Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T12:24:40.599Z Has data issue: false hasContentIssue false

Surface engineering for phase change heat transfer: A review

Published online by Cambridge University Press:  20 November 2014

Daniel Attinger*
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Christophe Frankiewicz
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Amy R. Betz
Affiliation:
Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA
Thomas M. Schutzius
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; and Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
Ranjan Ganguly
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; and Department of Power Engineering, Jadavpur University, Kolkata 700098, India
Arindam Das
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
Chang-Jin Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
Constantine M. Megaridis*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
*
Address all correspondence to Daniel Attinger at attinger@iastate.edu and Constantine M. Megaridis at cmm@uic.edu
Address all correspondence to Daniel Attinger at attinger@iastate.edu and Constantine M. Megaridis at cmm@uic.edu
Get access

Abstract

Owing to advances in micro- and nanofabrication methods over the last two decades, the degree of sophistication with which solid surfaces can be engineered today has caused a resurgence of interest in the topic of engineering surfaces for phase change heat transfer. This review aims at bridging the gap between the material sciences and heat transfer communities. It makes the argument that optimum surfaces need to address the specificities of phase change heat transfer in the way that a key matches its lock. This calls for the design and fabrication of adaptive surfaces with multiscale textures and non-uniform wettability.

Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiency at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930s to fabricate solid surfaces that improve phase change heat transfer. The development of micro and nanotechnologies has made feasible the high-resolution control of surface texture and chemistry over length scales ranging from molecular levels to centimeters. This paper reviews the fabrication techniques available for metallic and silicon-based surfaces, considering sintered and polymeric coatings. The influence of such surfaces in multiphase processes of high practical interest, e.g., boiling, condensation, freezing, and the associated physical phenomena are reviewed. The case is made that while engineers are in principle able to manufacture surfaces with optimum nucleation or thermofluid transport characteristics, more theoretical and experimental efforts are needed to guide the design and cost-effective fabrication of surfaces that not only satisfy the existing technological needs, but also catalyze new discoveries.

Type
Review
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Manglik, R.M. and Jog, M.A.: Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions. J. Heat Transfer 131, 121001 (2009).Google Scholar
Incropera, F.P. and DeWitt, D.P.: Fundamentals of Heat and Mass Transfer (John Wiley & Sons Inc., Hoboken, NJ, 1995).Google Scholar
Page, K., Wilson, M., Mordan, N.J., Chrzanowski, W., Knowles, J., and Parkin, I.P.: Study of the adhesion of Staphylococcus aureus to coated glass substrates. J. Mater. Sci. 46, 63556363 (2011).Google Scholar
Moran, M.J., Shapiro, H.N., Munson, B.R., and DeWitt, D.P.: Introduction to Thermal Systems Engineering (John Wiley and Sons, Danvers, MA, 2003).Google Scholar
Collier, J.G.: Convective Boiling and Condensation (McGraw-Hill, New York, 1972).Google Scholar
Bar-Cohen, A., Arik, M., and Ohadi, M.: Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94, 15491570 (2006).CrossRefGoogle Scholar
