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In this study, we revisit the spectral transfer model for the turbulent intensity in passive
scalar transport (under large-scale anisotropic forcing), and a subsequent modification to
the scaling of scalar variance cascade is presented. From the modified spectral transfer
model, we obtain a revised scalar transport model using a fractional-order Laplacian
operator that facilitates the robust inclusion of the non-local effects originating from
large-scale anisotropy transferred across the multitude of scales in the turbulent cascade.
We provide an a priori estimate for the non-local model based on the scaling analysis
of the scalar spectrum, and later examine our developed model through direct numerical
simulation. We present a detailed analysis on the evolution of the scalar variance,
high-order statistics of the scalar gradient and important two-point statistical metrics of
the turbulent transport to make a comprehensive comparison between the non-local model
and its standard version. Finally, we present an analysis that seamlessly reconciles the
similarities between the developed model with the fractional-order subgrid-scale scalar
flux model for large-eddy simulation (Akhavan-Safaei et al., J. Comput. Phys., vol. 446,
2021, 110571) when the filter scale approaches the dissipative scales of turbulent transport.
In order to perform this task, we employ a Gaussian process regression model to predict
the model coefficient for the fractional-order subgrid model.

Key words: homogeneous turbulence, turbulence modelling, turbulence theory

1. Introduction

Understanding the mechanisms responsible for transport of a passive scalar, e.g. the
temperature field, in a high-speed turbulent flow medium is of fundamental importance
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for scientific and engineering applications. For example, the turbulent regime is known
to enhance the mixing by molecular diffusion in passive scalars where it is the result of
a growth in small-scale fluctuations, distortion of scalar interfaces and the occurrence of
highly intermittent scalar gradients at small scales of transport (Shraiman & Siggia 2000;
Warhaft 2000; Dimotakis 2005; Schumacher, Sreenivasan & Yeung 2005). Advancement
in understanding of such phenomena is closely dependent on unravelling the complexity
that is enforced by the strong nonlinear couplings over a vast range of scales that are
also accompanied by the stochastic nature of turbulence (Frisch, Mazzino & Vergassola
1998; Gat, Procaccia & Zeitak 1998; Sreenivasan 2019). Therefore, considerable efforts
has been devoted to studying the structure of turbulent transport in passive scalars in a
scale-space description in the high Reynolds regime (Prasad, Meneveau & Sreenivasan
1988; Domaradzki & Rogallo 1990), especially by focusing on small-scale intermittency
and anisotropy effects (Kang & Meneveau 2001; Li & Meneveau 2006; Watanabe &
Gotoh 2006; Donzis, Yeung & Sreenivasan 2008; Donzis & Yeung 2010; Kitamura
2021). These efforts originated from the Kolmogorov scale-space description of turbulence
(Kolmogorov 1941a,b) that related the statistics of velocity increments to the average
dissipation rate of the turbulent kinetic energy (TKE). Kolmogorov’s theory was
fundamentally constituted based on a local model for turbulent energy cascade, as
demonstrated in Onsager’s cascade model for turbulent spectra (Onsager 1945, 1949). This
theory was later extended to the turbulent transport of the passive scalars by Obukhov
(1949), Yaglom (1949) and Corrsin (1951). Afterwards, the analogy for the different
regimes of passive scalar transport given the diffusivity range was developed by Batchelor
(1959); Batchelor, Howells & Townsend (1959).

The initial Kolmogorov theory developed in 1941 was later refined in order to take into
account the strong intermittency in the local energy dissipation rate (Kolmogorov 1962;
Oboukhov 1962). Similarly, highly intermittent fluctuations in the local energy dissipation
and also scalar dissipation rates led to the development of refined similarity hypotheses
for passive scalars, as presented in Monin & Yaglom (1975).

One of the main pillars of Kolmogorov’s theory and its extension to the passive
scalars is the local isotropy at small scales. In the case of passive scalar turbulence
with large-scale anisotropy (e.g. non-zero mean gradients), it has been shown that the
statistics of small-scale scalar fluctuations remain anisotropic (see e.g. Buaria et al.
2021) as Pumir & Shraiman (1995) showed for the case of homogeneous shear turbulent
flows. On the other hand, passive scalars are known to exhibit anomalies at the large
scales of the turbulent motion such that their effects cannot readily be ruled out with
the advection–diffusion (AD) equation (Sreenivasan 2019). According to Warhaft (2000),
those occur as a result of anomalous mixing arising from rare events in which a parcel of
fluid moves a distance much greater than the integral length scale without equilibrating.
In the analogy of Lagrangian path integrals, Shraiman & Siggia (1994) argued that this
behaviour is identified for a typical fluid path for which the mixing rate is anomalously
long rather than for a typical mixing rate but with an atypical path (Warhaft 2000). This
interpretation is evidence of non-local interactions at the large-scale levels of turbulent
motion originating from the presence of anisotropy. According to Warhaft (2000), this
behaviour is directly linked to the emergence of heavy tails (exponential tails) in the
probability density function (PDF) of a passive scalar and has been experimentally
observed in the turbulent behaviour of passive scalars with non-zero mean gradient
(Gollub et al. 1991; Jayesh & Warhaft 1991, 1992; Lane et al. 1993). A proper approach to
account for a mathematical model representing the accumulative source of these non-local
motions is to revisit the spectral transfer model for the cascade of the passive scalar.
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A non-local spectral transfer model for scalar turbulence

In fact, this has been a thriving area of research as reported in different studies such as Hill
(1978) and Sreenivasan (1996). A non-local spectral transfer model provides a robust link
between the large-scale anisotropy at the energy-containing range and the universal range
throughout the turbulent cascade while accounting for the breakdown of local isotropy at
small scales.

