FULL SUBRINGS OF E-RINGS

Shalom Feigelstock

Abstract

A ring R is said to be an E-ring if the map $R \rightarrow E\left(R^{+}\right)$, of R into the ring of endomorphisms of its additive group via $a \hookrightarrow a_{l}=$ left multiplication by a, is an isomorphism. In this note torsion free rings R for which the group R_{l}, of left multiplication maps by elements of R, is a full subgroup of $E\left(R^{+}\right)^{+}$will be considered. These rings are called $T E$-rings. It will be shown that $T E$-rings satisfy many properties of E-rings, and that unital $T E$-rings are E-rings. If R is a $T E$-ring, then $E\left(R^{+}\right)$is an E-ring, and $E\left(R^{+}\right)^{+} / R_{l}$ is bounded. Some results concerning additive groups of $T E$-rings will be obtained.

1. Introduction

A ring R is said to be an E-ring if the map $\lambda: R \rightarrow E\left(R^{+}\right)$of R into the ring of endomorphisms of its additive group defined by $\lambda(a)=a_{l}=$ left multiplication by a, is an isomorphism. The additive group of an E-ring is called an E-group. E-rings and E-groups have received considerable attention, (see [1, 2, Chapter 4, Section 7, 6, 7]). In this note torsion free rings R for which $E\left(R^{+}\right)^{+} / R_{l}$ is a torsion group will be considered.

Definitions and notation will follow $[2,4,5]$.

Notation.

R	a ring, not necessarily associative, or unital
R^{+}	the additive group of R
$E\left(R^{+}\right)$	the endomorphism ring of R^{+}
a_{l}	left multiplication by $a \in R$
a_{r}	right multiplication by $a \in R$
R_{l}	the group or ring $\left\{a_{l} \mid a \in R\right\}$
λ	the map $R \rightarrow R_{l}$ via $a \hookrightarrow a_{l}$
t	the type function

Several conditions on a unital ring R are equivalent to R being an E-ring. Some of these conditions will be recalled.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Proposition 1. Let R be a unital ring. The following are equivalent:
(1) R is an E-ring,
(2) every ring S with $S^{+}=R^{+}$is associative,
(3) every ring S with $S^{+}=R^{+}$is commutative,
(4) $E\left(R^{+}\right)$is commutative,
(5) $\alpha(a b)=a \alpha(b)$ for all $\alpha \in E\left(R^{+}\right)$, and all $a, b \in R$,
(6) $\alpha(a b)=\alpha(a) b$ for all $\alpha \in E\left(R^{+}\right)$, and all $a, b \in R$,
(7) $\quad \alpha(x)=\alpha(1) x$ for all $\alpha \in E(R)$, and all $x \in R$.

Proof: The equivalence of (1), (2) and (3) is proved in [7, Lemma 8], and that of (1), (4) and (5) in [$\mathbf{1}$, Proposition 1.2]. If R satisfies (5) then R is an E-ring by [$\mathbf{1}$, Proposition 1.2], and so R is commutative. Therefore for $\alpha \in E\left(R^{+}\right)$, and $a, b \in R$, it follows that $\alpha(a b)=\alpha(b a)=b \alpha(a)=\alpha(a) b$, and so (6) is satisfied. If R satisfies (6) then for all $a, b \in R$, the product $a b=b_{r}(1 \cdot a)=b_{r}(1) a=b a$ and so R is commutative. Therefore, for $\alpha \in E\left(R^{+}\right)$, and $a, b \in R$, one has $\alpha(a b)=\alpha(b a)=\alpha(b) a=a \alpha(b)$, and so (5) is satisfied. The equivalence of (1) and (7) follows from [7, Lemma 6].

Definition: An associative torsion free ring R is a $T E$-ring ($B E$-ring) if $E\left(R^{+}\right)^{+} / R_{l}$ is a torsion (bounded) group. The additive group of a $T E$-ring ($B E$-ring) is called a $T E$-group ($B E$-group).

Example. $2 Z$ the ring of even integers is a $B E$-ring but is not an E-ring. An example of a $T E$-ring which is not a $B E$-ring cannot be given, because $T E$-rings and $B E$-rings are one and the same as will be shown later, Corollary 3. The ring of even integers satisfies properties (2)-(7) of Proposition 1. This is typical of TE-rings, as will also be shown.

