, J] \in C$. For any r in R, ($f f_{r}-$ $\left.f_{r} f, J_{r}\right)=0$ for suitable J_{r} in \mathscr{J}, so for all x in $J, x J_{r} \subseteq J_{r}$ and $(f(r x)-$ $r f(x)) \in$ Ann $J_{r}=0$.) Hence (*) induces an automorphism on C by $[f, J]^{*}=$
$\left[f^{*}, J\right]$ where $f^{*}(x) \equiv\left(f\left(x^{*}\right)\right)^{*}$, for all x in J. Let $\hat{R} \equiv R C \subseteq Q_{0}(R) . \hat{R}$ has a well-defined involution given by $\left(\sum r_{i} c_{i}\right)^{*}=\sum r_{i}{ }^{*} c_{i}{ }^{*}, r_{i}$ in R, c_{i} in C. (Indeed, suppose $\sum r_{i} c_{i}=0$. Let $c_{i}=\left[f_{i}, J_{i}\right]$; choosing suitably small J in \mathscr{J} we may assume $\sum r_{i} f_{i}(x)=0$, for all x in J. Then for all x^{\prime} in J,

$$
\begin{array}{r}
0=\left(\sum r_{i} f_{i}(x)\right)^{*} x^{\prime}=\left(\sum f_{i}\left(r_{i} x\right)\right)^{*} x^{\prime}=\sum f_{i}^{*}\left(x^{*} r_{i}^{*}\right) x^{\prime} \\
=x^{*}\left(\sum r_{i}^{*} f_{i}^{*}\left(x^{\prime}\right)\right) .
\end{array}
$$

Thus $\sum r_{i}{ }^{*} f_{i}^{*}\left(x^{\prime}\right) \in \operatorname{Ann} J=0$, all x^{\prime} in J, so $\left(\sum r_{i}{ }^{*} f_{i}{ }^{*}, J\right)=0$. $)(\hat{R}, *) \equiv$ $(R C, *)$ is called the central closure of $(R, *)$ and $\hat{C} \equiv \operatorname{cent}(R C, *)$ is called the extended centroid of $(R, *)$. (Note that when R is prime, $R C$ is merely the central closure of R.)

Theorem 1. If $(R, *)$ is prime then its extended centroid \hat{C} is a field and its central closure $(\hat{R}, *)(=(R C, *))$ is prime.

Proof. If $[f, J] \neq 0$ in \hat{C} we claim $f(J) \in \mathscr{J}$ and $f: J \rightarrow f(J)$ is an isomorphism of ideals of $(R, *)$. Indeed, for $f(x)$ in $f(J),(f(x))^{*}=f^{*}\left(x^{*}\right)=$ $f\left(x^{*}\right) \in f(J)$, so $(f(J), *)$ is an ideal of $(R, *)$. Also ($\operatorname{ker} f, *$) is an ideal of $(R, *)$ and $(\operatorname{ker} f) f(J)=f((\operatorname{ker} f) J)=f(\operatorname{ker} f) J=0$, implying $\operatorname{ker} f=0$ since $(R, *)$ is prime. Hence the claim is proved, and $[f, J]^{-1}=\left[f^{-1}, f(J)\right] \in \hat{C}$, so \hat{C} is a field.

To prove ($R C, *$) is prime, we use criterion (4) of Lemma 1 and assume that

$$
\sum r_{i} c_{i} \neq 0, \sum r_{j}^{\prime} c_{j}^{\prime} \in R C
$$

and

$$
\left(\sum r_{i} c_{i}\right) \hat{R}\left(\sum r_{j}{ }^{\prime} c_{j}{ }^{\prime}\right)=\left(\sum r_{i}{ }^{*} c_{i}{ }^{*}\right) \hat{R}\left(\sum r_{j}{ }^{\prime} c_{j}{ }^{\prime}\right)=0
$$

Then $\left(\sum r_{i} c_{i}\right) R\left(\sum r_{j}{ }^{\prime} c_{j}{ }^{\prime}\right)=\left(\sum r_{i}{ }^{*} c_{i}{ }^{*}\right) R\left(\sum r_{j}{ }^{\prime} c_{j}{ }^{\prime}\right)=0$. Let

$$
c_{i}=\left[f_{i}, J_{i}\right], c_{j}^{\prime}=\left[f_{j}^{\prime}, J_{j}^{\prime}\right],
$$

for all i, j. Choosing J in \mathscr{J} suitably contained in the intersection of a suitable finite number of elements of \mathscr{J}, we may assume $c_{i}=\left[f_{i}, J\right], c_{j}{ }^{\prime}=\left[f_{j}^{\prime}, J\right]$, and $0=\left(\sum_{i} r_{i} f_{i}\right)\left(R\left(\sum_{j} r_{j}^{\prime} f_{j}^{\prime}\right) x\right)=\left(\sum_{i} r_{i}{ }^{*} f_{i}{ }^{*}\right)\left(R\left(\sum_{j} r_{j}^{\prime} f_{j}^{\prime}\right) x\right)$ for all x in J. Since $J^{2} \subseteq R$, we obtain

$$
\begin{aligned}
& \left(\sum_{i} r_{i} f_{i} J\right) J\left(\sum_{j} r_{j}^{\prime} f_{j}^{\prime}\right) x=0 \text { and } \\
& \qquad \quad\left(\sum_{i} r_{i}^{*} f_{i}^{*} J\right) J\left(\sum_{j} r_{j}^{\prime} f_{j}^{\prime}\right) x=0,
\end{aligned}
$$

for all x in J. Let $y=\left(\sum r_{j}{ }^{\prime} f_{j}^{\prime}\right) x$, and choose x_{1} in J such that $\sum_{i} r_{i} f_{i}\left(x_{1}\right) \neq 0$. Then $\left(\sum_{i} r_{i} f_{i}\left(x_{1}\right)\right) J y=0$ and, for all x^{\prime} in J,

$$
\begin{aligned}
0 & =x_{1}{ }^{*}\left(\sum_{i} r_{i}^{*} f_{i}^{*}\left(x^{\prime}\right)\right) J y=\left(\sum_{i} f_{i}^{*}\left(x_{1}{ }^{*} r_{i}{ }^{*} x^{\prime}\right)\right) J y \\
& =\left(\sum_{i} f_{i}^{*}\left(x_{1}{ }^{*}\right) r_{i}^{*} x^{\prime}\right) J y=\sum_{i}\left(f_{i}\left(x_{1}\right)^{*} r_{i}^{*}\right) x^{\prime} J y=\sum_{i}\left(r_{i} f_{i}\left(x_{1}\right)\right)^{*} x^{\prime} J y .
\end{aligned}
$$

Setting $a=\sum_{i} r_{i} f_{i}\left(x_{1}\right)$, we have $a J^{2} y=0$ and $a^{*} J^{2} y=0$; hence $y=0$ by Lemma $1(3)$, i.e., $\left(\sum r_{j}{ }^{\prime} f_{j}{ }^{\prime}\right) x=0$ for all x in J, so $\sum r_{j}{ }^{\prime} c_{j}{ }^{\prime}=0$. Therefore $(R C, *)$ is prime.

