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On the Size of the Wild Set

Marius Somodi

Abstract. To every pair of algebraic number fields with isomorphic Witt rings one can associate a

number, called the minimum number of wild primes. Earlier investigations have established lower

bounds for this number. In this paper an analysis is presented that expresses the minimum number

of wild primes in terms of the number of wild dyadic primes. This formula not only gives immediate

upper bounds, but can be considered to be an exact formula for the minimum number of wild primes.

1 Introduction

The abstract theory of symmetric bilinear forms over fields took a major turn in 1937
when Witt constructed a new object, today known as the Witt ring. As this object can
be associated to any field, number theorists have been interested in understanding the

Witt ring of number fields. To describe explicitly the Witt ring of an arbitrary num-
ber field is a difficult problem. Another problem in algebraic theory of quadratic
forms and number theory is to describe the situation when two number fields have
isomorphic Witt rings (in this case the number fields are called Witt equivalent). In

1994, R. Perlis, K. Szymiczek, P. E. Conner, and R. Litherland ([6]) solved this prob-
lem. They proved that two number fields are Witt equivalent if and only if there is
a reciprocity equivalence between the fields. Later the terminology changed and reci-

procity equivalence has been renamed Hilbert symbol equivalence. A Hilbert symbol

equivalence between two number fields K and L is a pair of maps (t, T), where

t : K∗/K∗2 → L∗/L∗2

is a group isomorphism and

T : ΩK → ΩL

is a bijection between the sets of (finite and infinite) primes of K and L respectively,
such that the Hilbert symbols are preserved:

(a, b)P = (t(a), t(b))TP , a, b ∈ K∗/K∗2, P ∈ ΩK .

In 1991, K. Szymiczek proved that there is a Hilbert symbol equivalence between
two number fields if and only if the two number fields have the same level, the same

number of real embeddings, and there is a bijection between the dyadic primes of
the two fields so that the corresponding dyadic completions have the same level and
degree over Q2 (see [7]).
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Constructing a Hilbert symbol equivalence between Witt equivalent number fields
is not an easy problem. Since one wants to define maps between infinite sets, in the

absence of a systematic method this is an infinite task. In [6] the authors reduced
this problem to the problem of constructing a finite object involving finitely many
primes. They called this object a small equivalence. So far, small equivalence is the
only tool employed to construct Hilbert symbol equivalences. The interested reader

is referred to [6] for details.

Whenever a Hilbert symbol equivalence (t, T) between two number fields is con-
sidered, a partition of the set of prime ideals can be constructed: a prime ideal P is

called tame for (t, T) if

ordP(a) ≡ ordTP(t(a)) (mod 2)

for any square class a, and wild if it is not tame; the partition consists of the set of
tame primes and the set of wild primes. In [6] it is shown that any small equivalence
can be extended to a Hilbert symbol equivalence by adding only tame primes. One
consequence is that between Witt equivalent number fields one can always construct

Hilbert symbol equivalences that have finitely many wild primes. P. E. Conner posed
the question: how small can the set of wild primes be? In [2] the following lower
bounds for the minimum number of wild primes are given in terms of the 2-ranks of
the S-ideal class groups:

Proposition 1 Let (t, T) be a Hilbert symbol equivalence between number fields K

and L with finite wild set W = Wild(K, L). Let S be any finite subset of primes of K

containing all infinite primes. Then:

|rk2(CK(S)) − rk2(CL(TS))| ≤ |W \ S|

and

|rk2(C+
K(S)) − rk2(C+

L (TS))| ≤ |W \ S|.

In the next section, we introduce the concept of a correspondence. Intuitively, a cor-

respondence is what remains from a Hilbert symbol equivalence (t, T) if we drop the
global square-class map t completely, and restrict the map T to a bijection between
finite sets containing all the infinite and all the dyadic primes of both fields. In this
paper we will show that any correspondence between two Hilbert symbol equivalent

number fields can be extended to a small equivalence (and then to a Hilbert symbol
equivalence). We also present a method of extending a correspondence to a Hilbert
symbol equivalence with a minimum number of wild primes among all Hilbert sym-
bol equivalences that extend it. In particular, we present a formula that expresses

the minimum number of wild primes in any Hilbert symbol equivalence between the
two fields in terms of the number of dyadic wild primes:

Theorem 2 Let K and L be Witt equivalent number fields, and let S be a finite set that

contains all infinite and dyadic primes in K. Any correspondence C defined on S can be
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extended to a Hilbert symbol equivalence between K and L that has a wild set of size

equal to

δ + |W | + |rk2(CK (S)) − rk2(CL(TS))|,
where W = W (C) ⊆ S is the set of wild primes of C and δ = δ(C) is a non-negative

integer called the defect of the correspondence. Moreover, any other extension of C to a

Hilbert symbol equivalence between K and L has a wild set of size not less than δ + |W |+
|rk2(CK (S)) − rk2(CL(TS))|.

In particular, if one wants to construct a Hilbert symbol equivalence with a mini-
mum number of wild primes then one has to consider all (finitely many) correspon-

dences that can be defined on the set of infinite and dyadic primes, and determine for
each one of them the number of wild dyadic primes (|W |) and the defect (δ). When
the sum of these two numbers is minimum, then any particular correspondence for

which this minimum is achieved can be extended to a Hilbert symbol equivalence
with a minimum number of wild primes. This number is δ + |W | + |rk2(CK (D)) −
rk2(CL(D ′))|, where D and D ′ are the sets of dyadic primes in K and L respectively.

The formula that we present gives the exact minimum number of wild primes.

However, computing explicitly this number for arbitrary number fields might be dif-
ficult. Upper and lower bounds for the minimum number of wild primes might be
useful. Here they are:

Corollary 3 Let W = Wild(K, L) be a minimum wild set for two Witt equivalent

number fields K and L. Let D and D ′ be the sets of dyadic primes in K and L respectively,

r and s be the number of real embeddings and pairs of complex embeddings respectively

of K. Then

|rk2CK (D) − rk2CL(D ′)| ≤ |W | ≤ |rk2CK(D) − rk2CL(D ′)| + 2|D| + r + s.

We present a method of extending a correspondence to a small equivalence by adding
a minimum number of wild primes. The construction involves two steps. If at least
one of the fields has an even S-class number, then as a first step we add primes to

the correspondence until both class numbers become odd. To accomplish this, we
follow a procedure inspired by Czogala’s work [3]. Then we proceed to the second
step, where we employ J. Carpenter’s method [1] of extending to a small equivalence
the particular type of correspondence (which she called suitable) that gives odd S-

class numbers for both fields. We also prove that this method produces at the end the
minimum number of wild primes.

2 Preliminary Results

From now on, K and L will denote two algebraic number fields that are Witt equiva-
lent.

As before we will denote by r the number of real embeddings of K, and by s the

number of pairs of complex embeddings of K.
We denote by ΩK the set of all primes (finite or infinite) of K, by ΩL the set of all

primes of L, and let
S = {P1, P2, . . . , Pm} ⊂ ΩK
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be a finite set of primes of K that contains all infinite and dyadic primes.

By O∗
K we denote the group of units of the ring of integers OK . If the set S is defined

as above, we denote by OK(S) the ring of S-integers of OK . More precisely,

OK(S) = {x ∈ K : ordP(x) ≥ 0, P /∈ S}.

The units of the ring of S-integers form a multiplicative group O∗
K(S).

We denote by CK the ideal class group of K, and by ρ = rk2(CK ) its 2-rank. Recall
that the 2-rank of a finite abelian group G is the dimension of the quotient G/G2 as
an F2-vector space. Equivalently, the 2-rank of G is r, where |G/G2| = 2r . Yet another
way to describe r is as follows: the 2-rank is the number of cyclic factors of 2-power

order appearing in the cyclic decomposition of a 2-Sylow subgroup of G.