Theorem 2. Let R be a $T E$-ring. Then

(1) there exists an element $e \in R$, and a positive integer n such that ea $=n a$ for all $a \in R$;
(2) R is commutative;
(3) $n \alpha=[\alpha(e)]_{l}$ for all $\alpha \in E\left(R^{+}\right)$.

Proof: (1) Let i be the identity map on R^{+}. There exists $e \in R$, and a positive integer n such that $n i=e_{l}$. This clearly implies that $e a=n a$ for all $a \in R$.
(2) Let $a \in R$. Since $a_{r} \in E\left(R^{+}\right)$, there exist $b \in R$, and a positive integer m such that $m x a=b x$ for all $x \in R$. Substituting e for x yields that $m n a=b e$. Therefore, $m n a x=n b x$ for all $x \in R$. Since R^{+}is torsion free, this implies that max $=b x$ for all $x \in R$. Therefore $m a x=m x a$ which, by the torsion freeness of R^{+}, implies that $a x=x a$.
(3) Let $\alpha \in E\left(R^{+}\right)$. There exist $a \in R$, and a positive integer m such that
$m \alpha=a_{l}$. Therefore $m \alpha(e)=n a$, and so $m \alpha(e) x=n a x=m n \alpha(x)$ for all $x \in R$. Since R^{+}is torsion free, this implies that $n \alpha(x)=\alpha(e) x$.

From now on e will always denote the distinguished element of a $T E$-ring R satisfying $e x=n x$ for all $x \in R$.

An immediate consequence of Theorem 2 (3) is:
Corollary 3. Every TE-ring is a BE-ring.
Corollary 4. Let R be a $T E$-ring. Then the map $\lambda: R \rightarrow E\left(R^{+}\right)$defined by $\lambda(a)=a_{l}$ for all $a \in R$, is a ring monomorphism.

Proof: Clearly $\lambda(a+b)=\lambda(a)+\lambda(b)$, and the associativity of R insures that $\lambda(a b)=\lambda(a) \lambda(b)$ for all $a, b \in R$. Let $a \in \operatorname{ker} \lambda$. Since R is $T E$ there exists a positive integer n such that $n a=a_{l}(e)=0$, and so $a=0$.

Corollary 5. Let R be a unital TE-ring. Then R is an E-ring.
Proof: By Corollary 4, it suffices to show that $\lambda: R \rightarrow E\left(R^{+}\right)$is onto. Let $\alpha \in E\left(R^{+}\right)$. Then $n \alpha(x)=\alpha(e) x$ for all $x \in R$, and so $n \alpha(1)=\alpha(e)$. Therefore $n \alpha(x)=n \alpha(1) x$ for all $x \in R$, which implies that $\alpha=[\alpha(1)]_{l}=\lambda[\alpha(1)]$.

Lemma 6. Let R be a TE-ring. Then $E\left(R^{+}\right)$is commutative.
Proof: Let $\alpha, \beta \in R$. Then $n^{2} \alpha \beta=(n \alpha)(n \beta)=[\alpha(e)]_{l}[\beta(e)]_{l}=[\beta(e)]_{l}[\alpha(e)]_{l}=$ $n^{2} \beta \alpha$. Since $E\left(R^{+}\right)^{+}$is torsion tree, $\alpha \beta=\beta \alpha$.

Theorem 7. Let R be a $T E-$ ring, and let S be a ring with $S^{+}=R^{+}$. Then S is commutative and associative.

Proof: Let * denote multiplication in S. For every $a \in S$ the map $R^{+} \rightarrow R^{+}$ via $x \hookrightarrow a * x$ belongs to $E\left(R^{+}\right)$. Theorem 2 yields that $n a * x=(a * e) x$ for all $x \in S$. The map $R^{+} \rightarrow R^{+}$via $x \hookrightarrow x * e$ belongs to $E\left(R^{+}\right)$so, again by Theorem 2 , $n a * e=(e * e) a$ and so $n^{2} a * x=(e * e) a x$ for all $a, x \in S$. Hence for $a, b \in S$, one has $n^{2} a * b=(e * e) a b=(e * e) b a=n^{2} b * a$. Since S^{+}is torsion free it follows that S is commutative. Let $a, b, c \in S$. Direct computation shows that $n^{3}[(a * b) * c]=$ $n^{3}[a *(b * c)]=[e *(e * e)] a b c$, and so S is associative.