According to a comprehensive survey by Suzuki et al. (2022), fractional-order
differential operators provide a promising and predictive direction in mathematical
modelling of the non-local behaviour in engineering applications such as mechanics of
materials (Suzuki et al. 2016; Yu, Perdikaris & Karniadakis 2016; Failla & Zingales
2020; Suzuki et al. 2021a,b,c), modelling the near-wall turbulence (Keith, Khristenko
& Wohlmuth 2021) and Reynolds-averaged Navier–Stokes modelling for wall-bounded
turbulent flows (Mehta et al. 2019; Song & Karniadakis 2021) and subfilter modelling
for large-eddy simulation (LES) of turbulence (Samiee, Akhavan-Safaei & Zayernouri
2020; Akhavan-Safaei, Samiee & Zayernouri 2021; Di Leoni et al. 2021; Samiee,
Akhavan-Safaei & Zayernouri 2022). In particular, LES is known to be an effective
technique in computational turbulence research that reduces the computational cost of
the simulations by focusing on resolving the larger scales of the transport while the
unresolved scales are modelled from the resolved-scale transport quantities (Meneveau &
Katz 2000; Sagaut 2006; Moser, Haering & Yalla 2021). From a theoretical point of view,
the turbulence closure appearing in the LES equations is the result of applying a general
filtering operation to the governing equations. In the convolution kernel GΔ(x′ − x) for
this filtering operation, Δ is considered to be the arbitrary filter size. In LES, the common
practice is to take Δ large enough towards the intermediate scales of turbulent transport.
However, in theory, the filter size could be considered close to the smaller scales of
transport (η) in a way that Δ → η (Meneveau & Katz 2000). With this rationale, one
can argue that a ‘well-resolved’ direct numerical simulation (DNS) that is usually resolved
up to 2η < Δ < 5η, may be considered as a candidate for LES with a proper subfilter
modelling. Therefore, it is interesting and vital to examine if a developed non-local
transport model is reconciled with a non-local subgrid-scale (SGS) model in terms of
a priori model identification.

In the present study, we show that using well-resolved standard DNS data for the
transport of a passive scalar with uniform mean gradient in a moderately high Reynolds
turbulent flow, the three-dimensional (3-D) scalar spectrum does not precisely obey the
k−5/3 scaling, where k denotes the Fourier wavenumber, and follows a scaling that is
enforced by the large-scale anisotropy. Utilizing Corrsin’s generalized cascade model
(Corrsin 1964), we propose a modification to the local time scale associated with the
eddies of size � as a way to account for the non-local interactions. This modification returns
a scaling relation that matches the scalar spectrum after parameterization. Subsequently,
the total scalar dissipation is revised and an additional term in the form of a fractional
Laplacian of the scalar concentration is obtained. The performance of the AD equation that
is equipped with this non-local term is assessed in a seamless DNS setting. The resulting
statistical analysis on the fully developed turbulent scalar field shows that considering the
effects of non-local interactions in the mathematical model (AD equation) provides a more
pronounced prediction of small-scale scalar intermittency along the direction in which the
large-scale anisotropy is imposed, and it provides a consistent scaling for the third-order
mixed longitudinal structure function over a wide range of scales. Finally, considering
the non-local model for the SGS scalar flux proposed in Akhavan-Safaei et al. (2021),
we study the consistency of that fractional-order SGS model (when Δ ≈ 2η) with the
present non-local modelling for the spectral transfer in scalar turbulence. Our comparison
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in terms of parameter identification of models shows a perfect reconciliation between the
two modelling approaches with less than 1 % difference. The model identification for
the SGS model is obtained from the Gaussian process regression (GPR) trained on the
high-fidelity filtered DNS data, while the non-local spectral transfer model is calibrated
based on the scaling of the 3-D scalar spectrum.

The rest of this work is organized as follows: in § 2, we introduce the mathematical
model for the transport of turbulent passive scalars, their spectral transfer view and the
non-local modelling for the spectral transfer. In § 3, we provide a detailed statistical
analysis for the non-local and standard models in a DNS setting by comparing the
single-point, two-point and high-order small-scale statistical quantities. In § 4, the
similarities between the current model and the fractional-order subfilter modelling for LES
are reconciled. Finally, § 5 provides the concluding remarks.

2. Turbulent transport of passive scalars

The Navier–Stokes (NS) equations that govern incompressible fluid flow dynamics are
given by

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν�u + F ; ∇ · u = 0, (2.1a,b)

where u is the velocity field, ρ denotes the density of fluid, p is the pressure and ν indicates
the kinematic viscosity. Moreover, F represents an external forcing mechanism and in this
setting we take it as Au, where A is a linear indicator function in the spectral domain in
order to artificially inject the dissipated TKE into the large scales (low wavenumbers) to
generate a statistically stationary isotropic turbulent velocity field (see Akhavan-Safaei &
Zayernouri 2020). In order to model the transport of a conserved passive scalar with the
diffusivity (D) in this medium, the AD equation is a well-known Fickian mathematical
model, which is written in the following form:

∂Φ

∂t
+ u · ∇Φ = D�Φ. (2.2)

Reynolds decomposition allows for Φ = 〈Φ〉 + φ, where 〈·〉 denotes the ensemble-
averaging operator, and φ is the fluctuating part of the scalar field. In homogeneous
turbulence, assumption of a uniform imposed mean gradient, ∇〈Φ〉 = G, is a common
practice in order to consider a forcing mechanism for the turbulent intensity (see e.g.
Overholt & Pope 1996). As a result, (2.2) is rewritten as

∂φ

∂t
+ u · ∇φ = −G · u + D�φ. (2.3)

The governing equations are numerically solved in the standard pseudo-spectral setting
for DNS (Overholt & Pope 1996; Akhavan-Safaei & Zayernouri 2020), and the simulation
set-up is further explained in § 2.3.

Considering Eφ(k, t) as the 3-D scalar spectrum, the spectral budget of the scalar
variance reads as

〈φ2〉 =
∫ ∞

0
Eφ(k, t) dk, (2.4)

where k indicates the wavenumber. Through the assumption of small-scale isotropy, the
spectral budget for the dissipation rate of scalar variance by molecular diffusion, χ , is

956 A26-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1066


A non-local spectral transfer model for scalar turbulence

given as

χ = 2D
∫ ∞

0
k2Eφ(k, t) dk. (2.5)

Depending on the ratio of ν/D, and the dissipation rate of TKE (ε), three main
wavenumbers are identified for the scalar spectrum

kηK ≡
( ε

ν3

)1/4
, kηB ≡

( ε

νD2

)1/4
, kηOC ≡

( ε

D3

)1/4
, (2.6a–c)

associated with the Kolmogorov (ηK), Batchelor (ηB) and Obukhov–Corrsin (ηOC)
length scales. Unlike the case with Schmidt number Sc := ν/D ≈ 1 where all of these
three wavenumbers are nearly equal, kηB and kηOC encode the different behaviours of
the scalar spectrum in the presence of the viscous–convective subrange (Sc 	 1), and
inertial–diffusive subrange (Sc 
 1), respectively. It is convenient to differentiate the
scales of turbulent cascade by the wavenumbers kEI , kDI , as k < kEI represents the
energy-containing range, and kEI < k indicates the universal equilibrium range (Pope
2001). Moreover, the universal equilibrium range is split into inertial–convective (kEI <

k < kDI), and dissipation (kDI < k) subranges for the passive scalars with Sc = 1 (Hill
1978).