An analogous situation holds in general:
Theorem 2. If $(R, *)$ is semiprime then its central closure $(\hat{R}, *)$ is semiprime and its extended centroid \hat{C} is von Neumann regular.

Proof. The proof that ($\hat{R}, *$) is semiprime follows the lines of the proof of Theorem 1, using Lemma 2(2). The fact that \hat{C} is von Neumann regular is obtained analogously to Amitsur's proof in [4] that C is von Neumann regular. A sketch: Let $[f, J] \in \hat{C}$. Then there exist ideals $(B, *),\left(B^{\prime}, *\right)$ contained in $(J, *)$ such that

$$
B \cap B^{\prime}=0, \quad B \oplus B^{\prime} \in \mathscr{J}, \quad f\left(B^{\prime}\right)=0, \quad \text { and } \quad f:(B, *) \rightarrow(f(B), *)
$$

is an isomorphism. Choose $\left(B^{\prime \prime}, *\right)$ maximal with respect to $f(B) \cap B^{\prime \prime}=0$, let $J^{\prime}=f(B) \oplus B^{\prime \prime} \in \mathscr{J}$, and define $f^{\prime}: J^{\prime} \rightarrow R$ by $f^{\prime}\left(f(b)+b^{\prime \prime}\right)=b$ for b in $B, b^{\prime \prime}$ in $B^{\prime \prime} .\left[f^{\prime}, J^{\prime}\right] \in \hat{C}$ and $[f, J]\left[f^{\prime}, J^{\prime}\right][f, J]=[f, J]$, so \hat{C} is von Neumann regular.

Remark. If $J \in \mathscr{J}$ then $(\hat{R} J \hat{R}, *)$ is essential in ($\hat{R}, *$). Indeed, if $\sum r_{i} c_{i} \in \operatorname{Ann} \hat{R} J \hat{R}, r_{i}$ in R, c_{i} in C, we have $\left(\sum r_{i} c_{i}\right) x=0$, all x in J. Let $c_{i}=\left[f_{i}, J_{i}\right]$ and let $J^{\prime}=J \cap\left(\cap_{i} J_{i}\right)$. For all x in $J^{\prime}, \sum r_{i} f_{i}(x)=0$, so $\left(\sum r_{i} f_{i}, J^{\prime}\right)=0$, implying $\sum r_{i} c_{i}=0$.

Using this remark, we can see that any bimodule homomorphism $f: J \rightarrow R$ can be extended to $f: \hat{R} J \hat{R} \rightarrow \hat{R}$ by

$$
f\left(\sum_{i} \hat{r}_{i} x \hat{r}_{i}^{\prime}\right)=\sum_{i} \hat{r}_{i} f(x) \hat{r}_{i}^{\prime},
$$

which is well-defined, and in this way one shows that \hat{C} is also the extended centroid of $(\hat{R}, *)$.
(The theory becomes very easy when $(R, *)$ is a $P I$-algebra with involution, in view of [13]; applying the reasoning of $[13, \S 3]$, one can decompose ($\hat{R}, *$) into a finite direct sum of Azumaya algebras of finite rank (with involution). Moreover, if $(R, *)$ is prime with a proper polynomial identity then $(\hat{R}, *)$ is its simple algebra with involution of central quotients (cf. [12]).) We shall be more interested here when $(R, *)$ is not a $P I$-algebra with involution. The point of departure is

Proposition 1. Suppose $(R, *)$ is prime. If $a, b \in R$ and $a x b=b x a$, $a x b^{*}=b x a^{*}$, all x in R, then either $a=0$ or $b=c a($ in $(\hat{R}, *))$ for some c in \hat{C}.

Proof (as in Martindale [10]). Assume $a \neq 0$ and define a map $f:(R a R+$ $\left.R a^{*} R\right) \rightarrow R$ by

$$
f\left(\sum_{i} x_{i} a y_{i}+\sum_{j} x_{j} a^{*} y_{j}\right)=\sum_{i} x_{i} b y_{i}+\sum_{j} x_{j} b^{*} y_{j}
$$

To check that f is well-defined, suppose $\sum x_{i} a y_{i}+\sum x_{j} a^{*} y_{j}=0$. Then for all r in R,

$$
\begin{aligned}
& 0=b r\left(\sum x_{i} a y_{i}+\sum x_{j} a^{*} y_{j}\right)=\sum b r x_{i} a y_{i}+\sum b r x_{j} a^{*} y_{j} \\
&=\sum a r x_{i} b y_{i}+\sum a r x_{j} b^{*} y_{j}=\operatorname{ar}\left(\sum x_{i} b y_{i}+\sum x_{j} b^{*} y_{j}\right)
\end{aligned}
$$

likewise, for all r in R,

$$
0=b^{*} r\left(\sum x_{i} a y_{i}+\sum x_{j} a^{*} y_{j}\right)=a^{*} r\left(\sum x_{i} b y_{i}+\sum x_{j} b^{*} y_{j}\right)
$$