Let CK(S) be the S-class group of K: CK (S) = CK/HK (S), where HK(S) is the sub-
group of CK generated by the classes of ideals in S. We will denote by θ(S) the 2-rank
of HK (S). Observe that θ(S) is the dimension over F2 of the subspace of CK/C2

K gen-

erated by the cosets of ideal classes of primes in S and rk2(CK(S)) = ρ − θ(S). We
may assume that the primes in S are numbered so that [P1], . . . , [Pθ(S)] are linearly
independent in CK/C2

K .

The following notations will be used (some of these notations generalize objects

defined in [3]):

K0(S) = {x ∈ K∗ : ordP(x) ≡ 0 (mod 2), P ∈ ΩK \ S},
Ksq(S) = {x ∈ K0(S) : x is a local square at P, P ∈ S},

UK(S) = {x̄ ∈ K∗/K∗2 : x ∈ O∗
K(S)},

EK (S) = {x̄ ∈ K∗/K∗2 : x ∈ K0(S)},

GK (S) =

∏

P∈S

K∗
P /K∗2

P .

The following inclusions hold:

K∗2 ⊂ Ksq(S) ⊂ K0(S).

We will denote by CK,2(S) the subgroup of CK (S) which consists of all elements in
CK (S) of order 1 or 2. The image of an ideal I of K in any of the above ideal class

groups will be denoted by [I].

Lemma 4

1. UK(S) is a subgroup of EK (S).

2. UK(S) is an elementary 2-group of order 2|S|. Hence rk2(UK (S)) = |S|.
3. There is an exact sequence:

1 → UK(S) → EK (S) → CK,2(S) → 1.
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Proof 1. Obvious.
2. By Dirichlet’s unit theorem:

O∗
K(S) ≃ WK(S) × Z

|S|−1

where WK(S) is a cyclic group of finite even order. Then

|O∗
K(S)/O∗

K (S)2| = 2|S|,

and the claim follows from the observation that O∗
K(S)/O∗

K (S)2 ≃ UK(S).
3. Let x̄ ∈ EK(S). Then a representative x can be chosen with:

xOK = Q2α1

1 Q2α2

2 · · ·Q2αr
r I,

where α1, . . . , αr ∈ Z, I a product of ideals in S, and Q1, . . . , Qr outside S. Define a
map:

ΨS : EK(S) → CK,2(S)

by
ΨS(x̄) = [Q1]α1 [Q2]α2 · · · [Qr]

αr .

Clearly, ΨS is a well-defined map, and a group homomorphism. Moreover,

Ker(ΨS) = UK(S), Im(ΨS) ≤ CK,2(S).

To see that ΨS is in fact surjective, note that if [Q1]α1 [Q2]α2 · · · [Qr]
αr ∈ CK,2(S) then

([Q1]α1 [Q2]α2 · · · [Qr]
αr )2

= 1

in CK (S), hence one can find x ∈ K such that

xOK = Q2α1

1 Q2α2

2 · · ·Q2αr
r I,

where I is a product of ideals in S, which means that x̄ ∈ EK(S).

Corollary 5 rk2(EK (S)) = |S| + rk2(CK (S)).

Proof The equality follows directly from Lemma 4 (parts 2 and 3) and the fact that
rk2(CK,2(S)) = rk2(CK (S)).

Let S be a finite set of primes of K containing the infinite and dyadic primes,
and P be a prime outside S. Denote by clS(P) the class of P in CK(S)/CK (S)2. Let
S1 = S ∪ {P}.

Lemma 6

1. EK(S) ≤ EK(S1).

2. EK(S) = EK(S1) if and only if clS(P) 6= 1.
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3. [EK (S1) : EK (S)] = 2 if and only if clS(P) = 1. In this case, if we define

Φ : EK(S1) → Z/2Z

by Φ(x̄) = ordP(x) (mod 2), there is a short exact sequence:

1 → EK(S) → EK(S1) → Z/2Z → 0.

Proof 1. Obvious.
2, 3. Note that clS(P) = 1 if and only if there exists x∗ ∈ K such that

P = x∗Q2α1

1 Q2α2

2 · · ·Q
2α j

j Pβ1

1 · · ·Pβl

l .

This is equivalent to the existence of an element x̄∗ ∈ EK(S1) such that ordP(x̄∗) ≡
1 (mod 2). But this means that there exists an element x∗ ∈ K which is a local
uniformizer at P, and such that x̄∗ ∈ EK (S1). In other words, clS(P) = 1 if and only
if EK(S1) \ EK (S) is non-empty.

On the other hand, it follows from Corollary 5 that [EK (S1) : EK (S)] ≤ 2, since
|S1| = |S| + 1 and rk2(CK (S1)) ≤ rk2(CK (S)). Consequently, clS(P) = 1 if and only
if [EK(S1) : EK(S)] = 2. The sequence is exact: Φ is well-defined, the kernel of Φ

consists of those elements of EK(S1) that are local units at P, i.e., they are in EK(S),

and Φ is onto Z/2Z because it maps the element x∗ to 1.

Lemma 7

1. rk2(CK (S1)) = rk2(CK (S)) if and only if clS(P) = 1.

2. rk2(CK (S1)) = rk2(CK (S)) − 1 if and only if clS(P) 6= 1.

Proof The results are direct consequences of Lemma 6 and Corollary 5.

Definition 8 Let F be an algebraic number field. A finite subset S of ΩF is called

decent if S contains all infinite and all dyadic primes of F.

Definition 9 A system (S, S ′, T, (tP)P∈S) consisting of:

1. a pair of decent sets: S ⊂ ΩK and S ′ ⊂ ΩL;

2. a bijection T : S → S ′;

3. for any prime P ∈ S an isomorphism, tP : K∗
P /K∗2

P → L∗
TP/L∗2

TP such that

(a, b)P = (tP(a), tP(b))TP, ∀a, b ∈ K∗
P /K∗2

P ,

is called a correspondence between K and L.

Remark 10 If (S, S ′, T, (tP)P∈S) is a correspondence between K and L then the map

tS =

∏

P∈S

tP

is a group isomorphism tS : GK (S) → GL(S ′).
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Define now the map
νS = νK (S) : EK(S) → GK(S)

by

νS(x̄) = (xP1
, xP2

, . . . , xPm
) = (x)S,

where, for any P ∈ S, xP denotes the image of the global square class x̄ in K∗
P /K∗2

P .
This map is well-defined. Let ωK (S) be the image of νS.

Before we continue our investigation, we will introduce a notation and present

without proofs two results that will be used:
If x ∈ K∗ and P is a finite prime in K we define the following symbol:

( x

P

)

=

{

1, if x is a local square at P;

−1, otherwise.

Theorem 11 ([4, Theorem 169]) Let µ1, µ2, . . . , µm be integers in K such that a

product of powers µx1

1 · · ·µxm
m is the square of a number in K only if all exponents

x1, . . . , xm are even. Let c1, . . . , cm be arbitrary values ±1. Then there are infinitely

many prime ideals P in K which satisfy the m conditions

( µ1

P

)

= c1, . . . ,
( µm

P

)

= cm.

Corollary 12 ([3]) Suppose b1, . . . , bl ∈ Ksq(S) map to linearly independent ele-

ments in Ksq(S)/K∗2 and let R1, . . . , Rl be primes outside S, in K, such that

( bi

Ri

)

= −1,
( b j

Ri

)

= 1, ∀ i 6= j ∈ {1, . . . , l}.

Then the classes [P1], . . . , [Pθ(S)], [R1], . . . , [Rl] are linearly independent in CK/C2
K .

Lemma 13

1. rk2(Ker(νS)) = rk2(CK (S)).

2. rk2(ωK (S)) = |S|.