McHale, J.P. and Garimella, S.V.: Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int. J. Multiphase Flow 36, 249260 (2010).Google Scholar
Han, C.Y. and Griffith, P.: The Mechanism of Heat Transfer in Nucleate Pool Boiling (MIT, Cambridge, MA, 1962).Google Scholar
Demiray, F. and Kim, J.: Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling. Int. J. Heat Mass Transfer 47, 32573268 (2004).Google Scholar
Jiang, Y.Y., Osada, H., Inagaki, M., and Horinouchi, N.: Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int. J. Heat Mass Transfer 56, 640652 (2013).Google Scholar
Golobic, I., Petkovsek, J., and Kenning, D.B.R.: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography. Int. J. Heat Mass Transfer 55, 13851402 (2012).Google Scholar
Son, G. and Dhir, V.K.: Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int. J. Heat Mass Transfer 51, 25662582 (2008).CrossRefGoogle Scholar
Dhir, V.K., Abarajith, H.S., and Li, D.: Bubble dynamics and heat transfer during pool and flow boiling. Heat Transfer Eng. 28, 608624 (2007).CrossRefGoogle Scholar
Boreyko, J. and Chen, C-H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).Google Scholar
Chen, C-H., Cai, Q., Tsai, C., Chen, C-L., Xiong, G., Yu, Y., and Ren, Z.: Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173108 (2007).Google Scholar
Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., and Varanasi, K.K.: Enhanced condensation on lubricant-impregnated nanotextured surfaces. Langmuir 6, 1012210129 (2012).Google ScholarPubMed
Rykaczewski, K., Scott, J.H.J., and Fedorov, A.G.: Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces. Appl. Phys. Lett. 98, 093106 (2011).Google Scholar
Lee, K-S., Jhee, S., and Yang, D-K.: Prediction of the frost formation on a cold flat surface. Int. J. Heat Mass Transfer 46, 37893796 (2003).Google Scholar
Hayashi, Y., Aoki, A., Adachi, S., and Hori, K.: Study of frost properties correlating with frost formation types. J. Heat Transfer 99, 239245 (1977).Google Scholar
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., and Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 76997707 (2010).Google Scholar
Patankar, N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 16131620 (2010).Google Scholar
Ahn, H.S., Lee, C., Kim, H., Jo, H., Kang, S., Kim, J., Shin, J., and Kim, M.H.: Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface. Nucl. Eng. Des. 240, 33503360 (2010).CrossRefGoogle Scholar
Kim, Y.H., Kim, S.J., Suh, K.Y., Rempe, J.L., Cheung, F.B., and Kim, S.B.: Internal vessel cooling feasibility attributed by critical heat flux in inclined rectangular gap. Nucl. Technol. 154, 1340 (2006).Google Scholar
Leung, J.C.M., Gallivan, K.A., Henry, R.E., and Bankoff, S.G.: Critical heat flux predictions during blowdown transients. Int. J. Multiphase Flow 7, 677701 (1981).CrossRefGoogle Scholar
Kurokawa, K.: The Fukushima Nuclear Accident Independent Investigation Commission (The National Diet of Japan, Japan, 2012).Google Scholar
Kim, J.: U Maryland, Mechanical Engineering, personal communication with D.A. on the use of dimensionless analysis in pool boiling, May 2013.Google Scholar
Schrage, R.W.: A Theoretical Study of Interphase Mass Transfer (Columbia University Press, New York, NY, 1953).Google Scholar
Corman, J.C. and McLaughlin, M.H.: Boiling augmentation with structured surfaces. ASHRAE Trans. 82, 906918 (1976).Google Scholar
Mankovskij, O.N., Ioffe, O.B., Fibgant, L.G., and Tolczinskij, A.R.: About boiling mechanism on flooded surface with capillary-porous coating. Ing. Fiz. J. 30, 975982 (1976).Google Scholar
Ayub, Z.H. and Bergles, A.E.: Pool boiling from GEWA surfaces in water and R-113. Wärme-und Stoffübertragung 21, 209219 (1987).Google Scholar
Arai, N.: Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine. ASHRAE Trans. 83, 5870 (1977).Google Scholar
Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T.: Dynamic model of enhanced boiling heat transfer on porous surfaces. J. Heat Transfer 102, 451456 (1980).Google Scholar
