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JACOBI proved a curious theorem regarding the solutions of the system of 
equations 

dx1 _ dx2 _ _ dxn 

T 1 X2 " X* ' 

for functions Xa(x1, . . . , xn) satisfying 

ax* , ax2
 dyn 

~r" • "T" • • • i v/j 

dx1 OX" dxn 

showing that the knowledge of n — 2 independent integrals of the system leads, 
with this condition, to an exact differential equation for the last integral of 
the system. When the coordinates are Euclidean the left member is called the 
divergence of the vector Xa. If the divergence of Xa is non-vanishing there exists 
a factor M such that the divergence of M\a vanishes. Jacobi's "theorem of the 
last multiplier"1 states that the determination of this factor is tantamount to 
finding the last integral of the linear system. 

Here a theorem is proved regarding a special system of k vectors, which we 
choose to call a Jacobian system of vectors. For k = 1 this theorem reduces 
to Jacobi's theorem of the last multiplier. 

1. Conventions. The symbols X%|(a = 1, . . . , n\ i = 1, . . . , k) will re
present functions of n independent variables x = [x1, . . . , xn]. The ordered 
set of functions associated with a fixed i (a = 1, . . . , n) will be called a vectory 

k linearly independent vectors, a basis. A vector arX%i, the a's dependent on the 
x's, will be said to belong to the basis. The totality of vectors belonging to the 
basis constitutes a &-uple. Repeated Latin letters indicate a summation from 
1 to kj repeated Greek, from 1 to n. All functions will be assumed to have such 
character as to satisfy the existence theorems that are applied. Only a finite 
number of derivatives need be assumed to exist in any case. 

A coordinate transformation will be indicated formally by the equations 

(1.1) xa = xa(x) q = 

and the inverse by 

0, 
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. M = 1-
dx 

(1.2) *• = *«(*) p m — 
We shall have occasion to use the equations 

(1.3) X\i — = 0, 
dxa 

,, ., dx1 dx2 dxn 

(1.4) — = — = . . . = — , 
X»<l X2il XM 

(1.5) ^ i 1 - 0, 

defining quantities u, and ikf under suitable conditions. When these exist they 
will be defined in a new coordinate system by the following conventions. The 
function u(x) with the x's replaced from equations (1.2) will determine a 
function 

(1.6) û(x) = u(x), 

which will represent the scalar u in the new coordinates x. The product M(x)p 
with x replaced by (1.2) determines a representative M{x) in the new co
ordinate system 

(1.7) M(x) = M{x) p. 

In this case M is said to be a relative invariant of weight 1. 

Vectors Xa»|, representatives of Xa*|, will be defined in a new coordinate system 
_ dxa 

by the law of transformation of contravariant tensors: Xa
2:| = XP

Z| — . With 
dxp 

these conventions, the left members of (1.3) are invariant, and the left 
members of (1.5) are relative invariants of weight 1. The equations (1.3), (1.4) 
and (1.5) will imply like equations in new coordinates. If u and M are solu
tions of (1.3) and (1.5), û and M will be solutions of their representatives in 
the new coordinates. If u = c is an integral of (1.4), û = c will be a repre
sentative integral in the new coordinates. 

2. Complete basis. From the two contravariant vectors Xai\ and Xayi an 
associated contravariant vector is defined by the equations 

(2.1) T*,, - XM d^ - XM ^ 
dxa dxa 

When the associate vectors of all pairs in a basis belong to the &-uple, the basis 
will be said to be complete. This is in agreement with the classical terminology 
that the system (1.3) is complete when the equations 

(2.2) 7*iyi ^ = 0, 
dx? 
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are dependen t on (1.3). Similarly, when the associate vectors are null vectors 
the basis is said to be Jacobian. Some theorems in the theory of the linear 
systems of par t ia l differential equat ions (1.3) will be res ta ted in te rms of these 
definitions:2 

(2.3) A system of k linearly independent vectors is always complete if k — n. If 
k < n and the system is not complete, vectors Tpij\ may be adjoined to the system 
to form a set of k'> k independent vectors. When the new system is not complete 
the process may be repeated until a complete system is obtained. Completeness is 
a p roper ty of the &-uple. 

(2.4) A complete k-uple has bases that are Jacobian. This is a proper ty of a 
basis. 

(2.5) These properties are invariant under coordinate transformations. 