Proof Regard GK (S) as an F2-inner product space, with the inner product B defined
as the product of Hilbert symbols:

B((x)S, (y)S) =

∏

P∈S

(xP, yP)P.

According to [1], rk2(GK (S)) = 2|S|. Note that ωK (S) is a totally isotropic subspace
of GK (S). To prove this, we see that for any prime P /∈ S, any elements x̄, ȳ in EK(S)
map to local units at P, so the Hilbert symbol satisfies (x, y)P = 1. Then

1 =

∏

P∈ΩK

(x, y)P = B((x)S, (y)S) · 1 = B((x)S, (y)S).
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According to [5, Corollary 4.4],

rk2(ωK (S)) ≤ 1

2
· rk2(GK (S)) = |S|.

Now EK(S) can be regarded as an F2-vector space, and Ker(νS) is a subspace of EK(S).

Fix {x̄1, . . . , x̄q} an F2-base for Ker(νS). If we use repeatedly Theorem 11, we can find
primes Q1, . . . , Qq outside S such that x̄i is a local square at Q j , ∀ j 6= i, and x̄i is a
local non-square unit at Qi , ∀i ∈ {1, . . . , q}. If the ideal classes of Qi were linearly
dependent in CK/C2

K then we would get a relation of the form

xOK = Q1 · · ·Ql J2

for some x ∈ K (after renumbering the ideals if necessary). But then x is a local
uniformizer at Q1 and x1 is a local non-square unit at Q1, hence (x, x1)Q1

= −1. On
the other hand, (x, x1)Q = 1 for all Q 6= Q1, as when Q /∈ {Q2, . . . , Ql}, both x and

x1 are local units at Q, and when Q = Qi for some i 6= 1, x1 is a local square at Q. This
contradicts Hilbert’s reciprocity law. Hence [Q1], . . . , [Qq] are linearly independent
in CK (S)/CK (S)2, which implies:

rk2(Ker(νS)) ≤ rk2(CK (S)).

Finally,

|S| + rk2(CK (S)) = rk2(EK (S)) = rk2(Ker(νS)) + rk2(ωK (S)) ≤ rk2(CK (S)) + |S|

which proves both parts of the lemma.

Corollary 14

1. dimF2
(K0(S)/Ksq(S)) = |S|.

2. dimF2
(Ksq(S)/K∗2) = rk2(CK (S)).

Proof 1. Note that K0(S)/K∗2
= EK(S) and Ksq(S)/K∗2

= Ker(νS). Then ωK (S) ≃
K0(S)/Ksq(S), and the equality follows from Lemma 13 part 2.

2. This follows from Lemma 13, part 1.

If (S, S ′, T, (tP)P∈S) is a correspondence, define

HS = {(x)S ∈ ωK (S) : tS((x)S) ∈ ωL(S ′)}

and
HS ′ = {(x)S ′ ∈ ωL(S ′) : t−1

S ′ ((x)S ′) ∈ ωK (S)}.
Observe that HS is a subgroup of ωK (S) and HS ′ is a subgroup of ωL(S ′).

Definition 15 If C = (S, S ′, T, (tP)P∈S) is a correspondence, we define the defect of C

to be the number δ = δC given by

δC = rk2(ωK (S)/HS).
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Then δ = rk2(ωK (S)) − rk2(HS) and thus, according to Lemma 13,

δ = |S| − rk2(HS).

Let us note that since tS induces a group isomorphism between HS and HS ′ , the defect

of the correspondence can be also expressed as

δ = rk2(ωL(S ′)/HS ′).

The remaining part of this section will be devoted to the study of the defect’s behavior
under extensions of correspondences. We shall prove now that no matter how we
extend (tamely or wildly) the correspondence C to another correspondence C1 by

adding a pair of primes (Pm+1, P ′
m+1), the defect decreases by at most 1. Let S1 =

S∪{Pm+1} and S ′
1 = S ′∪{P ′

m+1}. Let C1 = (S1, S ′
1, T ′, (tP)P∈S ′) be a correspondence

that extends C. Denote by δ1 the defect of C1.

Proposition 16 Suppose that we extend (tamely or wildly) a correspondence C =

(S, S ′, T, (tP)P∈S) of defect δ by adding a pair of primes (Pm+1, P ′
m+1). Then the defect

δ1 of the new correspondence satisfies the inequality:

δ1 ≥ δ − 1.

Proof First define:
FS = {(x)S1

∈ HS1
: xPm+1

= 1}
and

FS ′ = {(y)S ′

1
∈ HS ′

1
: yP ′

m+1
= 1}.

Since (1)S1
∈ FS, FS and FS ′ are non-empty, FS is a subgroup of HS1

and FS ′ is a
subgroup of HS ′

1
. The last component of any element in HS1

identifies the coset of FS

to which the element belongs. Since there are at most four such cosets, it follows that
|HS1

/FS| ≤ 4. In fact |HS1
/FS| = 1, 2, or 4, and in all cases 0 ≤ rk2(HS1

/FS) ≤ 2 or

0 ≤ rk2(HS1
) − rk2(FS) ≤ 2.

Claim: The map ζ : FS → HS, defined by ζ((x)S1
) = (x)S, is a well-defined and

injective homomorphism.
Once we check well-definedness, then the injectivity is clear. We have to check

first that the map is well-defined. Let (x)S1
∈ FS and pick x̄ ∈ EK(S1) such that

νS1
(x̄) = (x)S1

. Let x be a representative in K for x̄. xPm+1
= 1 implies that x̄ ∈ EK(S).

Now tPm+1
(1) = 1, so that

tS1
(xP1

, . . . , xPm
, 1) = (tP1

(xP1
), . . . , tPm

(xPm
), 1) ∈ ωL(S ′

1).

Hence there exists an element ȳ ∈ EL(S ′
1) such that

νS ′

1
(ȳ) = (tP1

(xP1
), . . . , tPm

(xPm
), 1).
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As before, any representative in L of ȳ will be a local square at P ′
m+1 and this implies

that, in fact, ȳ ∈ EL(S ′). Since νS ′

1
(ȳ) = tS(νS(x̄)), we deduce that (x)S ∈ HS, so the

map ζ is well-defined, and the claim is proved.

Then rk2(FS) ≤ rk2(HS) and since 0 ≤ rk2(HS1
) − rk2(FS) ≤ 2, it follows that

rk2(HS1
) − rk2(HS) ≤ 2

and thus

δ1 = rk2(ωK (S1)) − rk2(HS1
) = |S1| − rk2(HS1

)

= |S| + 1 − rk2(HS1
) ≥ |S| + 1 − rk2(HS) − 2 = δ − 1.

Thus δ1 ≥ δ − 1.

Lemma 17 Suppose that we extend wildly a correspondence C = (S, S ′, T, (tP)P∈S) of

defect δ by adding a pair of primes (Pm+1, P ′
m+1) such that [Pm+1] is a square in CK(S)

and [P ′
m+1] is not a square in CL(S ′). Then the defect δ1 of the new correspondence

satisfies the inequality:

δ1 ≥ δ.

Proof Let S1 = S ∪ {Pm+1} and S ′
1 = S ′ ∪ {P ′

m+1}. Since [P ′
m+1] is not a square in

CL(S ′) and [Pm+1] is a square in CK(S), we have

EL(S ′) = EL(S ′
1), EK(S1) = EK(S) ∪ x̄0EK(S),

for x̄0 ∈ EK(S1) with (x0)Pm+1
= π, a local uniformizer. If (y)S ′

1
∈ HS ′

1
then yP ′

m+1
= 1

or u ′, hence HS ′

1
= FS ′ or [HS ′

1
: FS ′] = 2. We have seen in the proof of Propo-

sition 16 that the map ζ : FS ′ → HS ′ , defined by ζ((y)S ′

1
) = (y)S ′ , is an injective

homomorphism. It follows that

rk2(HS ′

1
) ≤ rk2(FS ′) + 1 ≤ rk2(HS ′) + 1

and thus

δ1 = |S| + 1 − rk2(HS ′

1
) ≥ |S| − rk2(HS ′) = δ.