2.1. Scalar spectral transfer and modelling
Time evolution for the spectrum of a conserved scalar is governed by (see e.g. Hill 1978;
Pope 2001)

∂

∂t
Eφ(k, t) − T(k, t) = P(k, t) − 2Dk2Eφ(k, t), (2.7)

where P(k, t) denotes the spectral content for the large-scale production rate of the scalar
variance, and T(k, t) is the scalar spectral transfer function. The unknown nature of T(k, t)
causes a closure problem in (2.7); thus, a proper modelling for the spectral transfer function
is required; T(k, t) could be defined as the rate of spectral flux function, F(k, t), per unit
wavenumber as (see e.g. Corrsin 1964; Hill 1978)

T(k, t) ≡ −∂F(k, t)
∂k

. (2.8)

By integrating (2.8) over the 3-D spectral domain, the spectral flux function is obtained.
As a well-known assumption, P(k, t) mainly contributes to the energy-containing scales

directly, while it is obvious that k2Eφ(k, t) is mainly considerable in the small scales of
the turbulent cascade where diffusion is the dominant transport mechanism (Pope 2001).
Therefore, integrating (2.7) over the wavenumber space yields the following:

∂

∂t
〈φ2〉 =

∫ kEI

0
[P(k, t) + T(k, t)] dk +

∫ kDI

kEI

T(k, t) dk

+
∫ ∞

kDI

[
T(k, t) − 2Dk2Eφ(k, t)

]
dk. (2.9)

In the statistically stationary state, the second and third integrals in (2.9) are approximately
zero (Hill 1978; Pope 2001). In other words, within the inertial–convective subrange
∂F(k)/∂k = 0 by the constant cascade assumption, and for the diffusive subrange
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∂F(k)/∂k = −2Dk2Eφ(k). As a result, for the wavenumbers in the inertial–convective
subrange F(k) = χ , integrating with respect to k and employing (2.5). Subsequently, (2.9)
is rewritten as

∂

∂t
〈φ2〉 = P(t) − F(kEI, t)︸ ︷︷ ︸

Energy containing

+ F(kEI, t) − F(kDI, t)︸ ︷︷ ︸
Inertial–convective

+ F(kDI, t) − χ(t)︸ ︷︷ ︸
Dissipation︸ ︷︷ ︸

Universal equilibrium range

. (2.10)

This picture motivates the concept of modelling for the turbulent cascade process, here
specifically for the case of the scalar transport. This approach was initially introduced
by Onsager in Onsager (1945, 1949), and later was generalized by Corrsin (1964) to
the cascade mechanism of other systems such as passive scalars. In the cascade transfer,
assuming geometric doubling at each wavenumber step would approximate the step length
as �k ≈ k. Therefore, the spectral flux function could be represented in the following
form:

F(k) ≈ scalar variance
unit time

= �kEφ(k)
τ (k)

≈ kEφ(k)
τ (k)

, (2.11)

where τ(k) is the time scale associated with the step at wavenumber k (Corrsin 1964).
Within the inertial–convective subrange, choosing τ(k) to be the local time scale
associated with the eddies of size � = k−1, gives

τ(k) =
(

[kE(k)]1/2

1/k

)−1

=
[
k3E(k)

]−1/2
. (2.12)

In (2.12), E(k) is the spectrum of the TKE. Thus, according to the well-known Kolmogorov
scaling for the inertial subrange, E(k) ∼ ε2/3k−5/3, where ε is the dissipation rate of TKE.

Plugging (2.12) into (2.11), F(k) = χ ≈ k5/2E(k)1/2Eφ(k), and according to the scaling
of TKE spectrum, the scalar spectrum scales as

Eφ(k) = Cχε−1/3k−5/3, (2.13)

where C is the scaling constant. For a comprehensive overview of a variety of the spectral
transfer models as well as the analysis of their dynamics and properties, interested readers
are referred to Sagaut & Cambon (2018, § 4.7.1).

Direct numerical simulation of the scalar turbulence with a uniform imposed mean
gradient, G = (0, 1, 0), advected on statistically stationary homogeneous isotropic
turbulent (HIT) flow, provides a proper database to examine the scaling law in (2.13).
In this study, a well-resolved DNS at the Taylor-scale Reynolds number Reλ = 240 for
the case with Sc = 1 is obtained. Resolving over a sufficiently large time period in the
statistically stationary state provides a rich sample space to obtain the ensemble-averaged
spectra for the TKE and scalar. Figure 1 illustrates these time-averaged spectra over
approximately 15 large-eddy turnover times, τET . Although the well-known Kolmogorov
scaling for the TKE is achieved, as shown in figure 1(a), figure 1(b) reveals that the scalar
spectrum does not obey the scaling law given in (2.13).
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Figure 1. Time-averaged 3-D spectra for (a) TKE (E(k)), and (b) turbulent scalar intensity (Eφ(k)), obtained
from the DNS results described in § 2.3.

2.2. Non-local modelling of the scalar spectral transfer
In Corrsin’s generalization to the Onsager cascade model, ∂F/∂k is considered as the rate
of gain or loss of the spectral content per unit wavenumber (Corrsin 1964). Moreover, this
generalized model could be applied to:

(i) non-conservative systems;
(ii) systems with different characteristic time scales;

(iii) systems with different cascading mechanisms.

In fact, one can realize that the scaling given in (2.13) was obtained based upon
this generalization. However, in the case of a scalar spectrum, a main assumption
that might be questioned is small-scale isotropy. Recently, high-fidelity computational
studies showed that the effects of large-scale anisotropic forcing do not vanish at the
small scales of turbulent transport of passive scalars (see e.g. Buaria et al. 2021).
Moreover, these small-scale anisotropic fluctuations are identified to be highly intermittent
due to the intensified presence of non-local interactions in passive scalar turbulence.
Anomalous scaling of high-order scalar structure functions is a clear and well-known
experimental evidence supporting this significant deviation from local isotropy at small
scales of transport. In fact, these effects are available in the inertial–convective subrange.
Accordingly, we also observed that the scaling law for the scalar spectrum has a notable
discrepancy from the ensemble-averaged spectrum obtained from DNS.