Lemma 8. Let R be a $T E$-ring, $\alpha \in E\left(R^{+}\right)$, and let $a, b \in R$. Then
(1) $\alpha(a b)=\alpha(a) b$, and
(2) $\alpha(a b)=a \alpha(b)$.

Proof: (1) $\alpha(a b)=\alpha \circ b_{r}(a)=\left(\right.$ by Lemma 6) $b_{r} \circ \alpha(a)=\alpha(a) b$.
(2) $\alpha(a b)=\alpha(b a)=(b y(1)) \alpha(b) a=a \alpha(b)$.

Rings satisfying property (1) of Lemma 8 were studied in [3], and were called E-associative rings.

Theorem 9. Let R be a $T E$-ring. Then $E\left(R^{+}\right)$is an E-ring.
Proof: Let * be a ring multiplication on $E\left(R^{+}\right)$. By Proposition 1 it suffices to show that $\left(E\left(R^{+}\right)^{+}, *\right)$ is commutative. It follows from Theorem 2 that $n E\left(R^{+}\right) \subseteq R_{l}$. Define multiplication in R_{l} by $a_{l} \circ b_{l}=n\left(a_{l} * b_{l}\right)$ for all $a, b \in R$. It is readily seen that ○ is a ring multiplication on R_{l}. Since $R_{l} \simeq R^{+}$it follows from Theorem 7 that (R_{l}, \circ) is commutative. Let $\alpha, \beta \in E\left(R^{+}\right)^{+}$. Then $n \alpha=[\alpha(e)]_{l}$, and $n \beta=[\beta(e)]_{l}$ by Theorem 2. Therefore $n^{3} \alpha * \beta=n(n \alpha) *(n \beta)=[\alpha(e)]_{l} \circ[\beta(e)]_{\iota}=[\beta(e)]_{l} \circ[\alpha(e)]_{l}=n^{3} \beta * \alpha$. Since $E\left(R^{+}\right)^{+}$is torsion free it follows that $\alpha * \beta=\beta * \alpha$.

Corollary 10. Let R be a torsion free ring. Then R is a $T E$-ring if and only if there exists an E-ring S, and an embedding of R into S with bounded index.

Proof: If R is a $T E$-ring then $\lambda: R \rightarrow E\left(R^{+}\right)$is an embedding of R into an E-ring by Corollary 4 and Theorem 9. It follows from Corollary 3 that $\lambda(R)=R_{l}$ has bounded index in $E(R)$.

Conversely suppose that R is a subring of an E-ring S, and that $n S \subseteq R, n$ a positive integer. Let 1 be the unity of S. Then $e=n \cdot 1 \in R$. For $\alpha \in E\left(R^{+}\right)$define $\widehat{\alpha}: S^{+} \rightarrow S^{+}$by $\widehat{\alpha}(x)=\alpha(n x)$. It is readily seen that $\widehat{\alpha} \in E\left(S^{+}\right)$. Therefore, by Proposition 1, $\widehat{\alpha}(x)=\widehat{\alpha}(1) x=\alpha(e) x$ for all $x \in S$. Therefore $n \alpha(x)=\alpha(n x)=\alpha(e) x$ for all $x \in R$, that is, $n \alpha=[\alpha(e)]_{l}$ and so R is a $T E$-ring.

Lemma 11. Let R be a $T E$-ring, and let S be a unital subring of R such that S^{+} / R^{+}is bounded. Then S is an E-ring.

Proof: The ring $Q \otimes E\left(S^{+}\right) \simeq Q \otimes E\left(R^{+}\right)$is commutative by Lemma 6. Therefore $E\left(S^{+}\right)$is commutative, and so S is an E-ring by Proposition 1.

Lemma 12. Let R be a $T E$-ring. Then every group direct sum $R^{+}=H \oplus K$ is a ring direct sum.

Proof: Let $h \in H$, and let $x \in R$. The natural projection of R^{+}onto H along K, π_{H}, belongs to $E\left(R^{+}\right)$. It follows from Lemma 8 that $h x=\pi_{H}(h) x=\pi_{H}(h x) \in H$, that is, $H R \subseteq H$, and similarly $R H \subseteq H$. Therefore H is an ideal in R. The same argument, using the projection of R^{+}onto K, yields that K is an ideal in R. Since $H K \subseteq H \cap K=\{0\}$, and similarly $K H=\{0\}$, it follows that $R=H \oplus K$ is a ring direct sum.