Proposition 18 Suppose that we extend tamely a correspondence

C = (S, S ′, T, (tP)P∈S)

of defect δ by adding a pair of primes (Pm+1, P ′
m+1). Then the defect δ1 of the new corre-

spondence satisfies the inequality:

δ1 ≥ δ.

Moreover, if [Pm+1] is not a square in CK(S) and [P ′
m+1] is a square in CL(S ′), then

δ1 > δ.
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Proof We will consider two cases:

Case 1 At least one of [Pm+1] and [P ′
m+1] is not a square in the corresponding ideal

S-class group.

Case 2 Both [Pm+1] and [P ′
m+1] are squares in the corresponding ideal S-class

groups.
Suppose we are in Case 1 and let us say that [Pm+1] is not a square in CK (S). Then,

by Lemma 6, we get EK (S1) = EK (S), so any element (x)S1
∈ HS1

has xPm+1
a unit.

By hypothesis, Pm+1 is tame so tPm+1
(xPm+1

) is a unit. Choose ȳ ∈ EL(S ′) such that
νS ′

1
(ȳ) = (tP(xP))P∈S1

. Then νS ′(ȳ) = tS(νS(x̄)), so (x)S ∈ HS. Consequently the
map λS : HS1

→ HS defined by λS((x)S1
) = (x)S is well defined. Moreover, there is a

short exact sequence:

(1) 1 → Ker(λS) → HS1
→ Im(λS) → 1

hence

(2) rk2(HS1
) = rk2(Ker(λS)) + rk2(Im(λS)).

Then

(3) δ1 = |S| + 1 − rk2(Ker(λS)) − rk2(Im(λS)).

We need to study the properties of the map λS. They are presented in Lemma 19
below. According to (3), if λS is injective then

δ1 = |S| + 1 − rk2(Im(λS)) ≥ |S| + 1 − rk2(HS) = δ + 1 > δ.

Thus δ1 ≥ δ.
On the other hand, if λS is not injective, then by Lemma 19 it is surjective and

according to (3)
δ1 = |S| + 1 − 1 − rk2(HS) = δ,

so δ1 ≥ δ in this case as well.
Let us consider now the situation when [Pm+1] is not a square in CK(S) and [P ′

m+1]
is a square in CL(S ′). We claim that in this case the map λS must be injective. Indeed,
if λS were not injective, we would find ((1)S, z) ∈ Ker(λS), with z 6= 1. Since [Pm+1]

is not a square in CK(S), by Lemma 6 it follows that EK(S1) = EK(S), so z = u, the
square class of a non-square unit at Pm+1. Since ((1)S, u) ∈ HS1

and tPm+1
is tame, we

can find ȳ ∈ EL(S ′
1) such that νS ′

1
(ȳ) = tS1

(

((1)S, u)
)

= ((1)S ′ , u ′), where u ′ is a
local non-square unit at P ′

m+1. On the other hand, since [P ′
m+1] is a square in CL(S ′)

we can find an element z̄ ∈ EL(S ′
1) \ EL(S ′). Thus zP ′

m+1
= π is a local uniformizer at

P ′
m+1. By construction we get (ȳ, z̄)P ′ = 1 for all P ′ ∈ S ′ (where ȳ is a local square)

and for all P ′ /∈ S ′
1 (where both ȳ and z̄ are local units), while (ȳ, z̄)P ′

m+1
= −1, and

these equalities contradict Hilbert’s reciprocity law. So necessarily λS is injective, and
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we have seen that in this situation δ1 > δ. This completes the study of the first case
and also proves the second part of the proposition.

Suppose now that we are in Case 2, so both [Pm+1] and [P ′
m+1] are squares in the

corresponding ideal S-class groups. Then, by Lemma 6, we get:

EK (S1) = EK (S) ∪ x̄0EK(S)

for some x̄0 ∈ EK(S1) \ EK (S), and

EL(S ′
1) = EL(S ′) ∪ ȳ0EL(S ′)

for some ȳ0 ∈ EL(S ′
1) \ EL(S ′).

Since x̄0 ∈ EK (S1) \ EK(S), (x0)Pm+1
is a uniformizer, and (y0)P ′

m+1
is a uniformizer

as ȳ0 ∈ EL(S ′
1) \ EL(S ′). Define the following set, which is a subgroup of HS1

:

JS = {(x)S1
∈ HS1

: xPm+1
is a unit}.

Claim: If (x)S1
∈ JS then (x)S ∈ HS.

In order to prove the claim, observe that by the definition of HS1
we can find

ȳ ∈ EL(S ′
1) such that

(y)S = tS((x)S), yP ′

m+1
= tPm+1

(xPm+1
).

By hypothesis Pm+1 is tame, so yPm+1
is a unit. Then ȳ ∈ EL(S ′) and since x̄ ∈ EK(S),

it follows that (x)S ∈ HS, and this proves the claim.
Then the map λS : JS → HS defined by λS((x)S1

) = (x)S is a well defined group
homomorphism.

Now we will consider two subcases:

Subcase 2.1 There exists an element (x∗)S1
∈ HS1

such that x∗Pm+1
is the square class

of a uniformizer. Since Pm+1 is tame, one can find an element (y∗)S ′

1
∈ HS ′

1
such that

y∗P ′

m+1

is the square class of a uniformizer (and tPm+1
(x∗m+1) = y∗m+1). Without loss of

generality we can replace x̄0 by x̄∗ and ȳ0 by ȳ∗.
Then HS1

= JS ∪ (x∗)S1
JS so

(4) rk2(HS1
) = rk2( JS) + 1.

Claim: λS is injective. Indeed, if (1, . . . , 1, a) ∈ Ker(λS) and (1, . . . , 1, a) 6=
(1, . . . , 1, 1) then a is the square class of a non-square unit. Pick ā ∈ EK (S1) such
that νS1

(ā) = (1, . . . , 1, a). Then (ā, x̄∗)P = 1 for all P 6= Pm+1 and (ā, x̄∗)Pm+1
= −1,

and that contradicts Hilbert’s reciprocity law.
Since λS is injective, rk2( JS) ≤ rk2(HS) and if we use (4) we get:

δ1 = |S| + 1 − rk2(HS1
) = |S| + 1 − rk2( JS) − 1 ≥ |S| − rk2(HS) = δ,

which proves the inequality.
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Subcase 2.2 There are no elements (x)S1
∈ HS1

such that xPm+1
is a uniformizer.

Then, JS = HS1
.

If λS is injective then

δ1 = |S| + 1 − rk2(HS1
) ≥ |S| + 1 − rk2(HS) ≥ δ + 1,

so the inequality δ1 ≥ δ holds.

If λS is not injective, then pick ā ∈ EK(S1) with νS1
(ā) = (1, . . . , 1, u) ∈ JS. We

claim that in this situation λS is surjective. Indeed, if (x)S ∈ HS, let x̄ ∈ EK (S) and
ȳ ∈ EL(S ′) such that νS(x̄) = (x)S and νS ′(ȳ) = tS((x)S). Since EK (S) ⊂ EK(S1),
x̄ ∈ EK(S1). If xPm+1

6= yP ′

m+1
then xPm+1

u = yP ′

m+1
and thus x̄ā ∈ EK (S1) and νS1

(x̄ā) ∈
JS is such that λS(νS1

(x̄ā)) = (x)S. So λS is surjective. Since λS is surjective we get

rk2( JS) = rk2(HS) + rk2(Ker(λS)). Thus, since λS is not injective, Ker(λS) is a cyclic
group with two elements (generated by (1, . . . , 1, u)) hence rk2( JS) = rk2(HS) + 1.
We get:

δ1 = |S| + 1 − rk2(HS1
) = |S| + 1 − rk2( JS) = |S| + 1 − rk2(HS) − 1 = δ

which proves the inequality δ1 ≥ δ.