Based on the Corrsin’s generalization, we propose that the effects of the anisotropy
could be effectively modelled in the spectral transfer function when the effect of spatial
non-locality in the cascade of scalar variance is properly considered. Inclusion of an added
power-law behaviour into the eddies of size � mathematically enables modelling of the
long-range interactions in the physical domain (spatial non-locality), and would return a
modification in the local time scale given in (2.12). As a result, we propose

� = (k2 + Cαk2α)−1/2, α ∈ (0, 1], (2.14)

where Cα is a non-negative model coefficient, and Cα = 0 yields the limit case � = k−1.
Consequently, the modified time scale is derived as

τ(k) =
[
(k2 + Cαk2α)kE(k)

]−1/2
. (2.15)

Plugging this non-local time scale into (2.11) yields the following modified scaling law:

Eφ(k) = Cχε−1/3k−2/3(k2 + Cαk2α)−1/2, (2.16)
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Figure 2. A priori identification of the fractional order and Cα , for the modified scaling law introduced in
(2.16) based upon the calibration of the scaling law with the large-scale content of the time-averaged 3-D scalar
spectrum (k < 10) that induces the non-locality. The data to compute the scalar spectrum come from the DNS
using the standard scalar model. The identified values are α = 0.65, and Cα ≈ 3.9.

and C denotes the scaling constant. Testing this modified scaling law on the time-averaged
scalar spectrum shows a promising agreement through proper parameterization of α and
Cα . In order to parameterize these two values, given the time-averaged 3-D scalar spectrum
we obtained from the standard DNS (figure 1b), in the modified scaling law (2.16), we
initially set Cα = 1, then vary α ∈ (0, 1]. We observe that α = 0.65 yields the slope of
the time-averaged scalar spectrum; however, the level of the spectral content (for the
scalar variance) is achieved when 1 < Cα . Therefore, by fixing the α = 0.65 and trying
incremented realizations of Cα in (2.16), we realize that with Cα ≈ 3.9 we have reached the
desired parameterization. Accordingly, figure 2 illustrates that with this parameterization
(α = 0.65 and Cα ≈ 3.9) the universal scaling observed in the TKE spectrum is achieved
for the scalar spectrum with respect to (2.16).

The multi-scale nature of the turbulent cascade process implies that the non-local
transport effects induced by the large-scale anisotropy are fundamentally connected to
the small scales of motion through inter-scale interactions. Here, the inertial–convective
subrange essentially plays the role of a meso-scale region for the turbulent cascade,
where the presence of these non-local inter-scale interactions is highly pronounced. In
fact, several fundamental studies focused on these non-local interactions and tried to
unravel their nature by triad and tetrad dynamics models in the spectral domain (see
e.g. Waleffe 1992; Chertkov et al. 1995; Chertkov, Pumir & Shraiman 1999; Cheung
& Zaki 2014; Briard, Gomez & Cambon 2016; Sagaut & Cambon 2018). Therefore,
a modification to the dissipation model (2.5) (initiated from the small-scale isotropy
hypothesis) would complement the non-local effects observed in larger scales of turbulent
cascade. Subsequently, the total dissipation (χT ) is revised into

χT = 2D
∫ ∞

0
[k2 + Cαk2α]Eφ(k, t) dk

= 2D
∫ ∞

0
k2Eφ(k, t) dk︸ ︷︷ ︸

χ

+ 2DCα

∫ ∞

0
k2αEφ(k, t) dk︸ ︷︷ ︸
χα

. (2.17)
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Defining Dα := DCα , χα characterizes the essence of having an underlying non-local
diffusion operator in the AD equation governing the turbulent transport of the passive
scalar. From a mathematical point of view, χα directly stems from a fractional-order
Laplacian operator, (−Δ)α(·), acting on the scalar concentration; thus, the modified
transport model reads as

∂φ

∂t
+ u · ∇φ = −G · u + D�φ + Dα(−Δ)αφ. (2.18)

2.3. Numerical discretization and simulation details
A standard pseudo-spectral scheme based on the Fourier-collocation method is utilized
to discretize and resolve the NS and AD equations. The triply periodic computational
domain Ω = [0, 2π]3 is discretized in space by a uniform grid with 5203 grid points.
A fourth-order Runge–Kutta (RK4) scheme is employed to perform the time integration
with a fixed �t = 8 × 10−4, while the Courant−Friedrichs−Lewy (CFL) < 1 condition
is always checked; therefore, numerical stability is ensured. In this study, we select a fully
developed HIT field at Reλ = 240 as the initial state of our computational experiment,
and investigate the development of the passive scalar concentration under the effect of
a large-scale uniform imposed mean gradient, G = (0, 1, 0). Concentration field, φ(x),
is initiated from zero and is resolved for approximately 30 large-eddy turnover times
under the standard model (2.3), and the introduced non-local model (2.18), while Sc = 1.
More detailed discussions about the numerical method, computational approach for the
simulations and the flow characteristics of the utilized HIT data have been presented in
Akhavan-Safaei & Zayernouri (2020).

3. Statistical analysis of the non-local scalar turbulence model

Given the fact that turbulent transport is a stochastic process, sophisticated statistical
analysis of the mathematical models for such phenomena has been a centre of attention
in turbulence research. In this study, we consider the single- and two-point statistical
quantities of interest in passive scalar transport to examine the performance of our
non-local modelling within an equilibrium turbulent state against its conventional
counterpart.

3.1. Transport of the scalar variance
Transport of the scalar variance provides important information about the evolution of the
turbulence intensity. In fact, the computational fluid dynamics approach makes it possible
to identify and keep track of the records of different influential mechanisms obtained from
the mathematical modelling of the physics. It is well known that multiplying both sides of
the AD equation would yield the time evolution equation for the turbulent intensity, φ2.
Therefore, applying that to (2.18), after using the incompressibility condition and chain
rule for the spatial derivatives, one can derive that

1
2

∂φ2

∂t
= −

[
∇ · (uφ2) − (uφ) · ∇φ

]
− G · (uφ)

+ D∇ · (φ∇φ) − D∇φ · ∇φ

+ Dα∇ ·
(
φR(−Δ)α−1/2φ

)
− Dα∇φ · R(−Δ)α−1/2φ, (3.1)
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Figure 3. Records of the contributing terms in the time evolution of scalar variance (d/dt〈φφ〉) defined on
the right-hand side of (3.2), for: (a) standard model, (b) non-local fractional-order model. The time-averaged
quantities (over the statistically stationary region of the time records) are reported in table 1.

where R(−Δ)α−1/2(·) denotes the fractional-order gradient obtained from the Riesz
transform (Samiee et al. 2020; Akhavan-Safaei et al. 2021; Samiee et al. 2022). Due to the
homogeneity of the scalar fluctuations, averaging over the spatial domain is equivalent to
the ensemble-averaging operation 〈·〉 (Pope 2001). Thus, applying this averaging operation
to (3.1) and considering that homogeneity of the fluctuating fields induces 〈∇ · (·)〉 =
∇ · (〈·〉) = 0, the evolution of scalar variance 〈φ2〉 is obtained as follows:

1
2

d
dt

〈φ2〉 = 〈(uφ) · ∇φ〉︸ ︷︷ ︸
T

−〈G · (uφ)〉︸ ︷︷ ︸
P

−D〈∇φ · ∇φ〉︸ ︷︷ ︸
χ

−Dα〈∇φ · R(−Δ)α−1/2φ〉︸ ︷︷ ︸
χα

.