Takata, Y., Hidaka, S., Masuda, M., and Ito, T.: Pool boiling on a superhydrophilic surface. Int. J. Energy Res. 27, 111119 (2003).Google Scholar
Li, C. and Peterson, G.P.: Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transfer-Trans. ASME 129, 14651475 (2007).Google Scholar
Li, C., Wang, Z., Wang, P.I., Peles, Y., Koratkar, N., and Peterson, G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4, 10841088 (2008).Google Scholar
Weibel, J.A., Garimella, S.V., and North, M.T.: Characterization of evaporation and boiling from sintered powder wicks fed by capillary action. Int. J. Heat Mass Transfer 53, 42044215 (2010).Google Scholar
Cooke, D. and Kandlikar, S.G.: Effect of open microchannel geometry on pool boiling enhancement. Int. J. Heat Mass Transfer 55, 10041013 (2012).CrossRefGoogle Scholar
Kandlikar, S.G.: Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer. Appl. Phys. Lett. 102, 051611 (2013).Google Scholar
Nukiyama, S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Jpn. Soc. Mech. Eng. 37, 367374 (1934).Google Scholar
Mikic, B.B. and Rohsenow, W.M.: A new correlation of pool boiling data including effect of heating surface characteristics. J. Heat Transfer 91, 245250 (1969).Google Scholar
Hsu, K-Y.: On the size range of active nucleation cavities on a heating surface. ASME J. Heat Transfer 84, 207216 (1962).Google Scholar
Wang, C.H. and Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer-Trans. ASME 115, 659669 (1993).Google Scholar
Betz, A.R., Xu, J., Qiu, H., and Attinger, D.: Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010).Google Scholar
Jo, H., Ahn, H.S., Kang, S., and Kim, M.H.: A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transfer 54, 56435652 (2011).Google Scholar
Hwang, G.S. and Kaviany, M.: Critical heat flux in thin, uniform particle coatings. Int. J. Heat Mass Transfer 49, 844849 (2006).Google Scholar
Zuber, N.: Hydrodynamic aspects of boiling heat transfer, AEC report AECU-4439. Ph.D. Thesis, UCLA, 1959.Google Scholar
Dhir, V.K., Abarajith, H.S., and Warrier, G.R.: From nano to micro scales in boiling. In Microscale Heat Transfer Fundamentals and Applications, Proceedings of NATO-ASI Meeting, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 193, Kakac, S., Vasiliev, L.L., Bayazitoglu, Y., and Yener, Y. eds.; Kulwer Academic Publishers: The Netherlands, 2005.Google Scholar
Theofanous, T.G., Dinh, T.N., Tu, J.P., and Dinh, A.T.: The boiling crisis phenomenon: Part II: Dryout dynamics and burnout. Exp. Therm. Fluid Sci. 26, 793810 (2002).CrossRefGoogle Scholar
Webb, R.L.: Odyssey of the enhanced boiling surface. J. Heat Transfer 126, 10511059 (2004).CrossRefGoogle Scholar
Berenson, P.J.: Transition boiling heat transfer from a horizontal surface; Technical Report 17; M.l.T. Heat Transfer Laboratory, 1960.Google Scholar
Hummel, R.L.: Means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3207209, 1965.Google Scholar
Carey, V.P.: Liquid-Vapor Phase-Change Phenomena (Taylor & Francis Group, New York, NY, 2008).Google Scholar
Frenkel, J.: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538 (1939).Google Scholar
Basu, N., Warrier, G.R., and Dhir, V.K.: Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer 124, 717 (2002).Google Scholar
Knapp, R.T.: Cavitation and nuclei. Trans. ASME 80, 1321 (1958).Google Scholar
Bankoff, S.G.: The prediction of surface temperature at incipient boiling. Chem. Eng. Prog., Symp. Ser. 55, 87 (1959).Google Scholar
Qi, Y. and Klausner, J.F.: Comparison of nucleation site density for pool boiling and gas nucleation. J. Heat Transfer 128, 13 (2006).CrossRefGoogle Scholar
Betz, A.R., Jenkins, J., Kim, C-J., and Attinger, D.: Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transfer 57, 733741 (2013).CrossRefGoogle Scholar
Tien, C.L.: A hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transfer 5, 533540 (1962).Google Scholar