Lemma 19 Suppose that one extends tamely a correspondence (C) by adding a pair of

primes (Pm+1, P ′
m+1) such that [Pm+1] is not a square in the corresponding ideal S-class

group. Let λS : HS1
→ HS be the projection map λS((x)S1

) = (x)S.

1. If λS is not injective then Ker(λS) ≃ C2, hence rk2(Ker(λS)) = 1.

2. If λS is not surjective then [HS : Im(λS)] = 2.

3. If λS is not injective then it is surjective.

Proof 1. By Lemma 6, EK(S1) = EK (S) and consequently if (x)S1
∈ Ker(λS) and

(x)S = (1)S, then xPm+1
∈ {1, u}. This implies

Ker(λS) = {(1, . . . , 1, 1), (1, . . . , 1, u)} ≃ C2.

2. Suppose that λS is not surjective, and let (x0)S ∈ HS \ Im(λS). Then one of the
following two situations occurs:

(a) any element x̄ ∈ EK(S1) = EK(S) with νS(x̄) = (x0)S has xPm+1
= 1 and any

element ȳ ∈ EL(S ′) with νS ′(ȳ) = tS((x0)S) has yP ′

m+1
= u ′, or

(b) any element x̄ ∈ EK(S1) = EK (S) with νS(x̄) = (x0)S has xPm+1
= u and any

element ȳ ∈ EL(S ′) with νS ′(ȳ) = tS((x0)S) has yP ′

m+1
= 1.

We will give the details in case (a); case (b) follows by symmetry. Let (z)S ∈
HS \ Im(λS). Since (z)S ∈ HS, one can find z̄ ∈ EK(S) such that νS(z̄) = (z)S and one
can find w̄ ∈ EL(S ′) such that νS ′(w̄) = tS((z)S). Without loss of generality, suppose
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that wP ′

m+1
= u and zPm+1

= 1. Since xPm+1
= 1 and yP ′

m+1
= u ′, we get x̄z̄ ∈ EK(S),

ȳw̄ ∈ EL(S ′), and

(xz)S = (x)S(z)S ∈ HS,

(yw)S ′ = (y)S ′(w)S ′ = tS((x)S)tS((z)S) = tS((xz)S),

and

(xz)Pm+1
= 1, (yw)P ′

m+1
= 1.

This means: (x)S(z)S ∈ Im(λS) or (z)S ∈ (x−1)S Im(λS). Thus [HS : Im(λS)] = 2.

3. Suppose that λS is non-injective. It is to be shown that λS is surjective. By
hypothesis, λS is non-injective, so one can find x̄0 ∈ EK (S1) = EK (S) such that
νS1

(x̄0) = (1, . . . , 1, u).

If λS were non-surjective, we would have to consider the two cases (a) and (b)
from the proof of part 2. Let us say, for instance, that we are in case (a). For such

x̄ ∈ EK(S1) and ȳ ∈ EL(S ′) with xPm+1
= 1 and yPm+1

= u ′, consider x̄ · x̄0. Then

νS1
(x̄ · x̄0) = ((x)S, u)

so that

λS((x · x0)S1
) = (x)S

which means that λS would be in fact surjective, a contradiction.

Corollary 20 Let C1 be a correspondence that extends C. Then δC1
+ |W (C1)| ≥

δC + |W (C)|.

Proof If C1 differs from C by one pair of primes, then Proposition 16 and Propo-
sition 18 show that if one extends C tamely, then its defect will not decrease and the

wild set is unchanged, while if one extends C wildly, its defect may decrease by at
most 1 and the size of the wild set will increase by 1. If C1 differs from C by more
than one pair of primes, an argument by induction can be used.

3 The Main Results

3.1 Suitable Correspondences

Let C = (S, S ′, T, (tP)P∈S) be a correspondence between K and L such that the S-class
number of K and the S ′-class number of L are odd. We will call such a correspon-
dence suitable. In this section we will use the construction presented in [1] to extend

a suitable correspondence to a small equivalence in a way guaranteed to minimize the
number of additional wild primes introduced in the small equivalence.

First we wish to relate the defect of a correspondence to another invariant, dS,S ′ ,
called the obstruction in J. Carpenter’s paper [1]. In that paper, suitable correspon-
dences (S, S ′, T, (tP)P∈S) are studied. The author notationally suppresses the maps T
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and (tP)P∈S and refers to such a correspondence as a suitable pair (S, S ′). J. Carpenter
defines the obstruction of a suitable pair (S, S ′) in the following way:

dS,S ′ = dimF2
(UK(S)/H̄S),

where
H̄S = {x ∈ UK(S) : tS(iS(x)) ∈ iS ′(UL(S ′))}.

In the above formula, iS denotes the restriction of the map νS to UK(S).

Proposition 21 If C is any suitable correspondence, then its defect and obstruction

coincide.

Proof In [1] it is proved that, when the class number hK (S) is odd, iS is a group

monomorphism, and thus

rk2(iS

(

UK(S))
)

= rk2(UK(S)) = |S|.

This observation combined with Lemma 13 shows that

rk2(iS(UK(S))) = rk2(ωK (S)).

On the other hand,

iS(UK (S)) = νS(UK(S)) ⊆ νS(EK (S)) = ωK (S)

which imply iS(UK (S)) = ωK (S). Similarly: iS ′(UL(S ′)) = ωL(S ′). Note that if
x ∈ H̄S then νS(x) = iS(x) is such that tS(iS(x)) ∈ iS ′(UL(S ′)) = ωL(S ′), which

implies that iS(x) ∈ HS. Hence iS(H̄S) ⊆ HS.
On the other hand, if (x)S ∈ HS then (x)S ∈ ωK (S) = iS(UK(S)) which means that

actually (x)S ∈ iS(H̄S). These observations prove that iS(H̄S) = HS.
Now since the groups involved in the definition of the obstruction are finite and

have exponent equal to 2, then based on the above equality we get:

dS,S ′ = rk2(UK(S)/H̄S) = rk2(UK (S)) − rk2(H̄S)

= rk2(iS(UK (S))) − rk2(iS(H̄S)) = rk2(ωK (S)) − rk2(HS) = δ.

Lemma 22 ([1]) Given a suitable correspondence involving (S, S ′) with dS,S ′ > 0,

there exist primes Pm+1 ∈ ΩK \ S and P ′
m+1 ∈ ΩL \ S ′ such that (S1 = S∪{Pm+1}, S ′

1 =

S ′ ∪ {P ′
m+1}) is also a suitable pair and dS1,S ′

1
< dS,S ′ .

A consequence of the above “obstruction-killing lemma” is the fact that any suit-
able correspondence C = (S, S ′, (tP)P∈S, T) between K and L can be extended to a

small equivalence between K and L. Since any small equivalence can be extended to
a Hilbert symbol equivalence between K and L which is tame outside the sets that
define the small equivalence ([6]), it follows that the only wild primes in K (if any),
outside S, of the Hilbert symbol equivalence constructed in this way are among the
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primes that are adjoined by the procedure described in the proof of the obstruc-
tion-killing lemma. We recall here that J. Carpenter’s procedure presented in [1]

shows that:

• all the primes adjoined to S are wild;
• the number of such primes does not exceed dS,S ′ .

Carpenter’s analysis [1] allows the possibility that the number of additional such
primes could be less than δ. The following proposition shows that the minimum
number of primes that must be added to a suitable correspondence in order to ob-

tain a small equivalence between the two fields is equal to the defect.