(3.2)

In (3.2), the rate of scalar variance is composed of a balance between the turbulent
advection effects (T ), production by the imposed mean gradient (P), molecular diffusion
(χ ) and the non-local diffusion (χα). It is clear that, for the standard scalar transport
model in which Dα = 0, the non-local diffusion is consequently zero. According to the
simulation considerations described in § 2.3, we collect the records of the contributing
terms on the right-hand side of (3.2), and figure 3 illustrates these time records for
the standard (figure 3a) and non-local (figure 3b) models. Moreover, during both of the
simulations we compute the rate of the scalar variance, d/dt〈φ2〉, using a forward-Euler
finite difference scheme, and compare it with the record of the right-hand side of (3.2)
constructed from the summation of the collected records. For both of the simulations,
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Figure 4. Tracking the record of the balance in the scalar variance equation ensuring the equilibrium state in
simulations of standard and non-local models.

T P χ χα

Standard −0.00056 1.1146 −1.1077 —
Non-local −0.00033 1.1427 −0.9261 −0.2462

Table 1. Time-averaged values of the contributing terms in the time evolution of scalar variance over the
statistically stationary region.

an excellent match between these two computed quantities is observed during the entire
simulation time, as shown in figure 3. In the current work, we are focused on examining
the statistical behaviour of the developed non-local model at the ‘turbulence equilibrium’
state. In this context, equilibrium is interpreted when, for the rate of scalar variance, the
following condition statistically holds:

P + T
χ + χα

∼ 1. (3.3)

Figure 4 displays the record of this quantity for standard and non-local models, and we
notice that, after approximately two large-eddy turnover times from resolving the scalar
concentration, (P + T )/(χ + χα) starts to fluctuate around 1. In order to make sure that
the transient numerical effects are well past, we continue to simulate up to t/τET = 10,
and consider the rest of the simulation statistics to be in the fully developed turbulence
equilibrium state. Therefore, the time-averaging operations in our study are performed
on a sample space over 10 � t/τET � 30. Accordingly, we can compute the time-averaged
values of the contributing terms in the evolution of the scalar variance given in (3.2) as they
are reported in table 1. Comparing the time-averaged values of P from both of the models
reveals that the non-local model approximately includes a 2.5 % higher production rate of
the scalar variance by the large-scale scalar mean gradient. A reasonable interpretation for
this observation is that, once the non-local transfer of the scalar variance transfer in the
cascade process is correctly modelled, this excessive 2.5 % production rate is captured at
the equilibrium state for scalar turbulence. In other words, devising a non-local turbulent
dissipation model (χα) in the scalar variance cascade mechanism would enable a balance
in the equilibrium state so that the non-local effects in turbulent transport originating from
the large-scale ‘anisotropy’ source are better captured throughout the DNS.

Finally, we compute the time-averaged scalar variance spectrum obtained from the
scalar field resolved by the non-local fractional-order model to examine the modified
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Figure 5. Time-averaged scalar spectrum computed from the data simulated with the non-local model, and
evaluation of the identified scaling law in (2.16) for the scalar variance spectrum.

scaling law (2.16) a posteriori. Figure 5 depicts this spectrum and reveals that the scaling
(2.16) seamlessly holds. It is worth emphasizing that the total turbulent dissipation is
denoted by χ + χα .

3.2. High-order small-scale statistics of scalar fluctuations
It is well understood that statistics of the turbulence at the small scales of the transport
are represented through the central moments of the gradients of the fluctuating fields.
Here, we are interested in discovering the small-scale statistics when the scalar field is
sufficiently resolved with the proposed non-local scalar transport model. In fact, we seek
to understand what the prediction of this model for the asymmetric and highly intermittent
nature of passive scalar turbulence at the small scales would be. Therefore, we compute
the skewness and flatness factors for the fluctuating concentration gradient, and due to the
importance of the statistical behaviour along the anisotropy direction ‖, we focus on S∇‖φ
and K∇‖φ . Figure 6 illustrates the records of these two statistical quantities throughout
the entire simulation for the standard and non-local models. Over the equilibrium state,
explained in § 3.1, we obtain the mean values of the of these statistical quantities by
time averaging, and their values are reported in table 2. These time-averaged values show
that the non-local model yields a skewness factor 10 % higher than the standard model,
and the flatness factor is approximately 7 % higher in the non-local transport model.
On the other hand, in a study by Donzis & Yeung (2010) on the resolution effects and
scaling in numerical simulations of passive scalar mixing in turbulence, for a similar
problem set up at Reλ = 240 and Sc = 1, they performed two sets of standard direct
numerical simulations with resolutions (a) N = 5123 (kmaxηB ≈ 1.5) and (b) N = 20483

(kmaxηB ≈ 5.1). The resulting high-order statistics we obtained and reported in table 2, are
in great agreement with what Donzis & Yeung (2010) reported for the same case in table 4
of their work (μ3 and μ4). In fact, our study shows that our non-local modelling, and the
performed DNS based on that, predicts the high-order statistics with approximately 3 %
error compared with the extra high-resolution simulation (the case with kmaxηB ≈ 5.1) in
Donzis & Yeung’s study reports. This comparison essentially proves the effectiveness of
our modelling while we reduce the computational cost of the simulation approximately
64 times (compared with simulation results with N = 20483 spatial resolution in Donzis
& Yeung 2010). This evidently implies that an appropriate modelling of the non-local
turbulent scalar transfer via the fractional-order model properly reflects the well-known
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Figure 6. Time records of (a) skewness, and (b) flatness of the scalar gradient along the anisotropy direction
labelled by ‖. The time-averaged values are identified with dashed lines over the statistically stationary state,
and their values are reported in table 2.

S∇‖φ K∇‖φ

Standard model 1.40 20.8
Non-local model 1.54 22.2

Table 2. Time-averaged values of S∇‖φ , and K∇‖φ over the statistically stationary state as illustrated in
figure 6.

statistical features of highly non-Gaussian behaviour of the passive scalar turbulence
reported in the literature (Warhaft 2000; Sreenivasan 2019).