Forster, H.K. and Zuber, N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE 1, 531535 (1955).Google Scholar
Haider, S.I. and Webb, R.L.: A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transfer 40, 36753688 (1997).Google Scholar
Utaka, Y., Kashiwabara, Y., and Ozaki, M.: Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int. J. Heat Mass Transfer 57, 222230 (2013).Google Scholar
Cooper, M.G. and Lloyd, A.J.P.: The microlayer in nucleate pool boiling. Int. J. Heat Mass Transfer 12, 895913 (1969).Google Scholar
Rohsenow, W.: A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids (MIT, Cambridge, MA, 1951).Google Scholar
Dhir, V.K.: Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365401 (1998).Google Scholar
Abarajith, H.S. and Dhir, V.K.: A Numerical Study of the Effect of Contact Angle on the Dynamics of a Single Bubble during Pool Boiling (ASME - Heat Transfer Division, New Orleans, LA, 2002).Google Scholar
Kutateladze, S.S.: On the transition to film boiling under natural convection. Kotloturbostroenie 3, 10 (1948).Google Scholar
Lienhard, J.H. and Dhir, V.K.: Extended Hydrodynamic Theory to the Peak and Minimum Pool Boiling Heat Fluxes, NASA CR, Vol. 2270 (National Technical Information Service, 1973).Google Scholar
Haramura, Y. and Katto, Y.: A new hydrodynamic model of the critical heat flux, applicable widely to both pool and forced convective boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transfer 26, 389399 (1983).CrossRefGoogle Scholar
Bui, T.D. and Dhir, V.K.: Transition boiling heat transfer on a vertical surface. J. Heat Transfer-Trans. ASME 107, 756763 (1985).Google Scholar
Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071 (2001).CrossRefGoogle Scholar
Dhir, V.K. and Liaw, S.P.: Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer 111, 739746 (1989).Google Scholar
Kandlikar, S. and Garimella, S.: Heat Transfer and Fluid Flow in Minichannels and Microchannels (Elsevier, Oxford, UK, 2006); p. 227.Google Scholar
Rose, J.W.: Dropwise condensation theory and experiment: A review. Proc. Inst. Mech. Eng., Part A 216, 115128 (2002).Google Scholar
Graham, C. and Griffith, P.: Drop size distributions and heat-transfer in dropwise condensation. Int. J. Heat Mass Transfer 16, 337346 (1973).Google Scholar
Bejan, A.: Convective Heat Transfer (John Wiley & Sons Inc., Hoboken, NJ, 2003).Google Scholar
Schmidt, E., Schurig, W., and Sellschopp, W.: Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech. Mech. Thermodyn. (Forsch. Ing. Wes.) 1(2), 5563 (1930).Google Scholar
Glassford, A.P.M.: Practical model for molecular contaminant deposition kinetics. J. Thermophys. Heat Transfer 6, 656664 (1992).Google Scholar
Chen, L.H., Chen, C.Y., and Lee, Y.L.: Nucleation and growth of clusters in the process of vapor deposition. Surf. Sci. 429, 150160 (1999).Google Scholar
Le Fevre, E.J. and Rose, J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 2, Chicago, IL, 1966; p. 362375.Google Scholar
Rose, J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 10, Chicago, IL, 1967.Google Scholar
Rose, J.W.: Interphase matter transfer, the condensation coefficient and dropwise condensation. In Proceedings of 11th International Conference, Kyongju, Vol. 2, 1998.Google Scholar
Mikic, B.B.: On mechanism of dropwise condensation. Int. J. Heat Mass Transfer 12, 13111323 (1969).Google Scholar
Quere, D., Azzopardi, M.J., and Delattre, L.: Drops at rest on a tilted plane. Langmuir 14, 22132216 (1998).Google Scholar
Kim, S. and Kim, K.J.: Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).Google Scholar
Tanaka, H.: Measurements of drop-size distributions during transient dropwise condensation. J. Heat Transfer-Trans. ASME 97, 341346 (1975).Google Scholar
Wu, Y.T., Yang, C.X., and Yuan, X.G.: Drop distributions and numerical simulation of dropwise condensation heat transfer. Int. J. Heat Mass Transfer 44, 44554464 (2001).Google Scholar