Proposition 23 Any suitable correspondence C = (S, S ′, T, (tP)P∈S) between K and L

can be extended to a small equivalence between K and L by adding exactly δ wild primes.

Proof Let W ′ be the set of wild primes added to S by the obstruction-killing proce-
dure. We know that |W ′| ≤ δ.

In order to prove the other inequality, it is enough to show that by adding a pair
of primes to an existing suitable correspondence like in the obstruction killing pro-
cedure, the defect decreases by at most 1. In the obstruction killing procedure one
adds a pair of primes (Pm+1, P ′

m+1) (i.e., T(Pm+1) = P ′
m+1) such that the classes in

the corresponding ideal S-class groups are squares and defines the local map tPm+1

wildly. It is also shown that the defect decreases by at least 1 for the choice of the pair
(Pm+1, P ′

m+1). Proposition 16 shows that in this case the defect decreases by at most 1.
Consequently, in Carpenter’s construction the defect decreases by exactly one.

So, in order to make the defect 0 (i.e., to obtain a small equivalence between K

and L) we need to add exactly δ pairs of wild primes.

Proposition 23 shows that if the obstruction killing technique is applied to extend
a suitable correspondence to a small equivalence then, at each step, the size of the
wild set increases by 1 while the defect decreases by 1. At the end of the procedure
we obtain a small equivalence with |W (C)| + δC wild primes, where W (C) denotes

the wild set of the given correspondence. Corollary 20 shows that this is optimum in
terms of the number of wild primes.

Now any Hilbert symbol equivalence H with a finite wild set contains a small

equivalence that has the same set of wild primes. For instance, the small equiva-
lence consists of: all infinite and dyadic primes; non-dyadic primes that represent the
generators of the 2-Sylow subgroup of the ideal class groups; the wild primes of H;
other non-dyadic primes that make the defect equal to 0. Hence any Hilbert symbol

equivalence that has a finite wild set can be regarded as the tame extension of a small
equivalence.

Now suppose that H is a Hilbert symbol equivalence with a finite wild set that

extends a suitable correspondence C. Then H contains a small equivalence that has
the same wild set. If this small equivalence contains C then, by the above argument, it
has at least |W (C)|+δC wild primes, and so does H. If the small equivalence does not
contain C, define a larger small equivalence as the union of C with the above small
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equivalence. With the same argument, this larger small equivalence contains C, so it
has at least |W (C)|+ δC wild primes. This is also contained in H, and it has the same

wild set as H. Consequently, H has at least |W (C)| + δC wild primes.
We summarize these remarks:

Corollary 24 Any suitable correspondence C between two algebraic number fields K

and L can be extended to a Hilbert symbol equivalence that has |W (C)| + δ(C) wild

primes. This is the minimum number of wild primes that any Hilbert symbol equivalence

extending C can have.

3.2 Non-Suitable Correspondences

Some of the results presented in this section are generalizations of A. Czogala’s results
from [3].

Definition 25 A correspondence C = (S, S ′, T, (tP)P∈S) is called non-suitable if at

least one of the numbers hK(S) = |CK(S)| and hL(S ′) = |CL(S ′)| is even.

Following closely some constructions from [3], we will present a method to extend a
non-suitable correspondence to a suitable correspondence. This method minimizes
the number of wild primes added to the correspondence.

Let C = (S, S ′, T, (tP)P∈S) be a non-suitable correspondence and let

[P1], . . . , [Pθ(S)]

be the representatives of the cosets of primes in S that are linearly independent in

CK/C2
K .

Let {a1, . . . , ah} (with h = |S| according to Corollary 14) be an F2-base for
K0(S)/Ksq(S), and b1, . . . , bl (with l = rk2(CK(S))) be an F2-base of Ksq(S)/K∗2.
When constructing these bases pick b1 = −1, if −1 ∈ Ksq(S) \ K2, or a1 = −1, if

−1 ∈ K0(S) \ Ksq(S).
Similarly, let {a ′

1, . . . , a ′
h ′} (with h ′

= |S ′| = |S| = h) be an F2-base for L0(S ′)/
Lsq(S ′), and b ′

1, . . . , b ′
l ′ (with l ′ = rk2(CL(S ′))) be an F2-base of Lsq(S ′)/L∗2. As

before, when constructing these bases pick b ′
1 = −1, if −1 ∈ Lsq(S ′)\L2, or a ′

1 = −1,

if −1 ∈ L0(S ′) \ Lsq(S ′).

Lemma 26 Let C = (S, S ′, T, (tP)P∈S) be a correspondence. Then for every P ∈ S,

tP(−1) = −1.

Proof Fix P ∈ S. For every x ∈ K∗
P /K∗2

P we get:

(x,−1)P = (x, x)P = (tP(x), tP(x))TP = (tP(x),−1)TP.

On the other hand,
(x,−1)P = (tP(x), tP(−1))TP.

Since tP is surjective, we get (y,−1)TP = (y, tP(−1))TP for all y, and this ends the
proof.
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Now since K and L are Witt equivalent, −1 ∈ K2 if and only if −1 ∈ L2. On the
other hand, based on the previous lemma, for any P in S, −1 is a local square at P if

and only if −1 is a local square at TP (as tP(−1) = −1). In particular, −1 ∈ Ksq(S) if
and only if −1 ∈ Lsq(S ′). Hence b1 = −1 if and only if b ′

1 = −1, and a1 = −1 if and
only if a ′

1 = −1.
Without loss of generality we will assume that l ≤ l ′.

Use Theorem 11 to pick primes R1, . . . , Rl outside S, in K, such that

( bi

Ri

)

= −1, i ∈ {1, . . . , l},
( b j

Ri

)

= 1, j 6= i ∈ {1, . . . , l},
( a j

Ri

)

= 1, j ∈ {1, . . . , m}, i ∈ {1, . . . , l}.

Similarly, pick primes R ′
1, . . . , R ′

l ′ outside S ′, in L, such that

( b ′
i

R ′
i

)

= −1, i ∈ {1, . . . , l ′},

( b ′
j

R ′
i

)

= 1, j 6= i ∈ {1, . . . , l ′},

( a ′
j

R ′
i

)

= 1, j ∈ {1, . . . , m ′}, i ∈ {1, . . . , l ′}.

It follows that for any i ∈ {1, . . . , l}, −1 is a local square at Ri iff −1 is a local
square at R ′

i . Indeed, if −1 ∈ K2, then −1 ∈ L2; so −1 is a local square at all the
primes Ri , and −1 is a square at all the primes R ′

i . If b1 = −1, then necessarily
b ′

1 = −1, and the claim follows from the construction of the primes Ri , and R ′
i ,

respectively. Finally, if a1 = −1, then a ′
1 = −1 and the claim follows from the same

construction.
We will add to (S, S ′) the pair (R1, R ′

1), and define the local isomorphism

tR1
: (K∗

R1
)/(K∗

R1
)2 → (L∗

R ′

1

)/(L∗
R ′

1

)2

by 1 → 1, b1 → b ′
1, and arbitrarily on the remaining classes. Note that this local

isomorphism is tame, for b1 and b ′
1 are both local non-square units at R1 and R ′

1,

respectively (by construction).
We claim that [R1] is not a square in CK (S): indeed, if [R1] were a square then

there would be an equality

xOK = R1I2Pα1

1 · · · Pαk

k

and then
(x, b1)R1

= −1, (x, b1)Pi
= 1, ∀i ∈ {1, . . . , |S|}
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as b1 is a local square at every P ∈ S, and

(x, b1)Q = 1, Q /∈ S ∪ {R1}

as both x and b1 are local units at primes different from R1 and outside S. The above
equalities contradict Hilbert’s reciprocity law.