3. Normal form for a complete basis . T h e equat ion of (1.3) with i = 1 has 
n — 1 independent solutions <£A(x)(A = 2, . . . , n). Adjoin to these a function 
ft{x) such t h a t the n functions are functionally independent . In new 
coordinates xa = <j>a(x) (a = 1, . . . , n)\ this equat ion has solutions xA. 
Hence XAil = 0. Since Xai[ is a non-null vector Xaii is non-null and X*i| ^ 0. 
Consequently there is no loss in generali ty in tak ing XM, 0 , . . . , 0 as the 
components of the first vector in the original coordinates. By a subsequent 

_ Sxa dxa . A 
t ransformat ion of coordinates Xai| = X^ii — = X1!! — . By choosing x 

dx& dxl 

independent of xl and xl = dxVX1!!, the vector t ransforms to 1, 0, . . . , 0, 
du 

and the corresponding equat ion takes the form — = 0. 
dxl 

Because of the hypothesis t h a t the vectors form a complete basis the equa
tions (1.3) have n — k solutions <£A (A = k + 1, . . . , n) t h a t are now inde
pendent of x1. Adjoining functions 4>l = x1, <£B (B = 2, . . . , k) independent of 
x1, so t h a t (j>a(a = 1, . . . , n) are independent , a t ransformation of coordinates 
may be defined by xa = </>a(x). In the new coordinates the equat ions (1.3) 
are satisfied by xA , which implies t h a t XA; I = 0. T h e components of the vector 
1, 0, . . . , 0, are unchanged by this t ransformation. Hence : 

(3.1) A complete k-basis can be transformed to 

Xai| s= dai (a = 1, . . . , n), \ai\ = 0 (a > k; i = 2, . . . , k). 

4. Normal form for a Jacobian system. I t will be proved t h a t : 

(4.1) A coordinate system exists in which a Jacobian system takes the normal 
form 

X°ÏI = àai (i = 1, . . . , k; a = 1, . . . , n). 

2Goursat-Hedrick, op. cit., Section 89, p. 267. 
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To construct a proof by induction let h — 1 < k of the vectors be assumed to 
be in the form of the theorem. The Jacobian condition T&a\ = 0, implies on 
some remaining vector Xah\ that: 

(4.2) ^ ==0 (a = 1, . . . , »; * = 1, . . . , h - 1) 
dx% 

so that the components \a
h\ are functions of y = [xh, . . . , xn]. The equations 

(1.4) i = h have integrals <j>a= ca, a ^ h such that 

0 A ^ x A - / A W ( A = 1 * - l ) , 

< * > A ^ <l>A(y) (A = h + l , . . . , h). 

Let 0A(y) be any function such that a proper transformation of coordinates 
may be defined by xa = <j>a(x, y)-. In the new coordinates only the hth com
ponent of \ah i is non-vanishing, and it is a function of the variables y so may 
be reduced to unity by a transformation on these variables. These trans
formations do not affect the components of the vectors X%[(i = 1, . . . , h — 1). 
This completes the induction and the theorem follows. 

5. Multipliers. A function M, satisfying an equation (1.5) has been called 
by Lagrange, a multiplier of the vector A%[ . In this case the vector M\ai\ is 
said to be solenoidal. To investigate the conditions that the system of k vectors 

admit the same multiplier, set /*;= — — - and define the dependent variable 
dxa 

M implicitly by an unknown function Q(x, M) = 0. The equations then take 
the homogeneous form 

(5.1) XV ^ - + Mm ^ - = 0. 
dxa dM 

Every solution Q of these equations that depends on M yields, with Q = 0, a 
solution M of (1.5). Every solution M = 0(*) of (1.5) gives a Q = M - 4>(x) 
satisfying (5.1) for Q — 0. The problem of solving (1.5) for M therefore reduces 
to the problem of finding solutions of (5.1) that are dependent on M. 

The completeness conditions of (5.1), the analogues of (2.2) are 

(5.2) 7 ^ | ^ + Mtn % = 0, 

tij = XM ^ - X«,| *2 m - ± 7\,-,. 
dxa dxa dxa 

The coefficients of -^- in (5.2) and in (5.1) are the same functions of the re-
dM 

maining differential coefficients, hence (5.2) may be assumed to be included 
in (5.1) which consequently, when integrable, may be assumed to be complete. 
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This requires that the basis XM is also complete. The converse is not true. 
80 

But when the basis is complete and (5.1) is not complete an equation = 0 

may be deduced as an essential condition on a solution of (5.1). These facts 
may be summarized in the theorem: 

(5.3) Sufficient conditions that a basis admit a multiplier are that the basis is 
complete, that is, that functions ar^ exist such that 

and that these functions also reduce the equations 

dT^J _ nr.. à\fir\ 
— a ij « 

dx? dx? 
to identities. These conditions are necessary when the basis has been completed. 