3.3. Two-point statistics and structure functions
Structure functions of order n for a turbulent field such as the scalar concentration are
defined as

〈(δrφ)n〉 = 〈[φ(x + r) − φ(x)]n〉, n > 1. (3.4)

In (3.4), r = re where r is the increment of spatial shift, and e denotes a unit vector along
a direction of interest. In fact, the structure functions would provide the nth-order statistics
of spatial increments in the fluctuating field, which are interesting metrics in studying the
non-locality. In this study, we are interested in analysing the behaviour of the second-
and third-order structure functions of φ along the direction of large-scale anisotropy,
i.e. e = (0, 1, 0), and regrading the size of the DNS grid, r = 2η. Accordingly, figure 7
shows the time-averaged (over the equilibrium turbulent region) structure functions of
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Figure 7. Time-averaged nth-order scalar structure functions obtained from the simulations with standard and
non-local models, with r = 2η; (a) n = 2, and (b) n = 3.

orders 2 and 3 obtained from the simulations from standard and non-local scalar transport
models. In figure 7(a), one can observe that, for r > 40η, the non-local second-order
structure function starts to exhibit higher values compared with the one computed from
the simulations using the standard model. For the third-order structure function values,
the two models behave similarly up to r/η = 10; however, after that, the non-local model
shows higher values within the spatial shift domain associated with the inertial–convective
and integral-scale domain. It is apparent that the maximum value of the time-averaged
〈(δrφ)3〉 in the non-local model is approximately 10 times higher than the standard model,
both occurring at r/η ≈ 200.

As initially introduced in Yaglom (1949), the mixed ‘velocity-scalar’ third-order
structure function is an important two-point statistical quantity measuring the advective
turbulent transport in passive scalars. In the presence of large-scale anisotropy (imposed
mean scalar gradient), the longitudinal contribution to this mixed structure function plays
the dominant role in the advective transport (Iyer & Yeung 2014), and its functional
form obtained as −〈δruL(δrφ)2〉. Here, the subscript L indicates the velocity component
along the longitudinal direction with respect to the spatial shift direction r, where, in our
computational set-up, it would be u2. Similar to the second- and third-order scalar structure
functions, we compute a time-averaged value for −〈δruL(δrφ)2〉 over the stationary time
domain. Figure 8 shows that, for the dissipative range (r/η < 6), this structure function
scales with r3 in both standard and non-local models, while for almost the entire range of
6 < r/η < 200 the mixed structure function obtained from the DNS with the non-local
transport model scales with r2. Unlike this universal-range scaling, one can observe that
similar behaviour is not necessarily seen in −〈δruL(δrφ)2〉 when the scalar field is resolved
with the standard model. However, in the standard model, a scaling with r could be
identified within 20 < r/η < 60. This comparison suggests that considering the non-local
effects in the turbulent cascade could result in the emergence of more universal behaviour
in the two-point statistics of the advective transport, which inherently reveal high-order
statistics of the non-locality.

4. Reconciliation with the fractional-order SGS modelling for LES

Recalling § 2.2, we performed an a priori parameter identification that yielded α = 0.65
and Dα/D ≈ 3.9 (see figure 2). Here, our goal is to find a consistency between the
currently developed model compared with the fractional-order SGS model introduced in
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Figure 8. Third-order mixed longitudinal structure function, representing the statistics of advective
increments. The non-local model shows a consistent and extended scaling over universal range.

Akhavan-Safaei et al. (2021) when the filter scale is chosen close to the smallest scales of
transport. In order to fulfil our goal, we need to show that, given the optimal fractional
order for the SGS model as αopt = 0.65, what is the value of Dα/D that is obtained
from the procedure introduced in Akhavan-Safaei et al. (2021) that relies on explicitly
filtered data and sparse regression. Taking the filtered data from the simulation based on
the standard scalar transport model (2.3) with the time-averaged scalar spectrum shown in
figure 2, we can obtain the proportionality coefficient for the fractional-order SGS model.
Here, we choose a top-hat box filtering kernel and obtain the filtered data for the filter
sizes Δ/η = 4, 8, 20, 41, 52. Our goal is to evaluate Dα when Δ/η = 2; however, it is
not computationally possible to obtain the filtered data to infer Dα . Instead, we manage to
employ a feasible machine learning algorithm (ML) to predict the desired Dα while it is
trained on the evaluated Dα values from direct filtered data at larger filter sizes. Gaussian
process regression is known to be a suitable ML algorithm when one seeks to predict a
quantity of interest from scarce experimental or computationally expensive high-fidelity
data. Using the implementation of GPR in the Scikit-Learn package (Pedregosa et al. 2011),
we obtain the predicted value of Dα/D = 3.87 for Δ = 2η as illustrated in figure 9. This
result shows that the a priori estimates for the proportionality coefficient in the non-local
scalar transport model are in great agreement with the fractional SGS model when the filter
size is selected as Δ = 2η; therefore, both models are reconciled. It is worth mentioning
that the uncertainty in the predictions of the trained GPR for Δ/η < 4 is assessed, and
it is observed that the uncertainty is very low and practically negligible (see the 95 %
confidence interval in figure 9).

5. Conclusion and remarks

We proposed a modification to the spectral transfer model for the turbulent cascade
of passive scalars under the effect of large-scale anisotropy. Employing Corrsin’s
generalization to Onsager’s turbulent cascade model, our modified model introduced an
additional power-law term in the definition of the local time scale, τ(k), in order to
account for the induced non-local contributions originating from the anisotropy sources in
the energy-containing range. Subsequently, our approach yielded a modified scaling law
for the passive scalar spectrum, Eφ(k). This modified scaling showed a great match with
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Figure 9. Reconciliation of the non-local model with the fractional-order SGS model developed in
Akhavan-Safaei et al. (2021) when the filter size is assumed to be at the dissipation range of Δ = 2η. The
value of Dα is computed from the filtered DNS data for Δ/η = 4, 8, 20, 41, 52 based on the data-driven
methodology introduced in Akhavan-Safaei et al. (2021), a GPR is trained based upon these evaluations and
Dα is approximated based on the trained GPR for Δ/η < 4 The predicted Dα for Δ = 2η is found to be in
total agreement with the identified one obtained from the scaling analysis a priori in figure 2.

the time-averaged 3-D scalar spectrum obtained from a well-resolved standard DNS after
the parameter identification procedure. Using the integrated equation for the evolution of
the scalar spectrum, we revised the total scalar dissipation definition, which introduced
an additional term into the total scalar dissipation representing the integrated effects of
the non-local turbulent dissipation cascade. This modification to the scalar dissipation
returned that a fractional-order Laplacian acting on the scalar concentration is required in
the AD equation. Using this revised AD equation, we performed a DNS study to analyse
different quantities of turbulent transport compared with the DNS results obtained from
convectional model at the statistical equilibrium state. Our analysis on the rate of the
scalar variance showed that considering the effects of non-locality in the scalar dissipation
results in pronounced prediction of the production rate of scalar variance by the imposed
mean gradient (large-scale anisotropy), which could be interpreted as consistency with
the breakdown of local isotropy in small scales of passive scalars. On the other hand, we
showed that incorporation of the non-locality effects in the scalar dissipation improves
the accuracy of predicted time-averaged records of the skewness and flatness factors for
∇‖φ, confirming the essence for devising a proper modelling mechanism for cascade of
the anisotropy effects from large to small scales. Moreover, a two-point statistical analysis
for the advective scalar increments (the third-order mixed longitudinal structure function)
revealed that the DNS results obtained from the non-local model provide a long-range
scaling with r2. This observation on long-range scaling suggested that the inclusion of
a non-local cascading mechanism in the presence of large-scale anisotropy could result
in prediction of more universal behaviour over a wide span of scales in turbulent scalar
transport. Finally, we showed an accurate consistency between the developed spectral
transfer model and the fractional-order SGS modelling with Δ ≈ 2η, after employing a
well-trained GPR model.