Since we extend the correspondence by adding a tame prime, R1, and [R1] is not
a square in the corresponding ideal S-class group, we can use the construction pre-
sented in Case 1 of the proof of Proposition 18: we can define the projection map
λS : HS∪{R1} → HS. Note that (1) 6= (b1)S1

∈ Ker(λS) because b1 is a local square at

all primes in S and it is a local non-square at R1. Hence λS is non-injective and, by
Lemma 19, it is surjective. The proof of Proposition 18 shows that in this case δ1 = δ.

To sum up: we extend the correspondence tamely and both the wild set and the
defect remain unchanged.

Now continue to add pairs (Ri , R ′
i ) to the correspondence and define tame local

maps as above. During this process the wild set and the defect are unchanged, which
is optimum in terms of the number of wild primes (see Corollary 20).

Let us suppose now that after we add all possible pairs: (R1, R ′
1), . . . , (Rl, R ′

l ) the

S ′-class number is still even. Corollary 14 and Corollary 12 show that

{[P1], . . . , [Pθ(S)], [R1], . . . , [Rl]}

is a base for CK/C2
K . So if S∗ = S ∪ {R1, . . . , Rl} then hK(S∗) is odd.

Our assumption is that l ≤ l ′. In fact we have l < l ′, for if l = l ′ then, as above,
the S ′∗-class number of L would be odd.

In this situation we will consider other primes in K to pair with the remaining
primes R ′

l+1, . . . , R ′
l ′ . We will use the following result (a proof of this result can be

found in [6]):

Lemma 27 If S is a finite set of primes in K such that hK(S) is odd and for each P ∈ S

we fix xP ∈ K∗
P /K∗2

P , then there are infinitely many primes Q with the property that

there is an x ∈ K∗ such that:

x ≡ xP, P ∈ S;

ordQ(x) = 1;

ordP(x) = 0, P /∈ S ∪ {Q}.

We use Lemma 27 to obtain primes Rl+1, . . . , Rl ′ and elements bl+1, . . . , bl ′ in K∗

such that

bl+i = 1 in K∗
P /K∗2

P , ∀P ∈ S ∪ {R1, . . . , Rl+i−1};

bl+i = π in K∗
Rl+i

/K∗2
Rl+i

;

ordP(bl+i) = 0, P /∈ S ∪ {R1, . . . , Rl+i}.

https://doi.org/10.4153/CJM-2005-008-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-008-6


On the Size of the Wild Set 199

It is helpful to observe that −1 is a local square at all primes Rl+1, . . . , Rl ′ for oth-
erwise one contradicts Hilbert’s reciprocity law. We already know that −1 is a local

square at all primes R ′
l+1, . . . , R ′

l ′ . Then we have the liberty to define wild local maps
at these primes.

So we will add (Rl+1, R ′
l+1) to (S∗ = S ∪ {R1, . . . , Rl}, (S ′)∗ = S ′ ∪ {R ′

1, . . . , R ′
l }),

define T(Rl+1) = R ′
l+1, and define the local map tRl+1

wildly:

1 → 1, u → π ′, π → u ′, uπ → u ′π ′.

Note that b ′
l+1 is a local non-square unit at R ′

l+1, and bl+1 is a local uniformizer at Rl+1.
Our goal is to show that the defect is preserved by this construction.

Let S∗1 = S∗ ∪ {Rl+1}, and (S ′)∗1 = (S ′)∗ ∪ {R ′
l+1}.

Claim 1: Any element x̄ ∈ EK (S∗) which maps to an element in HS∗ has xRl+1
= 1.

In order to prove the claim, let x̄ ∈ EK(S∗) be such that (x)S∗ ∈ HS∗ . Since
x̄ ∈ EK(S∗), we find xRl+1

= 1 or u, the local non-square unit at Rl+1. Let us show that

we cannot have xRl+1
= u. If xRl+1

= u then

∏

P∈ΩK

(x, bl+1)P =

∏

P∈S∗

(x, bl+1)P · (x, bl+1)Rl+1
·

∏

P /∈S∗
1

(x, bl+1)P

=

∏

P∈S∗

(x, 1)P · (u, π)Rl+1
·

∏

P /∈S∗
1

(x, bl+1)P = 1 · (−1) · 1 = −1,

which contradicts Hilbert’s reciprocity law. This concludes the proof of the claim.

Claim 2: Any x̄ ∈ EK(S∗) that has xRl+1
= 1 maps to an element in HS∗

1
.

Indeed, if all elements ȳ ∈ EL((S ′)∗) such that

tS∗(νS∗(x̄)) = ν(S ′)∗(ȳ)

have yR ′

l+1

= u ′ (the square class of the non-square unit), then let us multiply any
such ȳ by b ′

l+1. Note that ȳb ′
l+1 ∈ EL((S ′)∗) = EL((S ′)∗1 ), and

ν(S ′)∗(ȳb ′
l+1) = ν(S ′)∗(ȳ) = tS∗(νS∗(x̄)),

which means that ȳb ′
l+1 has all the properties of ȳ except that its local component at

R ′
l+1 is 1. This is a contradiction. Consequently xS∗

1
∈ HS∗

1
and the claim is proved.

Now let FS∗
1

= {(x) ∈ HS∗
1

: xRl+1
= 1}. We can define a map HS∗ → FS∗ in

the following way: for (x)S∗ ∈ HS∗ choose x̄ ∈ EK (S∗) such that νS∗(x̄) = (x)S∗ ;
Claim 1 guarantees that xRl+1

= 1, while Claim 2 ensures that νS∗
1

(x̄) = ((x)S∗ , 1).
So we can define the map by sending (x)S∗ to ((x)S∗ , 1). This is a well defined group
homomorphism.

Claim 3: This map is an isomorphism.
In order to prove the claim, note that this map is injective. To prove surjectivity,

fix ((x)S∗ , 1) ∈ FS∗ and choose x̄ ∈ EK (S∗1 ) such that νS∗
1

(x̄) = ((x)S∗ , 1). Since
x̄ ∈ EK(S∗1 ) and xRl+1

= 1, it follows that x̄ ∈ EK(S∗). On the other hand, since
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((x)S∗ , 1) ∈ HS∗
1

, we can find ȳ ∈ EL(S ′∗
1 ) such that yR ′

l+1

= 1 (so ȳ ∈ EL(S ′∗)) and
tS∗((x)S∗) = (y)S ′∗ . But then (x)S∗ ∈ HS∗ maps to ((x)S∗ , 1), so the map is surjective.

Note that [Rl+1] has odd order in CK (S∗), hence it is a square (we have seen that

ord(CK(S∗)) is odd for the 2-rank of CK(S∗) is equal to 0). On the other hand, [R ′
l+1]

is not a square in CL((S ′)∗) because, according to Corollary 12,

[P ′
1], . . . , [P ′

θ(S ′)], [R ′
1], . . . , [R ′

l ], [R ′
l+1]

are linearly independent in CL/C2
L. Then EL((S ′)∗) = EL((S ′)∗1 ) (see Lemma 6). Note

that (bl+1)S∗
1

= (1, . . . , 1, π) ∈ HS∗
1

(by construction). Consequently, we can write

HS∗
1

= FS∗ ∪ (bl+1)S∗
1

FS∗ ,

where FS∗
1

= {(x) ∈ HS∗
1

: xRl+1
= 1}. Thus [HS∗

1
: FS∗] = 2.

If we combine the last equality with Claim 3, we get rk2(HS∗
1

) = rk2(HS∗) + 1.
Then:

δS∗
1

= |S∗| + 1 − rk2(HS∗
1

) = |S∗| + 1 − rk2(HS∗) − 1 = δS∗ .