These conditions are satisfied for Jacobian bases. The a r# being identically 
equal to zero, hence: 

(5.4) Each Jacobian basis of a complete k-uple admits a common multiple M 
such that the conlravariant vectors of weight 1, M\ai\ are solenoidal. 

6. Vector product. The vector product (non-metric) of n — 1 vectors may 
be defined by the covariant vector of weight — 1 : 

(6.1) Xa ^ eaax . . . ^X"1!] . . . X'**if k = n - 1. 

For a scalar /x of weight 1, /Jw is a covariant vector and 

(6.2) aap = 
djuXa dji\$ 

dx& dxa 

is the covariant tensor known as the curl. From (6.1) it appears that 

(6.3) \ai\\a = 0 (i = 1, . . . , k = ix - 1). 

Conversely these equations determine Xa to within a factor of proportionality. 
By differentiating these the definition (6.2) leads to 

(6.4) fiT^ij\ X/s s= aafi\ai\ X^i . 

The elimination of the factor /JL from these equations gives 

/dXa _ d\f\ 
Kdx? dxaJ (6.5) r ^ - i x ^ r ^ i - - ^ XMX^I. 
Xdx? dxa/ 

From (6.1) it is apparent that the vanishing of the left members of either of 
these sets of identities implies that the {n — l)-uple be complete. For \x to be 
an integrating factor of \adxa that is, for jiiXa to be a gradient, it is necessary 
and sufficient that aae— 0. Then by (6.4) the basis is complete. For a com-
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plete n — 1 basis in normal form, by Theorem (3.1) Xa = 0 (a = 1, . . . , n — 1), 
Xn^O. Choosing \i = <t>/\n, <t> an arbitrary function of xn, /xXa is a gradient. 
Hence 

(6.6) The necessary and sufficient condition that the vector product of an n — 1 
basis be proportional to a gradient is that the basis be complete. 

This theorem may be stated in the equivalent form : 

(6.7) The necessary and sufficient conditions that the vector field Xo be lamellar 
is that the basis be complete. 

The vector product of k = n — 1 gradients may be defined by the relative 
contravariant tensor of weight 1 

( 6 . 8 ) X" = « " > • • . ' * * ^ . . . ^ -
dx*i dx*k 

where tii, . . . , Uk are n — 1 scalars. It is interesting to compare Theorem 
(6.7) with the well known theorem3 that Xa is solenoidal, and that any solen-
oidal vector is the vector product of n — 1 gradients. 

7. Generalization of a theorem of Jacobi. When the Jacobian system of 
k = n — 1 vectors X%| is represented in the normal form (4.1), their vector 
product Xa =s 8an and all factors /x are given by //, = <K#W), 0 being any integ
r a t e function. All multipliers of the basis are given by M = <l>(xn) and there
fore: 

(7.1) A Jacobian basis with n — 1 vectors Xa;i has multipliers M. For all such 
the vectors M\ai\ are solenoidal and ikfXa is a gradient. Conversely all factors M 
such that MX a is a gradient imply that the vectors M\ai\ are solenoidal. 

A system of contravariant vectors satisfying the hypotheses of (7.1) may be 
obtained as follows: Let <£fc+2, . . . , 4>n be n — k — 1 integrals of a Jacobian 
system (1.3). Adjoin functions so that <j>a are n independent functions. The 
transformation x a = 0a(x) reduces this system to a Jacobian system of k equa
tions in k + 1 independent variables. With k + 1 playing the role of n the 
conditions of the theorem are satisfied. 

Let 6 = C be the integral of the exact equation ftXadx* = 0; then — = /xXa. 
dxa 

It follows from (6.3) that 

(7.2) XM — s 0, 
dxa 

and 6(x) is the "last" solution of the system (1.3). Although the index a is 
assumed to run from 1 to k + 1 in these equations, it may as well run from 

3Goursat-Hedrick, op. cit. 
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1 to n, the remaining terms vanishing. The equations are invariant and imply 
the following theorem: 

(7.3) Every system of equations of the form (1.3) is equivalent to a complete 
system 

ou 
Hai\(x) = 0 (a = 1, . . . , n} i = 1, . . . , h < n), 

dxa 

such that the vectors fjiai\ admit a common multiplier M for which 

— (ilf/A,) = 0. 
dxa 

The system has n — h independent solutions', and a knowledge of n — h — 1 
independent integrals, together with such a multiplier M, leads to an exact differ
ential equation for the last solution. 
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