Acknowledgements. The authors acknowledge the high-performance computing resources and services that
were provided by the Institute for Cyber-Enabled Research (ICER) at Michigan State University.

956 A26-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1066


A non-local spectral transfer model for scalar turbulence

Funding. This work was financially supported by the ARO YIP award (W911NF-19-1-0444), and partially by
the MURI/ARO grant (W911NF-15-1-0562) and the NSF award (DMS-1923201).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Ali Akhavan-Safaei https://orcid.org/0000-0002-0812-1881;
Mohsen Zayernouri https://orcid.org/0000-0002-0831-2610.

REFERENCES

AKHAVAN-SAFAEI, A., SAMIEE, M. & ZAYERNOURI, M. 2021 Data-driven fractional subgrid-scale
modeling for scalar turbulence: a nonlocal LES approach. J. Comput. Phys. 446, 110571.

AKHAVAN-SAFAEI, A. & ZAYERNOURI, M. 2020 A parallel integrated computational-statistical platform for
turbulent transport phenomena. arXiv:2012.04838.

BATCHELOR, G.K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid Part
1. General discussion and the case of small conductivity. J. Fluid Mech. 5 (1), 113–133.

BATCHELOR, G.K., HOWELLS, I.D. & TOWNSEND, A.A. 1959 Small-scale variation of convected quantities
like temperature in turbulent fluid Part 2. The case of large conductivity. J. Fluid Mech. 5 (1), 134–139.

BRIARD, A., GOMEZ, T. & CAMBON, C. 2016 Spectral modelling for passive scalar dynamics in
homogeneous anisotropic turbulence. J. Fluid Mech. 799, 159–199.

BUARIA, D., CLAY, M.P., SREENIVASAN, K.R. & YEUNG, P.K. 2021 Small-scale isotropy and ramp-cliff
structures in scalar turbulence. Phys. Rev. Lett. 126 (3), 034504.

CHERTKOV, M., FALKOVICH, G., KOLOKOLOV, I. & LEBEDEV, V. 1995 Normal and anomalous scaling of
the fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E 52 (5), 4924.

CHERTKOV, M., PUMIR, A. & SHRAIMAN, B.I. 1999 Lagrangian tetrad dynamics and the phenomenology
of turbulence. Phys. Fluids 11 (8), 2394–2410.

CHEUNG, L.C. & ZAKI, T.A. 2014 An exact representation of the nonlinear triad interaction terms in spectral
space. J. Fluid Mech. 748, 175–188.

CORRSIN, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl.
Phys. 22 (4), 469–473.

CORRSIN, S. 1964 Further generalization of Onsager’s cascade model for turbulent spectra. Phys. Fluids 7 (8),
1156–1159.

DI LEONI, P.C., ZAKI, T.A., KARNIADAKIS, G. & MENEVEAU, C. 2021 Two-point stress–strain-rate
correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 914, A6.

DIMOTAKIS, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356.
DOMARADZKI, J.A. & ROGALLO, R.S. 1990 Local energy transfer and nonlocal interactions in

homogeneous, isotropic turbulence. Phys. Fluids A 2 (3), 413–426.
DONZIS, D.A. & YEUNG, P.K. 2010 Resolution effects and scaling in numerical simulations of passive scalar

mixing in turbulence. Physica D 239 (14), 1278–1287.
DONZIS, D.A., YEUNG, P.K. & SREENIVASAN, K.R. 2008 Dissipation and enstrophy in isotropic turbulence:

resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.
FAILLA, G. & ZINGALES, M. 2020 Advanced materials modelling via fractional calculus: challenges and

perspectives. Phil. Trans. R. Soc. A 378, 20200050.
FRISCH, U., MAZZINO, A. & VERGASSOLA, M. 1998 Intermittency in passive scalar advection. Phys. Rev.

Lett. 80, 5532–5535.
GAT, O., PROCACCIA, I. & ZEITAK, R. 1998 Anomalous scaling in passive scalar advection: Monte Carlo

Lagrangian trajectories. Phys. Rev. Lett. 80, 5536–5539.
GOLLUB, J.P., CLARKE, J., GHARIB, M., LANE, B. & MESQUITA, O.N. 1991 Fluctuations and transport in

a stirred fluid with a mean gradient. Phys. Rev. Lett. 67, 3507–3510.
HILL, R.J. 1978 Models of the scalar spectrum for turbulent advection. J. Fluid Mech. 88 (3), 541–562.
IYER, K.P. & YEUNG, P.K. 2014 Structure functions and applicability of Yaglom’s relation in passive-scalar

turbulent mixing at low Schmidt numbers with uniform mean gradient. Phys. Fluids 26 (8), 085107.
JAYESH, & WARHAFT, Z. 1991 Probability distribution of a passive scalar in grid-generated turbulence. Phys.

Rev. Lett. 67, 3503–3506.
JAYESH, & WARHAFT, Z. 1992 Probability distribution, conditional dissipation, and transport of passive

temperature fluctuations in grid-generated turbulence. Phys. Fluids A 4 (10), 2292–2307.
KANG, H.S. & MENEVEAU, C. 2001 Passive scalar anisotropy in a heated turbulent wake: new observations

and implications for large-eddy simulations. J. Fluid Mech. 442, 161–170.

956 A26-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0812-1881
https://orcid.org/0000-0002-0812-1881
https://orcid.org/0000-0002-0831-2610
https://orcid.org/0000-0002-0831-2610
https://arxiv.org/abs/2012.04838
https://doi.org/10.1017/jfm.2022.1066


A. Akhavan-Safaei and M. Zayernouri

KEITH, B., KHRISTENKO, U. & WOHLMUTH, B. 2021 A fractional PDE model for turbulent velocity fields
near solid walls. J. Fluid Mech. 916, A21.