Ulrich, S., Stoll, S., and Pefferkorn, E.: Computer simulations of homogeneous deposition of liquid droplets. Langmuir 20, 17631771 (2004).Google Scholar
Wenzel, H.: Versuche über Tropfenkondensation, Allg. Wärmetech 8, 839845 (1957).Google Scholar
Bonner, R.W.: Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transfer 61, 245253 (2013).Google Scholar
Ma, X.H., Zhou, X.D., Lan, Z., Li, Y.M., and Zhang, Y.: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int. J. Heat Mass Transfer 51, 17281737 (2008).Google Scholar
Grooten, M.H.M. and van der Geld, C.W.M.: Dropwise condensation from flowing air-steam mixtures: Diffusion resistance assessed by controlled drainage. Int. J. Heat Mass Transfer 54, 45074517 (2011).Google Scholar
Minkowycz, W.J. and Sparrow, E.M.: Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion. Int. J. Heat Mass Transfer 9, 11251144 (1966).Google Scholar
Utaka, Y. and Nishikawa, T.: Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method. J. Enhanced Heat Transfer 10, 119129 (2003).Google Scholar
Utaka, Y. and Kamiyama, T.: Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface. Heat Transfer—Asian Res. 37, 387397 (2008).Google Scholar
Tanasawa, I.: Advances in condensation heat transfer. Advances in Heat Transfer, Vol. 21 (Elsevier, New York, 1991).Google Scholar
Nusselt, W.: Die Oberflachen Kondensation des Wasserdampfes, Zeitschrift. Ver. Dtsch. Ing. 60, 541546 (1916).Google Scholar
Rohsenow, W.M.: Heat transfer and temperature distribution in laminar film condensation. Trans. ASME J. Fluids Eng. 78, 1645 (1956).Google Scholar
Thibaut Brian, P.L., Reid, R.C., and Shah, Y.T.: Frost deposition on cold surfaces. Ind. Eng. Chem. Fundam. 9, 375380 (1970).Google Scholar
Fortin, G., Laforte, J-L., and Ilinca, A.: Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int. J. Heat Mass Transfer 45, 595606 (2006).Google Scholar
Iragorry, J., Tao, Y.X., and Jia, S.: A critical review of properties and models for frost formation analysis. HVACR Res. 10, 393420 (2004).Google Scholar
Piucco, R.O., Hermes, C.J.L., Melo, C., and Barbosa, J.R. Jr.: A study of frost nucleation on flat surfaces. Exp. Therm. Fluid Sci. 32, 17101715 (2008).Google Scholar
Ryerson, C.C.: Ice protection of offshore platforms. Cold Reg. Sci. Technol. 65, 97110 (2011).Google Scholar
Fletcher, N.H.: The Chemical Physics of Ice (Cambridge University Press, London, 1970).Google Scholar
Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C.M., and Poulikakos, D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 30593066 (2011).Google Scholar
Jung, S., Tiwari, M.K., Doan, N.V., and Poulikakos, D.: Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).Google Scholar
Na, B. and Webb, R.L.: A fundamental understanding of factors affecting frost nucleation. Int. J. Heat Mass Transfer 46, 37973808 (2003).Google Scholar
Varanasi, K.K., Deng, T., Smith, J.D., Hsu, M., and Bhate, N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010).CrossRefGoogle Scholar
Lee, H., Shin, J., Ha, S., Choi, B., and Lee, J.: Frost formation on a plate with different surface hydrophilicity. Int. J. Heat Mass Transfer 47, 48814893 (2004).Google Scholar
Cao, L.L., Jones, A.K., Sikka, V.K., Wu, J.Z., and Gao, D.: Anti-icing superhydrophobic coatings. Langmuir 25, 1244412448 (2009).Google Scholar
Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., and Aizenberg, J.: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 65696577 (2012).Google Scholar
Jung, S., Tiwari, M.K., and Poulikakos, D.: Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 1607316078 (2012).Google Scholar
Na, B. and Webb, R.L.: Mass transfer on and within a frost layer. Int. J. Heat Mass Transfer 47, 899911 (2004).Google Scholar