(noting that for all x in $R, b^{*} x a^{*}=\left(a x^{*} b\right)^{*}=\left(b x^{*} a\right)^{*}=a^{*} x b^{*}$). Hence, by Lemma 1(3), $\sum x_{i} b y_{i}+\sum x_{j} b^{*} y_{j}=0$, so f is well-defined. But f is a bimodule homomorphism and

$$
\begin{aligned}
f\left(\left(\sum_{i} x_{i} a y_{i}\right.\right. & \left.\left.+\sum_{j} x_{j} a^{*} y_{j}\right) *\right)=f\left(\sum_{j} y_{j}^{*} a x_{j}^{*}+\sum_{i} y_{i}{ }^{*} a^{*} x_{i}{ }^{*}\right) \\
& =\sum y_{j}^{*} b x_{j}^{*}+\sum y_{i}{ }^{*} b^{*} x_{i}{ }^{*}=\left(\sum x_{i} b y_{i}+\sum x_{j} b^{*} y_{j}\right) *
\end{aligned}
$$

so $\left[f, R a R+R a^{*} R\right] \in \hat{C}$. Clearly $f(a)=b$, so we are done.
Theorem 3. If $(R, *)$ and $\left(R^{\prime}, *\right)$ are prime and $(\hat{R}, *) \subseteq\left(R^{\prime}, *\right)$ (as rings with involution), then for any ring H such that $\hat{C} \subseteq H \subseteq \operatorname{cent}\left(R^{\prime}, *\right)$,

$$
(R H, *) \approx(\hat{R} \underset{\hat{c}}{\otimes} H, *)
$$

with the involution given by $\left(\sum y_{i} \otimes h_{i}\right)^{*}=\sum y_{i}^{*} \otimes h_{i}, y_{i}$ in \hat{R} and h_{i} in H.
Proof. Viewing $(R H, *) \subseteq\left(R^{\prime}, *\right)$, we see by the definition of tensor product that there is a canonical homomorphism $\varphi:\left(\hat{R} \otimes_{\hat{c}} H, *\right) \rightarrow(R H, *)$ given by $\varphi\left(\sum y_{i} \otimes h_{i}\right)=\sum y_{i} h_{i}, y_{i}$ in \hat{R}, h_{i} in H, and $(\operatorname{ker} \varphi, *)$ is an ideal of ($\hat{R} \otimes \hat{c} H, *$). We claim φ is an isomorphism. Otherwise, there is a nonzero element $\sum_{i=1}^{u} y_{i} \otimes h_{i}$ in $\operatorname{ker} \varphi$ with u minimal; note that $\left\{h_{i} \mid 1 \leqq i \leqq u\right\}$ are then \hat{C}-independent. For each x in \hat{R},

$$
\begin{aligned}
& \sum_{i=1}^{u-1}\left(y_{u} x y_{i}-y_{i} x y_{u}\right) \otimes h_{i}= \\
& \quad\left(y_{u} x \otimes 1\right)\left(\sum_{i=1}^{u} y_{i} \otimes h_{i}\right)-\left(\sum_{i=1}^{u} y_{i} \otimes h_{i}\right)\left(x y_{u} \otimes 1\right) \in \operatorname{ker} \varphi
\end{aligned}
$$

by induction on u we conclude $y_{u} x y_{i}-y_{i} x y_{u}=0$, for each i, each x in R. Likewise,

$$
\begin{aligned}
& \sum_{i=1}^{u-1}\left(y_{u} x y_{i}{ }^{*}-y_{i} x y_{u}{ }^{*}\right) \otimes h_{i}= \\
& \quad\left(y_{u} x \otimes 1\right)\left(\sum y_{i} \otimes h_{i}\right)^{*}-\left(\sum y_{i} \otimes h_{i}\right)\left(x y_{u}{ }^{*} \otimes 1\right) \in \operatorname{ker} \varphi
\end{aligned}
$$

so $y_{u} x y_{i}{ }^{*}-y_{i} x y_{u}{ }^{*}=0$, for all i, all x in \hat{R}. If $y_{u}=0$ then we are done by induction on u; otherwise, by Proposition 1, there exist c_{i} in \hat{C} such that
$y_{i}=c_{i} y_{u}, 1 \leqq i \leqq u-1$. Then

$$
\sum_{i=1}^{u} y_{i} \otimes h_{i}=\sum_{i=1}^{u} y_{u} \otimes c_{i} h_{i}=y_{u} \otimes \sum_{i=1}^{u} c_{i} h_{i}
$$

and $y_{u} \sum c_{i} h_{i}=0$ implies $\sum c_{i} h_{i}=0$ since $\left(R^{\prime}, *\right)$ is prime; hence $y_{u} \otimes \sum_{i=1} c_{i} h_{i}=0$ after all, so $\operatorname{ker} \varphi=0$.

Corollary 1. Any collection of \hat{C}-independent elements of $(R, *)$ are cent $\left(R^{\prime}, *\right)$-independent in $\left(R^{\prime}, *\right)$, notation as in Theorem 3.

Corollary 2. If $\sum_{i=1}^{u} y_{i} h_{i}=0, y_{i}$ in $\hat{R},\left\{h_{i} \mid 1 \leqq i \leqq u\right\} \hat{C}$-independent in $\operatorname{cent}\left(R^{\prime}, *\right)$, then $y_{i}=0,1 \leqq i \leqq u$.
2. Primitive rings with involution. Let an irreducible (left) module M of R be faithful for $(R, *)$ if $r M \neq 0$ or $r^{*} M \neq 0$ for each nonzero r in R. Following Baxter-Martindale [5], we call $(R, *)$ primitive if $(R, *)$ has a faithful irreducible module.

Lemma 3. $(R, *)$ is primitive if and only if R has a maximal left ideal which contains no nonzero ideals of $(R, *)$.

Proof. Jacobson [7, p. 6] has shown a left R-module M is irreducible if and only if there is a maximal left ideal J of R such that $M \approx R / J$ (as left R modules). Let $B=\left\{r \in R \mid r M=0\right.$ and $\left.r^{*} M=0\right\}$. Clearly ($B, *$) is an ideal of $(R, *)$ and $B \subseteq J ;(B, *)=0$ if and only if M is faithful for $(R, *)$.

Now suppose a primitive ring R^{\prime} has a minimal left ideal. In this case all minimal left ideals are isomorphic (as left R^{\prime}-modules), and each faithful irreducible (left) module is isomorphic to any given minimal left ideal (by [7, Proposition 2, p. 45]). The sum of the minimal left ideals is the socle, which is also the sum of all minimal right ideals of R^{\prime} and is contained in each nonzero ideal of R^{\prime} by [7, Theorem 1, p. 65]. In view of this fact, we define $\operatorname{soc}(R, *)$ to be the intersection of the nonzero ideals of $(R, *)$.