KITAMURA, T. 2021 Spectral theory of passive scalar with mean scalar gradient. J. Fluid Mech. 923, A28.
KOLMOGOROV, A.N. 1941a Energy dissipation in locally isotropic turbulence. In Doklady Akademii Nauk

SSSR, vol. 32, pp. 19–21.
KOLMOGOROV, A.N. 1941b Local structure of turbulence in incompressible fluid under very high values of

Reynolds numbers. Rep. AS USSR 30 (4), 299–303.
KOLMOGOROV, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence

in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 82–85.
LANE, B.R., MESQUITA, O.N., MEYERS, S.R. & GOLLUB, J.P. 1993 Probability distributions and thermal

transport in a turbulent grid flow. Phys. Fluids A 5 (9), 2255–2263.
LI, Y.I. & MENEVEAU, C. 2006 Intermittency trends and Lagrangian evolution of non-Gaussian statistics in

turbulent flow and scalar transport. J. Fluid Mech. 558, 133–142.
MEHTA, P.P., PANG, G., SONG, F. & KARNIADAKIS, G.EM. 2019 Discovering a universal variable-order

fractional model for turbulent Couette flow using a physics-informed neural network. Fract. Calc. Appl.
Anal. 22 (6), 1675–1688.

MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu.
Rev. Fluid Mech. 32 (1), 1–32.

MONIN, A.S. & YAGLOM, A.M. 1975 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, vol.
2. MIT.

MOSER, R.D., HAERING, S.W. & YALLA, G.R. 2021 Statistical properties of subgrid-scale turbulence
models. Annu. Rev. Fluid Mech. 53, 255–286.

OBOUKHOV, A.M. 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13 (1), 77–81.
OBUKHOV, A.M. 1949 Structure of temperature field in turbulent flow. In Izv. Akad. Nauk. SSSR, Georg. i

Geofiz., vol. 13, pp. 58–69.
ONSAGER, L. 1945 The distribution of energy in turbulence. In Physical Review, vol. 68, pp. 281–288.
ONSAGER, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6 (2), 279–287.
OVERHOLT, M.R. & POPE, S.B. 1996 Direct numerical simulation of a passive scalar with imposed mean

gradient in isotropic turbulence. Phys. Fluids 8 (11), 3128–3148.
PEDREGOSA, F., et al. 2011 Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
POPE, S.B. 2001 Turbulent Flows. Cambridge University Press.
PRASAD, R.R., MENEVEAU, C. & SREENIVASAN, K.R. 1988 Multifractal nature of the dissipation field of

passive scalars in fully turbulent flows. Phys. Rev. Lett. 61 (1), 74.
PUMIR, A. & SHRAIMAN, B.I. 1995 Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev.

Lett. 75, 3114–3117.
SAGAUT, P. 2006 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer Science &

Business Media.
SAGAUT, P. & CAMBON, C. 2018 Homogeneous Turbulence Dynamics. Springer.
SAMIEE, M., AKHAVAN-SAFAEI, A. & ZAYERNOURI, M. 2020 A fractional subgrid-scale model for

turbulent flows: theoretical formulation and a priori study. Phys. Fluids 32 (5), 055102.
SAMIEE, M., AKHAVAN-SAFAEI, A. & ZAYERNOURI, M. 2022 Tempered fractional LES modeling. J. Fluid

Mech. 932, 1.
SCHUMACHER, J., SREENIVASAN, K.R. & YEUNG, P.K. 2005 Very fine structures in scalar mixing. J. Fluid

Mech. 531, 113–122.
SHRAIMAN, B.I. & SIGGIA, E.D. 1994 Lagrangian path integrals and fluctuations in random flow. Phys. Rev.

E 49, 2912–2927.
SHRAIMAN, B.I. & SIGGIA, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639–646.
SONG, F. & KARNIADAKIS, G.EM. 2021 Variable-order fractional models for wall-bounded turbulent flows.

Entropy 23 (6), 782.
SREENIVASAN, K.R. 1996 The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 8 (1),

189–196.
SREENIVASAN, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 18175–

18183.
SUZUKI, J., ZHOU, Y., D’ELIA, M. & ZAYERNOURI, M. 2021a A thermodynamically consistent fractional

visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput. Meth. Appl.
Mech. Engng 373, 113494.

SUZUKI, J.L., GULIAN, M., ZAYERNOURI, M. & D’ELIA, M. 2022 Fractional modeling in action: a survey
of nonlocal models for subsurface transport, turbulent flows, and anomalous materials. J. Peridynamics
Nonlocal Model. 1–68.

956 A26-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1066


A non-local spectral transfer model for scalar turbulence

SUZUKI, J.L., KHARAZMI, E., VARGHAEI, P., NAGHIBOLHOSSEINI, M. & ZAYERNOURI, M. 2021b
Anomalous nonlinear dynamics behavior of fractional viscoelastic beams. J. Comput. Nonlinear Dyn.
16 (11), 111005.

SUZUKI, J.L., TUTTLE, T.G., ROCCABIANCA, S. & ZAYERNOURI, M. 2021c A data-driven
memory-dependent modeling framework for anomalous rheology: application to urinary bladder tissue.
Fractal Fractional 5 (4), 223.

SUZUKI, J.L., ZAYERNOURI, M., BITTENCOURT, M.L. & KARNIADAKIS, G.E. 2016 Fractional-order
uniaxial visco-elasto-plastic models for structural analysis. Comput. Meth. Appl. Mech. Engng 308,
443–467.

WALEFFE, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350–363.
WARHAFT, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203–240.
WATANABE, T. & GOTOH, T. 2006 Intermittency in passive scalar turbulence under the uniform mean scalar

gradient. Phys. Fluids 18 (5), 058105.
YAGLOM, A.M. 1949 On the local structure of a temperature field in a turbulent flow. In Doklady Akademii

Nauk SSSR, vol. 69.
YU, Y., PERDIKARIS, P. & KARNIADAKIS, G.EM. 2016 Fractional modeling of viscoelasticity in 3D cerebral

arteries and aneurysms. J. Comput. Phys. 323, 219–242.

956 A26-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1066

	1 Introduction
	2 Turbulent transport of passive scalars
	2.1 Scalar spectral transfer and modelling
	2.2 Non-local modelling of the scalar spectral transfer
	2.3 Numerical discretization and simulation details

	3 Statistical analysis of the non-local scalar turbulence model
	3.1 Transport of the scalar variance
	3.2 High-order small-scale statistics of scalar fluctuations
	3.3 Two-point statistics and structure functions

	4 Reconciliation with the fractional-order SGS modelling for LES
	5 Conclusion and remarks
	References