The result parallel to Lemma 12 for E-rings, was proved in [7, Corollary 2].
Corollary 13. Let G be a $T E$-group. Then G cannot be an infinite direct sum of non-trivial groups.

Proof: Let $G=\bigoplus_{i \in I} G_{i}$, and let R be a $T E$-ring with $R^{+}=G$. There exists a finite subset $\{1, \ldots, k\} \subseteq I$ such that $e=e_{1}+\cdots+e_{k}$, with $e_{i} \in G_{i}$ for $i=1, \cdots, k$.

Let $x \in G$. Then $n x=x e=x e_{1}+\cdots+x e_{k}$. Since $x e_{i} \in G_{i}$ for each i by Lemma 12, it follows that $n x \in G_{1} \oplus \cdots \oplus G_{k}$. The fact that $G_{1} \oplus \cdots \oplus G_{k}$ is a pure subgroup of G, and that G is torsion free, yields that $x \in G_{1} \oplus \cdots \oplus G_{k}$, that is, $G=G_{1} \oplus \cdots \oplus G_{k}$.

Lemma 14. Let G be a completely decomposable torsion free group. The following are equivalent:
(1) G is an E-group,
(2) G is a $T E$-group,
(3) $G=\bigoplus_{i=1}^{k} G_{i}$, with k a positive integer, G_{i} a rank one torsion free group, $t\left(G_{i}\right)$ idempotent, and $t\left(G_{i}\right) \not \leq t\left(G_{j}\right)$ for all $1 \leqslant i, j \leqslant k, i \neq j$.

Proof: Clearly (1) \Rightarrow (2).
(2) \Rightarrow (3): Suppose that G is a completely decomposable $T E$-group. It follows from Corollary 13 that G is a finite direct sum of rank one torsion free groups, $\bigoplus_{i=1}^{k} G_{i}$. Let $A=\bigoplus_{i=1}^{k} E\left(G_{i}\right)$. Since $E\left(R^{+}\right)=A \oplus \bigoplus_{i \neq j} \operatorname{Hom}\left(G_{i}, G_{j}\right)$, and $r(G)=r(E(G))^{+}=k$, it follows that $\operatorname{Hom}\left(G_{i}, G_{j}\right)=0$ for all $i \neq j$. If $t\left(G_{i}\right) \leqslant t\left(G_{j}\right)$ for $i \neq j$, then $\operatorname{Hom}\left(G_{i}, G_{j}\right) \neq 0$, a contradiction. Let R be a $T E$-ring with $R^{+}=G$, and let $a \in G_{j}, a \neq 0$, for some $1 \leqslant j \leqslant k$. Let $e=e_{1}+\cdots+e_{k}$ with $e_{i} \in G_{i}$ for all $1 \leqslant i \leqslant k$. Then $t\left(G_{j}\right)=t(n a)=t\left(a e_{j}\right) \geqslant 2 t\left(G_{j}\right)$, and so $t\left(G_{j}\right)$ is idempotent for all $1 \leqslant j \leqslant k$.
$(3) \Rightarrow(1):[7$, Theorem 2].
Question 1. Is every TE-group an E-group? It follows from Corollary 3, and Theorem 9 , that every $T E$-group is quasi-isomorphic to an E-group.

QUESTION 2. Let R be a subring of a torsion-free E-ring S, with S^{+} / R^{+}a torsion group. Is R a $T E$-ring?

References

[1] R.A. Bowshell and P. Schultz, 'Unital rings whose additive endomorphisms commute', Math. Ann. 228 (1977), 197-214.
[2] S. Feigelstock, Additive groups of rings, Research Notes in Mathematics 83 (Pitman, London, 1983).
[3] S. Feigelstock, ' E-associative rings', Canad. Math. Bull. 36 (1993), 147-153.
[4] L. Fuchs, Abelian groups 1 (Academic Press, New York, London, 1970).
[5] L. Fuchs, Abelian groups 2 (Academic Press, New York, London, 1973).
[6] R. Pierce, ' E-modules', Contemp. Math. 87 (1989), 221-240.
[7] P. Schultz, 'The endomorphism ring of the additive group of a ring', J. Austral. Math. Soc. 15 (1973), 60-69.

Department of Mathematics and Computer Science
Bar-llan University
Ramat Gan 52900
Israel

[^0]: Received 6 November 1995