Given a ring E, the opposite ring E^{o} is defined as follows: The elements of E^{o} are $\left\{x^{o} \mid x \in E\right\}$ with addition given by $x_{1}{ }^{o}+x_{2}{ }^{o}=\left(x_{1}+x_{2}\right)^{o}$ and multiplication given by $\left(x_{1}{ }^{0} x_{2}{ }^{0}\right)=\left(x_{2} x_{1}\right)^{0}$. Thus, $x \rightarrow x^{0}$ is the canonical antiisomorphism from E to E^{0}. If E has an involution (*), then (*) can be thought of as an isomorphism from E to E^{o} given by $x \rightarrow\left(x^{*}\right)^{o}$. On the other hand, the map $x \rightarrow x^{o}$ induces a canonical involution on $E \oplus E^{o}$ given by $\left(x_{1}, x_{2}{ }^{o}\right) \rightarrow$ ($x_{2}, x_{1}{ }^{\circ}$), called the exchange involution.

Consider $D=\operatorname{End}_{R} M$. By Schur's lemma, D is a division ring; we shall view M as $R-D$ bimodule. Also M is a left D^{o}-module with action $d^{o} y \equiv y d$, all d in D, y in M, called the opposite action. Note that $\left(\operatorname{End} M_{D}\right)^{\circ} \approx \operatorname{End}_{D^{\circ}} M$. The structure of primitive rings with involution has the following neat characterization:

Theorem 4. Let $(R, *)$ be primitive with faithful irreducible module M, and let $D=\operatorname{End}_{R} M$.
(1) If R is primitive then $\operatorname{soc}(R, *)=\operatorname{soc} R$.
(2) Suppose R is not primitive. Let $U=\{r \in R \mid r M=0\}$. R is a subdirect product of R_{1} and R_{2}, where $R_{1}=R / U$ has faithful irreducible left module M (with action $(r+U) y=r y, r$ in R and y in M) and $R_{2}=R / U^{*}$ has faithful irreducible right module M (with action $y\left(r+U^{*}\right)=r^{*} y, r$ in R and y in M). Let $D_{1}=\operatorname{End}_{R_{1}} M, D_{2}=$ End $M_{R_{2}}$, and let $E=$ End $M_{D} . D_{1} \approx D$, $D_{2} \approx D^{o}$, End $M_{D_{1}} \approx E, \operatorname{End}_{D_{2}} M \approx E^{o}$, and, under these identifications, R_{1} is a dense subring of E and R_{2} is a dense subring of E^{o}. Let (o) be the exchange involution on $E \oplus E^{0}$, and define $\varphi:(R, *) \rightarrow\left(E \oplus E^{o}, o\right)$ by $\varphi(r)=$ $\left(r+U, r+U^{*}\right) . \varphi$ is an injection in the category of rings with involution, and $\varphi(R)$ is a dense subring of $E \oplus E^{o}$ (i.e. for any t, given $y_{1}, \ldots, y_{t} D$-linearly independent in M, and given arbitrary $y_{1}{ }^{\prime}, \ldots, y_{t}{ }^{\prime}, y_{1}{ }^{\prime \prime}, \ldots, y_{t}{ }^{\prime \prime}$ in M, there exists r in R such that $r y_{j}=y_{j}{ }^{\prime}, r^{*} y_{j}=y_{j}{ }^{\prime \prime}, 1 \leqq j \leqq t$. Finally, $\varphi(\operatorname{soc}(R, *))=\operatorname{soc} R_{1} \oplus \operatorname{soc} R_{2}$ and $\operatorname{soc} R_{1}=\left(\operatorname{soc} R_{2}\right)^{o}$.

Proof. (1) $r R$ is a minimal right ideal if and only if $R r^{*}=(r R)^{*}$ is a minimal left ideal, so clearly $(\operatorname{soc} R)^{*}=\operatorname{soc} R$, implying $(\operatorname{soc} R, *)=\operatorname{soc}(R, *)$.
(2) Baxter-Martindale [5] have shown in a straightforward argument that, with the given actions, M is a faithful, irreducible left R_{1}-module and right R_{2}-module. For all r in R, y in M, d in $D,((r+U) y) d=(r y) d=r(y d)=$ $(r+U)(y d)$, so we can view d in D_{1}; conversely, for all d in $D_{1},(r y) d=$ $((r+U) y) d=(r+U)(y d)=r(y d)$, so $D \approx D_{1}$. Likewise, for d in D^{o}, $d\left(y\left(r+U^{*}\right)\right)=d\left(r^{*} y\right)=r^{*}(d y)=(d y)\left(r+U^{*}\right)$, so we can view d in D_{2}, and, as before, we get $D^{o} \approx D_{2}$. Now End $M_{D_{1}} \approx$ End $M_{D} \approx\left(\operatorname{End}_{D o} M\right)^{\circ} \approx$ $\left(\operatorname{End}_{D_{2}} M\right)^{\circ}$, and, by the density theorem, R_{1} is dense in E and R_{2} is dense in E^{o}. Now $\varphi: R \rightarrow R_{1} \oplus R_{2} \subseteq E \oplus E^{o}$ is clearly an injection of rings. Moreover, $\varphi\left(r^{*}\right)=\left(r^{*}+U, r^{*}+U^{*}\right)$, and one can check as before that $(r+U)^{o}=r^{*}+U^{*}$ and $\left(r+U^{*}\right)^{o}=r^{*}+U$, implying φ is an injection of rings with involution.

Now $\varphi\left(U+U^{*}\right)=\left(\left(U+U^{*}\right) / U\right) \oplus\left(U+U^{*}\right) / U^{*}$; since a nonzero ideal of a primitive ring is dense, this implies $\varphi\left(U+U^{*}\right)$, and hence $\varphi(R)$, is dense in $E \oplus E^{o}$. Moreover, $\operatorname{soc}(R, *) \subseteq U+U^{*}$, an ideal of $(R, *)$, implying $\operatorname{soc}(R, *)=\bigcup\left\{\right.$ ideals of $(R, *)$ contained in $\left.\left(U+U^{*}\right)\right\}$. Likewise, $\operatorname{soc} R_{1}=\bigcup\left\{\right.$ ideals of R_{1} contained in $\left.\left(U+U^{*}\right) / U\right\}$ and soc $R_{2}=\bigcup$ \{ideals of R_{2} contained in $\left.\left(U+U^{*}\right) / U^{*}\right\}$. Hence, $\varphi(\operatorname{soc}(R, *))=\operatorname{soc} R_{1} \oplus \operatorname{soc} R_{2}$. Moreover, for each minimal ideal $(B+U) / U$ of $R_{1}, \quad((B+U) / U)^{*}=$ $\left(B^{*}+U^{*}\right) / U^{*}$ is a minimal ideal of R_{2} and vice versa, $\operatorname{so} \operatorname{soc} R_{2}=\left(\operatorname{soc} R_{1}\right)^{0}$.