So the defect is preserved, which is the best one can get when for exactly one of the

primes in the pair (Rl+1 in this case) the class in the ideal S∗-class group is a square
(see Lemma 17). Note that the ideal class of any prime outside S∗ is a square in
CK (S∗), so the procedure described above is optimal in terms of defect. It does in-
crease the size of the wild set but, according to Proposition 18, since [Rl+1] is a square

in CK(S∗) and [R ′
l+1] is not a square in CL(S ′∗), extending tamely the correspondence

will result in increasing the defect. So overall there would be no benefit.

The result that we proved can be stated in the following way:

Proposition 28 Let C = (S, S ′, T, (tP)P∈S) be a non-suitable correspondence. Then C

can be extended to a suitable correspondence C
′ that has the same defect and such that

|W (C ′)| = |W (C)| + |rk2(CL(S ′)) − rk2(CK(S))|.

Proof The procedure of obtaining C
′ has been presented above. We have seen that

the defect is preserved, and the number of wild primes added to the correspondence
equals |rk2(CL(S ′)) − rk2(CK (S))|.

Theorem 29 Any correspondence C = (S, S ′, T, (tP)P∈S) between two number fields

K and L, of defect δ and wild set W , can be extended to a Hilbert symbol equivalence

between K and L that has

δ + |W | + |rk2(CK (S)) − rk2(CL(S ′))|

wild primes. Moreover, any other extension of C to a Hilbert symbol equivalence between

K and L has a wild set of size no less than δ + |W | + |rk2(CK (S)) − rk2(CL(S ′))|.
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Proof The first part follows from Proposition 23 and Proposition 28.
For the second part, here are the details. When extending a non-suitable cor-

respondence to a suitable one, we consider the pairs (R1, R ′
1), . . . , (Rl, R ′

l ), where
{[Ri] : i = 1, . . . , l} is an F2-base for CK(S)/CK (S)2, and {[R ′

i ] : i = 1, . . . , l ′}
is an F2-base for CL(S ′)/CL(S ′)2. For each one of these pairs the defect is unchanged,
and so is the wild set (as the local maps are tame). According to Corollary 20, this

construction is optimal. As long as rk2(CL(S ′∗)) is still even, the remaining classes
{[R ′

i ] : i = l + 1, . . . , l ′} are not squares in CL(S ′∗). Moreover, any remaining prime
P will be a square in CK(S∗). So we have to find a pair P for Rl+1. No matter how we
choose P, Proposition 18 shows that if the local map is tame then the defect increases,

while Lemma 17 shows that if the local map is wild, the defect does not decrease but
the size of the wild set increases by 1. In either situation, the sum of the defect and
the size of the wild set increases by at least 1. In our construction, the sum increases
at each step by exactly 1, which is optimal. Note that one cannot obtain a suitable

correspondence by using a smaller number of primes, as a correspondence is suitable
precisely when both CK(S∗)/CK (S∗)2 and CL(S ′∗)/CL(S ′∗)2 are trivial, so we need to
have in S∗ and S ′∗, respectively, all the elements in the two bases.

In many situations, computing the defect of a correspondence may be difficult. It
might be interesting to find bounds for the minimum number of wild primes in
Hilbert symbol equivalences between two number fields. If D is the set of dyadic
primes in K and S consists of D and the infinite primes, then we obtain directly:

Corollary 30 Let W = Wild(K, L) be a minimum set of wild primes of Witt equiva-

lent number fields K and L. Then:

|rk2CK(D) − rk2CL(TD)| ≤ |W \ D| ≤ |rk2CK(D) − rk2CL(TD)| + |D| + r + s.

The above corollary gives bounds for the number of non-dyadic primes in a min-
imum wild set. In particular, when K and L are Witt equivalent non-real number

fields of degree n, this number exceeds the difference in 2-ranks of the ideal D-class
groups by at most 5n/2 (the number of complex places is n/2 and the number of
dyadic primes is at most n). The splitting of 2 in K affects strongly this deviation,
because if in addition 2 stays inert in K then the number of wild non-dyadic primes

in the minimum wild set exceeds the difference in 2-ranks of the ideal D-class groups
by at most n/2 + 2.

From the above corollary we obtain directly:

Corollary 31 Let W = Wild(K, L) be a minimum wild set for two Witt equivalent

number fields K and L. Let D and D ′ be the sets of dyadic primes in K and L, respectively.

Then:

|rk2CK (D) − rk2CL(D ′)| ≤ |W | ≤ |rk2CK(D) − rk2CL(D ′)| + 2|D| + r + s.

Finally, if we combine this result with Proposition 1 we obtain:

Proposition 32 If K and L are Witt equivalent number fields then

|rk+
2CK(D) − rk+

2CL(D ′)| ≤ |rk2CK(D) − rk2CL(D ′)| + 2|D| + r + s.
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3.3 Example

Let d1 and d2 be two square-free positive integers such that d1 ≡ 3 (mod 8) and d2 ≡
3 (mod 8), and define K = Q(

√
−d1) and L = Q(

√
−d2). According to [3], these

two number fields are Witt equivalent. The discriminants of K and L are −d1 and

−d2, respectively. Since the discriminants are congruent to 5 (mod 8), the rational
prime 2 is inert in both fields: 2OK = P, 2OL = P ′, with f (P|2) = f (P ′|2) = 2.
Then the completions KP and LP ′ are unramified quadratic extensions of Q2. Q2

has a unique unramified quadratic extension: Q2(
√
−3) (see [8, Proposition 6-5-5]),

hence KP = LP ′ = Q2(
√
−3), which means that K∗

P /K∗2
P and L∗

P ′/L∗2
P ′ are the same.

Let S = {P, P∞} and S ′
= {P ′, P ′

∞}, where P∞ and P ′
∞ are the infinite complex

primes in K and L respectively. For this choice, GK (S) = K∗
P /K∗2

P and GL(S ′) =

L∗
P ′/L∗2

P ′ which are canonically identified (“equal”) by the identity map. Let T be the

map that sends P∞ to P ′
∞ and P to P ′, and define tP : K∗

P /K∗2
P → L∗

P ′/L∗2
P ′ to be the

identity map.

Therefore we have an example of a simple correspondence C = (S, S ′, T, (id, id)).

Since the local map is the identity, the correspondence has no wild primes.

We wish to show next that the defect of this correspondence equals 0. To show
that, observe that 1̄, −1̄, and 2̄ are distinct linearly independent classes in K∗

P /K∗2
P

and in fact 1̄,−1̄, 2̄ ∈ ωK (S)(= Im(νS)). But remember that rk2(ωK (S)) = |S| = 2,
and thus {−1̄, 2̄} is an F2-base for ωK (S). Similarly one can show that {−1̄, 2̄} is an

F2-base for ωL(S ′), and hence ωK (S) = ωL(S ′) which implies that the defect equals 0.

For C, the number of wild primes is 0, the defect is equal to 0, so this corre-
spondence can be extended to a Hilbert symbol equivalence that has |rk2(CK(S)) −
rk2(CL(S ′))| wild primes. This is the minimum number of wild primes that any

Hilbert symbol equivalence can have. Since in the ideal class groups both P = 2OK

and P ′
= 2OL are trivial, CK(S) = CK and CL(S ′) = CL. Thus the minimum number

of wild primes is |rk2(CK ) − rk2(CL)|. But according to Gauss, the 2-rank of CK is
k − 1, where k is the number of distinct prime divisors of −d1, and the 2-rank of CL

is l − 1, where l is the number of distinct prime divisors of −d2 . By choosing d1 = 3
we have rk2(CK ) = 0, and by choosing d2 = 3p1 · · · pN , with p1, p2, . . . , pN distinct
rational primes congruent to 1 mod 8, it follows directly that for any non-negative
integer N there are pairs of (quadratic) Witt equivalent number fields for which the

minimum number of wild primes is equal to N . On the other hand, by choosing
k = l, one can construct infinitely many pairs of tamely equivalent number fields
with no wild primes.
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