Note for c in $\operatorname{cent}(R, *)$, that there is an element \hat{c} in $\operatorname{End}_{R} M$ given by $\hat{c}(y)=c y, y$ in M (notation as in Theorem 4), yielding an injection $\psi: \operatorname{cent}(R, *) \hookrightarrow$ cent D given by $\psi(c)=\hat{c}$, all c in $\operatorname{cent}(R, *)$. Also note that, in the notation of Theorem $4, U=\{r \in R \mid r M=0\}$ is a primitive ideal of R such that $U \cap U^{*}=0$, so any primitive ring with involution is quasiprimitive in the sense of [14].
3. Generalized identities in rings with involution. Let W and R be rings. In [14, §1], R is called a W-algie if R is a $W-W$ bimodule such that the canonical map $\varphi: W \rightarrow R$ given by $w \rightarrow w \cdot 1$ is actually a ring homomorphism with $\varphi($ cent $W) \subseteq$ cent R. It was shown in $[\mathbf{1 4}, \S 1]$ that

$$
W\{X\} \equiv W\left\{X_{1}, X_{2}, \ldots\right\}
$$

the free product of W with the free algebra $C\{X\}$ (where $C=$ cent W), is a free object in the category of W-algies. An element $f\left(X_{1}, \ldots, X_{m}\right)$ in $W\{X\}$ which lies in the kernel of each algie homomorphism $\psi: W\{X\} \rightarrow R$ is a $G I$ of $R . f$ is multilinear if each indeterminate occurring in f occurs exactly once in each monomial of f; explicitly a multilinear $G I$ can be written in the form

$$
f\left(X_{1}, \ldots, X_{m}\right)=\sum_{i, \pi} w_{i 1} X_{\pi 1} w_{i 2} X_{\pi 2} \ldots w_{i m} X_{\pi m} w_{i, m+1},
$$

π ranging over permutations of $(1, \ldots, m)$. The generalized monomial f_{π} of f is the sum of those monomials of f for which π is a fixed permutation; clearly f is the sum of its generalized monomials $f_{\pi} . f$ is R-proper if at least one of its generalized monomials is not a $G I$ of R. It is shown in [14, §1-§3] that proper $G I$'s are the fundamental concepts in the theory of algies with $G I$.

Analogously, $(R, *)$ is a $(W, *)$-algie with involution if R is a W-algie such that the canonical map φ is a homomorphism of rings with involution such that $\varphi(\operatorname{cent}(W, *)) \subseteq \operatorname{cent}(R, *)$. In this case we consider the free product (of rings) of W with the free algebra of rings with involution. $W\{X\}$ is seen to have an involution (*) induced by (*) on W and $X_{2 i-1}{ }^{*}=X_{2 i}, X_{2 i}{ }^{*}=X_{2 i-1}$, $1 \leqq i<\infty$. Any f in $(W\{X\}, *)$ lying in the kernel of each homomorphism $\psi:(W\{X\}, *) \rightarrow(R, *)$ is a $G I$ of $(R, *)$.

Now write $Y_{i}=X_{2 i-1}, Y_{i}{ }^{*}=X_{2 i}, 1 \leqq i<\infty$, and call

$$
f\left(Y_{1}, Y_{1}{ }^{*}, \ldots, Y_{m}, Y_{m}{ }^{*}\right)
$$

multilinear if the sum of the degrees of Y_{i} and Y_{i}^{*} in each monomial of f is 1 , for each i. A multilinear element $f\left(Y_{1}, Y_{1}{ }^{*}, \ldots, Y_{m}, Y_{m}{ }^{*}\right)$ in $(W\{X\}, *)$ is proper if $f\left(X_{1}, \ldots, X_{2 m}\right)$ is proper. Clearly any proper $G I$ of R is a (proper) $G I$ of $(R, *)$ because each homomorphism $\varphi:(W\{X\}, *) \rightarrow(R, *)$ induces a homomorphism $\varphi: W\{X\} \rightarrow R$. The major result of $[\mathbf{1 4}, \S 4]$ is a partial converse, namely [14, Theorem 10]: if ($W, *$) is prime with a proper $G I$ then W has a proper $G I$. The proof there sacrifices categorial consistency for speed. Since the necessary concepts have been developed here, we give somewhat stronger results (which parallel what is known for $G I$ in rings without involution). The following results from [1] are quoted:

If P is a primitive ring with faithful irreducible module M, let $D=\operatorname{End}_{P} M$. Viewing $P \subseteq$ End $M_{D} \subseteq$ End $M_{\mathbf{Z}} \approx \operatorname{End}_{\mathbf{Z}} M$ and $D \subseteq \operatorname{End}_{\mathbf{Z}} M$, let F be a maximal subfield of D and let $P_{F}=P F$ in $\operatorname{End}_{\mathbf{Z}} M$; if $W \subseteq P$ let $W_{F}=W F$ in $\operatorname{End}_{\mathbf{z}} M$. Note that P_{F} is primitive with faithful irreducible module M (which has centralizer F), and by Jacobson's structure theorem [7, p. 75],
$W_{F} \cap \operatorname{soc}\left(P_{F}\right)=\left\{\right.$ set of finite-ranked transformations of $\operatorname{End}_{F} M$ in $\left.W_{F}\right\}$. Since any D-independent set is obviously F-independent, we observe that $\operatorname{soc}\left(P_{F}\right) \cap P \subseteq \operatorname{soc} P$, so $W \cap \operatorname{soc}\left(P_{F}\right) \subseteq W \cap \operatorname{soc} P$. So suppose $W \subseteq P$ and P is a W-algie satisfying each $G I$ of W. From [14] we shall need
[14, Theorem 2]: If W satisfies a proper $G I$ then $W_{F} \cap \operatorname{soc}\left(P_{F}\right) \neq 0$. If $W_{F} \cap \operatorname{soc}\left(P_{F}\right) \neq 0$ and if each $G I$ of W_{F} is a $G I$ of P_{F}, then $W \cap \operatorname{soc} P_{F} \neq 0$ and the dimension of D over its center is finite.
[14, Proposition 6]: If $(R, *)$ is primitive but R is not primitive and if $f\left(X_{1}, X_{1}{ }^{*}, \ldots, X_{m}, X_{m}{ }^{*}\right)$ is a $G I$ of $(R, *)$ then $f\left(X_{1}, X_{2}, \ldots, X_{2 m-1}, X_{2 m}\right)$ is a $G I$ of R.
[14, Proposition 4]: If P is primitive, if $(P, *)$ is a primitive $(W, *)$-algie with involution satisfying each $G I$ of $(W, *)$, and if $(W, *)$ satisfies a proper $G I$, then $W_{F} \cap \operatorname{soc}\left(P_{F}\right) \neq 0$.

To proceed further we need a structure theorem inspired by Martindale [11]. (A semiprimitive ring with involution is a subdirect product of primitive rings with involution.)

Theorem 5. Suppose ($W, *$) is prime and view $(W, *)$ as a ($W, *$)-algie with involution. $(W, *)$ can be embedded in a primitive $(W, *)$-algie with involution satisfying each multilinear GI of $(W, *)$.

Proof. We give a sequence of $(W, *)$-algies with involution $\left(A_{1}, *\right),\left(A_{2}, *\right)$, and $\left(A_{3}, *\right)$, each satisfying every multilinear $G I$ of $(W, *)$, and such that the canonical map $(W, *) \rightarrow\left(A_{i}, *\right)$, given by $w \rightarrow w \cdot 1$, is an embedding, $1 \leqq i \leqq 3$. It will turn out that $\left(A_{1}, *\right)$ has no nonzero nil ideals, $\left(A_{2}, *\right)$ is semiprimitive, and $\left(A_{3}, *\right)$ is primitive.

Let $(T, *)$ be the complete direct product of a countably infinite number of copies of $\left(A_{1}, *\right)$, and let $N=$ sum of the nil ideals of T. Clearly $N^{*} \subseteq N$; let $(W, *)=(T / N, *)$. By [11, Theorem 2.5], A_{1} has no nil ideals. Let $A_{2}=A_{1}[\lambda], \lambda$ an indeterminate commuting with A_{1}, and define an involution (*) on A_{2} by $\left(\sum a_{i} \lambda^{i}\right)^{*}=\sum a_{i}{ }^{*} \lambda^{i}, a_{i}$ in A_{1} (well-known to be well-defined). A_{2} is semiprimitive by [7, p. 10]; hence $\left(A_{2}, *\right)$ is semiprimitive by BaxterMartindale [5]. Note that $(W, *) \subseteq\left(A_{1}, *\right) \subseteq\left(A_{2}, *\right)$ are $(W, *)$-algies with involution, satisfying each multilinear $G I$ of $(W, *)$.

The next step uses ultraproducts in a manner introduced by Amitsur [2] (cf. also Herstein [6, pp. 97-99]). Let $\left\{\left(P_{\lambda}, *\right) \mid \lambda \in \Lambda\right\}$ be the set of primitive ideals of $\left(A_{2}, *\right)$, and write $\left(T_{\lambda}, *\right)=\left(A_{2} /\left(P_{\lambda} \cap P_{\lambda}{ }^{*}\right), *\right)$, a primitive algie with involution for each λ in Λ. A filter on Λ is a collection \mathscr{F} of subsets of Λ such that (i) $\phi \not \mathscr{F}$, (ii) if $\Lambda_{\alpha} \in \mathscr{F}$ and $A_{\beta} \supseteq A_{\alpha}$ then $\Lambda_{\beta} \in \mathscr{F}$; (iii) if $\Lambda_{\alpha} \in \mathscr{F}$ and $\Lambda_{\beta} \in \mathscr{F}$ then $\Lambda_{\alpha} \cap \Lambda_{\beta} \in \mathscr{F}$. It is well-known in logic (cf. Herstein [6, p. 98]) that any filter \mathscr{F} can be embedded in an ultrafilter \mathscr{F} ' which has the additional property that for each $\Lambda_{\alpha} \subseteq \Lambda$, either $\Lambda_{\alpha} \in \mathscr{F}{ }^{\prime}$ or $\left(\Lambda-\Lambda_{\alpha}\right) \in \mathscr{F}$ '. Given an ultrafilter \mathscr{F}^{\prime} one defines the ultraproduct of the ($T_{\lambda}, *$) as follows: Let $\left(T^{\prime}, *\right)=\Pi_{\lambda \in \Lambda}(T, *)$. Writing a typical element of T^{\prime} as $(x(\lambda))$, we define an equivalence \sim on T^{\prime} by $\left(x_{1}(\lambda)\right) \sim\left(x_{2}(\lambda)\right)$ if $\left\{\lambda \in \Lambda \mid x_{1}(\lambda)=x_{2}(\lambda)\right\} \in \mathscr{F}$.

Likewise, letting M_{λ} be a faithful irreducible module of T_{λ}, we set $M^{\prime}=\Pi_{\lambda \in \Lambda} M_{\lambda}$ and define \sim on M^{\prime} in the same way. Let $[(x(\lambda)]$ denote the equivalence class of $(x(\lambda))$ under \sim in T^{\prime} / \sim; let $[(y(\lambda))]$ denote the equivalence class of $(y(\lambda))$ in M^{\prime} / \sim. We claim that T^{\prime} / \sim becomes a $(W, *)$-algie with involution, satisfying each $G I$ of $(W, *)$, when endowed with operations

$$
\begin{aligned}
& w[(x(\lambda))]=[(w x(\lambda))], w \text { in } W \\
& {\left[\left(x_{1}(\lambda)\right)\right]+\left[\left(x_{2}(\lambda)\right)\right]=\left[\left(\left(x_{1}+x_{2}\right)(\lambda)\right)\right] ;} \\
& {\left[\left(x_{1}(\lambda)\right)\right]\left[\left(x_{2}(\lambda)\right)\right]=\left[\left(x_{1} x_{2}(\lambda)\right)\right]}
\end{aligned}
$$

$[(x(\lambda))]^{*}=\left[\left(x(\lambda)^{*}\right)\right]$, and M^{\prime} / \sim becomes a faithful irreducible $\left(T^{\prime} / \sim, *\right)$ module when given the operation $[(x(\lambda))][(y(\lambda))]=[(x y(\lambda))],[(x(\lambda))]$ in $\left(T^{\prime} / \sim, *\right),[(y(\lambda))]$ in M^{\prime} / \sim. Indeed, this is true because all relevant sentences are elementary. For example, " M_{λ} is a faithful irreducible ($T_{\lambda}, *$)-module" can be written as

$$
\begin{array}{r}
\left(\left(\forall y \in M_{\lambda}\right)\left(\forall y^{\prime} \in M_{\lambda}\right)\left(\exists x \in\left(T_{\lambda}, *\right): x y=y^{\prime}\right)\right) \wedge\left(\forall x \in\left(T_{\lambda}, *\right)\right. \\
\left.\left(x=0 \vee\left(\exists y \in M_{\lambda}: x y \neq 0 \vee x^{*} y \neq 0\right)\right)\right)
\end{array}
$$

Furthermore, \mathscr{F} can be chosen in the following manner (as in Amitsur [2, Theorem 3]): Embed $(W, *)$ in $\left(T^{\prime}, *\right)$ in the natural way $(w \rightarrow(\widehat{w}(\lambda))$ where $\widehat{w}(\lambda)=w$, all λ in Λ), and let $\Lambda_{w}=\left\{\lambda \in \Lambda \mid w \notin P_{\lambda} \cap P_{\lambda}{ }^{*}\right\}$ for each nonzero w in W. Observe that $\Lambda_{w}=\Lambda_{w^{*}}$. Since ($W, *$) is prime, given nonzero w_{1}, w_{2} in W, there exists (by Lemma 1) w in W such that $w_{1} w w_{2} \neq 0$ or $w_{1}{ }^{*} w w_{2} \neq 0$. Hence, $\mathscr{F}=\{$ all subsets of Λ containing finite intersections of the $\Lambda_{w}, w \neq 0$ in $\left.W\right\}$ is a filter. Embedding \mathscr{F} in an ultrafilter \mathscr{F} ', one has $(W, *) \subseteq\left(T^{\prime} / \sim, *\right)$ in the given construction, so we let $\left(A_{3}, *\right)=\left(T^{\prime} / \sim, *\right)$, which is primitive with faithful irreducible module M^{\prime}.

We are finally ready to improve [14, Theorems 9 and 10].
Theorem 6. Let $(R, *)$ be a prime $(R, *)$-algie with involution satisfying a proper GI.
(i) The central closure $(\hat{R}, *)$ of $(R, *)$ is primitive.
(ii) Let M be a faithful irreducible module of $(\hat{R}, *)$ and let $D=\operatorname{End}_{\hat{R}} M$. Then D is finite dimensional over its center and $R \cap \operatorname{soc}(\hat{R}, *) \neq 0$.

Proof. (i) Let us embed ($\hat{R}, *$) in a primitive $(\hat{R}, *)$-algie with involution $(P, *)$ satisfying each multilinear $G I$ of $(\hat{R}, *)$, as in Theorem 5 , and let $f\left(X_{1}, X_{1}{ }^{*}, \ldots, X_{m}, X_{m}{ }^{*}\right)$ be a proper $G I$ of $(R, *)$. Clearly f is also a proper $G I$ of $(P, *)$.

Case I. P is not primitive. Then, by Theorem $4,(P, *)$ can be embedded as a dense subring of $\left(E \oplus E^{o}, o\right)$ where E is a ring of endomorphisms of a vector space M^{\prime} over a division ring D; by the density, each $G I$ of $(P, *)$ can be seen to be a $G I$ of $\left(E \oplus E^{o}, o\right)$. Now let F be a maximal subfield of D and let E_{F} be the F-subalgebra of $\operatorname{End}_{\mathbf{Z}} M^{\prime}$ generated by E. Since $\left(E^{o}\right)_{F o} \approx\left(E_{F}\right)^{o}$ and since $F \approx F^{o}$, we may replace F by $\left\{(\alpha, \alpha)\right.$ in $\left.E_{F} \oplus\left(E_{F}\right)^{o} \mid \alpha \in F\right\}$, which
we shall instead call F. Thus, $F=\operatorname{cent}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$ and, by Theorem 3, $\left(\hat{R}_{F}, o\right) \approx\left(\hat{R} \otimes_{C} F, *\right)$, where \hat{C} is the extended centroid of $(R, *)$ (and thus of $(\hat{R}, *)$ also $)$. Let π_{1}, π_{2} denote the respective projections of $E_{F} \oplus\left(E_{F}\right)^{o}$ onto $E_{F},\left(E_{F}\right)^{o}$.

Since $f\left(X_{1}, X_{1}{ }^{*}, \ldots, X_{m}, X_{m}{ }^{*}\right)$ is a $G I$ of $\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$, a trivial application of [14, Proposition 6] shows $f\left(X_{1}, X_{2}, \ldots, X_{2_{m-1}}, X_{2 m}\right)$ is a proper $G I$ of $E_{F} \oplus\left(E_{F}\right)^{0}$. Clearly $f\left(X_{1}, \ldots, X_{2 m}\right)$ is proper either for E_{F} or for $\left(E_{F}\right)^{0}$; without loss of generality we assume $f\left(X_{1}, \ldots, X_{2 m}\right)$ is proper for E_{F}. By [14, Theorem 2], there exists nonzero $\pi_{1}(w)$ in $\pi_{1}\left(\hat{R}_{F}\right) \cap \operatorname{soc} E_{F}$. We claim that $\hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right) \neq 0$. Indeed, let $w=\sum_{i=1}^{u} r_{i} \alpha_{i}, r_{i}$ in \hat{R}, α_{i} in F. For each r in \hat{R}, wrw* $\in \hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{0}, o\right)$ so we are done unless $w \hat{R} w^{*}=0$, i.e. $\left(\sum_{i} r_{i} \alpha_{i}\right) \hat{R}\left(\sum_{j} r_{j}^{*} \alpha_{j}\right)=0$. Let $\left\{\alpha_{i}^{\prime}\right\}$ be a \hat{C}-base for F, and let $\alpha_{i} \alpha_{j}=\sum_{t} \beta_{i j t} \alpha_{t}^{\prime}, \beta_{i j t}$ in \hat{C}. Then, for each r in R,

$$
\sum_{i, j, t}\left(r_{i} r r_{j}^{*} \beta_{i j t}\right) \alpha_{t}^{\prime}=0, \quad \text { implying } \sum_{i, j} r_{i} r r_{j}^{*} \beta_{i j t}=0
$$

since $\hat{R}_{F} \approx \hat{R} \otimes_{C} F$. So $\sum_{t} r_{i} X_{1} r_{j}{ }^{*} \beta_{i j t}$ is a $G I$ for $(\hat{R}, *)$, thus for $\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$, implying $\left(\sum_{i} r_{i} \alpha_{i}\right) x\left(\sum_{j} r_{j}{ }^{*} \alpha_{j}\right)=0$, for each x in $\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$. Hence $\pi_{1}(w) E_{F} \pi_{1}\left(w^{*}\right)=0$, so $\pi_{1}\left(w^{*}\right)=0$ since E_{F} is prime. But this means that $\pi_{2}(w)=0$, so $0 \neq w \in \hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$, as claimed. (Incidentally, a similar argument shows $\left(\hat{R}_{F}, *\right)$ is prime, but we do not need this fact.)

Now we choose $w=\sum_{i=1}^{u} r_{i} \alpha_{i}, r_{i}$ in \hat{R}, α_{i} in F, with u minimal such that $0 \neq w \in \hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right)$. (In particular, $r_{u} \neq 0$.) We claim $u=1$. Otherwise, for each r in \hat{R},

$$
\begin{aligned}
\sum_{i=1}^{u-1}\left(r_{i} r r_{u}\right. & \left.-r_{u} r r_{i}\right) \alpha_{i} \\
& =\left(\sum_{i=1}^{u} r_{i} \alpha_{i}\right) r r_{u}-r_{u} r\left(\sum_{i=1}^{u} r_{i} \alpha_{i}\right) \in \hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right) .
\end{aligned}
$$

Hence, by induction (in view of Theorem 3, Corollary 2), $r_{i} r r_{u}=r_{u} r r_{i}$, all i. Moreover,

$$
\begin{aligned}
& \sum_{i=1}^{u-1}\left(r_{i}^{*} r r_{u}-r_{u}{ }^{*} r r_{i}\right) \alpha_{i} \\
& \quad=\left(\sum_{i=1}^{u} r_{i} \alpha_{i}\right){ }^{\prime} r r_{u}-r_{u}{ }^{*} r\left(\sum_{i=1}^{u} r_{i} \alpha_{i}\right) \in \hat{R}_{F} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right),
\end{aligned}
$$

so $r_{i}{ }^{*} r r_{u}=r_{u}{ }^{*} r r_{i}$, all i. By Proposition 1, $r_{i}=c_{i} r_{u}$, for suitable c_{i} in \hat{C}, so $w=r_{u}\left(\sum c_{i} \alpha_{i}\right)$. Hence $u=t$, as claimed, so $w=r_{1} \alpha_{1}$. But

$$
\alpha_{1}^{-1} w \in R \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right),
$$

which is therefore nonzero. A proof analogous to [11, Theorem 2.10] shows $(\hat{R}, *)$ is primitive.

Case II. P is primitive. By [14, Proposition 4], $\hat{R}_{F} \cap \operatorname{soc} P_{F} \neq 0$; hence \hat{R} is primitive by [11, Theorems 2.9 and 2.10], so certainly $(\hat{R}, *)$ is primitive.
(ii) By part (i), we may assume $P=\hat{R}$. If \hat{R} is primitive then soc $\hat{R}_{F} \neq 0$ by [14, Proposition 4], so by [14, Theorem 2], $R \cap \operatorname{soc} \hat{R}_{F} \neq 0$ and D is finite dimensional over its center. It follows easily from Theorem 4 that $R \cap \operatorname{soc}(\hat{R}, *) \neq 0$.

Hence we are done unless \hat{R} is not primitive, i.e. case I of part (i), with $P=\hat{R}$ and $M^{\prime}=M$. Since E satisfies a proper $G I, D$ is finite dimensional over its center, by [14, Theorem 2]. Moreover, obviously $R_{F}=\hat{R}_{F}$, and the identical argument as in part (i) case I, shows $R \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right) \neq 0$. Hence $\quad 0 \neq R \cap\left(\hat{R} \cap \operatorname{soc}\left(E_{F} \oplus\left(E_{F}\right)^{o}, o\right) \subseteq R \cap \operatorname{soc}(\hat{R}, *)\right.$ (in light of Theorem 4).

References

1. S. A. Amitsur, Generalized polynomial identities and pivotal monomials, Trans. Amer. Math. Soc. 114 (1965), 210-226.
2. -_ Prime rings having polynomial identities with arbitrary coefficients, Proc. London Math. Soc. 17 (1967), 470-486.
3. -_Identities in rings with involutions, Israel J. Math. 7 (1969), 63-68.
4. - On rings of quotients, Instituto Nazionale di Alta Matematica, Symposia Matematica 8 (1972).
5. W. E. Baxter and W. S. Martindale, III, Rings with involution and polynomial identities, Can. J. Math. 20 (1968), 465-473.
6. I. N. Herstein, Topics in ring theory (University of Chicago Press, Chicago, 1972).
7. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloquium Publication XXXVII (1964).
8. S. Kochen, Ultraproducts in the theory of models, Ann. of Math. 74 (1961), 221-261.
9. W. S. Martindale, III, Rings with involution and polynomial identities, J. Algebra 11 (1969), 186-194.
10. -_ Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
11. __ Prime rings with involution and generalized polynomial identities, J. Algebra 22 (1972), 502-516.
12. L. H. Rowen, On classical quotients of polynomial identity rings with involution, Proc. Amer. Math. Soc. 40 (1973), 23-29.
13. -Maximal quotients of semiprime PI-algebras, Trans. Amer. Math. Soc. 196 (1974), 127-135.
14. -Generalized polynomial identities (to appear in J. Algebra, 1975).

University of Chicago,
Chicago, Illinois