Liu, Z., Zhang, X., Wang, H., Meng, S., and Cheng, S.: Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions. Exp. Therm. Fluid Sci. 31, 789794 (2007).CrossRefGoogle Scholar
Le Gall, R., Grillot, J.M., and Jallut, C.: Modelling of frost growth and densification. Int. J. Heat Mass Transfer 40, 31773187 (1997).Google Scholar
Webb, R.L.: The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2, 4669 (1981).Google Scholar
Berenson, P.J.: Experiments on pool-boiling heat transfer. Int. J. Heat Mass Transfer 5, 985999 (1962).Google Scholar
Webb, R.L.: Heat transfer surface having a high boiling heat transfer coefficient. U.S. Patent No. 3696861A, 1972.Google Scholar
Zhou, F., Izgorodin, A., Hocking, R., Spiccia, L., and MacFarlane, D.: Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 10131021 (2012).Google Scholar
Jiang, Z., Tang, Y., Tay, Q., Zhang, Y., Malyi, O.I., Wang, D., Deng, J., Lai, Y., Zhou, H., Chen, X., Dong, Z., and Chen, Z.: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 3, 13681380 (2013).CrossRefGoogle Scholar
Dahl, M.M. and Erb, L.E.: Liquid heat exchanger interface and method. U.S. Patent No. 3990862, 1976.Google Scholar
Jiang, W. and Malshe, A.P.: A novel cBN composite coating design and machine testing: A case study in turning. Surf. Coat. Technol. 206, 273279 (2011).Google Scholar
Kim, C-J. and Bergles, A.E.: Particulate Phenomena and Multiphase Transport, Vol. 2 (Hemisphere, Washington, D.C., 1988); pp. 318.Google Scholar
You, S.M. and O'Connor, J.P.: Boiling enhancement coating. U.S. Patent No. 5814392, 1998.Google Scholar
Xia, Y. and Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Res. 28, 153184 (1998).Google Scholar
Lu, C. and Lipson, R.H.: Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 4, 568580 (2009).Google Scholar
Plymouth Grating Laboratory: Scanning-beam interference lithography http://www.plymouthgrating.com/Technology/TechnologyPage.htm.Google Scholar
Sun, G., Hur, J.I., Zhao, X., and Kim, C-J.: Fabrication of very-high-aspect-ratio micro metal posts and gratings by photoelectrochemical etching and electroplating. J. MEMS 20, 876884 (2011).Google Scholar
Lee, C. and Kim, C-J.: Influence of surface hierarchy of superhydrophobic surfaces on liquid slip. Langmuir 27, 42434248 (2011).Google Scholar
Weibel, J.A., Kim, S.S., Fisher, T.S., and Garimella, S.V.: Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng. 16, 117 (2012).Google Scholar
Lu, Y-W. and Kandlikar, S.G.: Nanoscale surface modification techniques for pool boiling enhancement: A critical review and future directions. Heat Transfer Eng. 32, 827842 (2011).Google Scholar
Gerasopoulos, K., McCarthy, M., Banerjee, P., Fan, X., Culver, J.N., and Ghodssi, R.: Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnol. 21, 055304 (2010).Google Scholar
Chu, K-H., Enright, R., and Wang, E.N.: Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012).Google Scholar
Choi, C-H. and Kim, C.J.: Fabrication of dense array of tall nanostructures over a very large sample area with sidewall profile and tip sharpness control. Nanotechnol. 17, 53265333 (2006).Google Scholar
Du, K., Wathuthanthri, I., Mao, W., Xu, W., and Choi, C.H.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnol. 22, 285306 (2011).Google Scholar
Morimoto, T., Sanada, Y., and Tomonaga, H.: Wet chemical functional coatings for automotive glasses and cathode ray tubes. Thin Solid Films 392, 214222 (2001).Google Scholar
Carrino, L., Moroni, G., and Polini, W.: Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Technol. 121, 373382 (2002).Google Scholar
Bobzin, K., Bagcivan, N., Goebbels, N., Yilmaz, K., Hoehn, B.R., Michaelis, K., and Hochmann, M.: Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf. Coat. Technol. 204, 10971101 (2009).Google Scholar
Genzer, J. and Efimenko, K.: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 22, 339360 (2006).Google Scholar
Wang, X., Zhi, L., and Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323327 (2007).Google Scholar
Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18 (1997).Google Scholar
Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 18571860 (2002).Google Scholar
Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 6263 (2004).Google Scholar
Sigal, G.B., Mrksich, M., and Whitesides, G.M.: Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 34643473 (1998).Google Scholar
de Gennes, P.G.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827863 (1985).Google Scholar
de Gennes, P.G., Brochard-Wyart, F., and Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).Google Scholar
Marmur, A.: Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8, 6867 (2012).Google Scholar
Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 6587 (1804).Google Scholar
Dupré, A. and Dupré, P.: Théorie mécanique de la chaleur (Gauthier-Villars, Paris, 1869).Google Scholar
Wenzel, R.N.: Resistance of solid surface to wetting by water. Ind. Eng. Chem. 28, 988994 (1936).Google Scholar
Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551 (1944).Google Scholar
Feng, X.J. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078 (2006).Google Scholar
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., and Jiang, L.: Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24, 41144119 (2008).Google Scholar
Dorrer, C. and Rühe, J.: Some thoughts on superhydrophobic wetting. Soft Matter 5, 51 (2009).Google Scholar
Nosonovsky, M. and Bhushan, B.: Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett. 7, 26332637 (2007).Google Scholar
Cebeci, F.Ç., Wu, Z., Zhai, L., Cohen, R.E., and Rubner, M.F.: Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22, 28562862 (2006).Google Scholar
Dorrer, C. and Ruehe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 38203824 (2007).Google Scholar
Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y., and Thoroddsen, S.T.: Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274277 (2012).Google Scholar
Johnson, R.E. and Dettre, R.H.: Contact Angle, Wettability and Adhesion (Advances in Chemistry Series 43) (American Chemical Society, Washington, DC, 1964).Google Scholar
Oner, D. and McCarthy, T.J.: Ultrahydrophobic surfaces. Effect of topography length scales on wettability. Langmuir 16, 77777782 (2000).Google Scholar
Richard, D. and Quere, D.: Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48, 286291 (1999).Google Scholar
Dhir, V.K.: Nucleate and transition boiling heat transfer under pool and external flow conditions. Int. J. Heat Fluid Flow 12, 290314 (1991).Google Scholar
Takata, Y., Hidaka, S., Cao, J.M., Nakamura, T., Yamamoto, H., Masuda, M., and Ito, T.: Effect of surface wettability on boiling and evaporation. Energy 30, 209220 (2005).Google Scholar
Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T.: Light-induced amphiphilic surfaces. Nature 388, 431432 (1997).Google Scholar
Zisman, W.A.: Contact Angle, Wettability, and Adhesion, Ch. 2, pp. 151 (American Chemical Society, Washington, DC, 1964).Google Scholar
Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J.: How does surface wettability influence nucleate boiling? C. R. Mécanique 337, 251259 (2009).CrossRefGoogle Scholar
Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J.: Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transfer 52, 54595471 (2009).Google Scholar
Liaw, S.P. and Dhir, V.K.: Effect of surface wettability on transition boiling heat transfer from a vertical surface. In Proceedings of 8th International Heat Transfer Conference, Vol. 4, San Francisco, CA, 1986.Google Scholar
Ma, X.H., Rose, J.W., Xu, D.Q., Lin, J.F., and Wang, B.X.: Advances in dropwise condensation heat transfer: Chinese research. Chem. Eng. J. 78, 8793 (2000).Google Scholar
Zhao, Q. and Burnside, B.M.: Dropwise condensation of steam on ion-implanted condenser surfaces. Heat Recovery Syst. CHP 14, 525534 (1994).Google Scholar
Azimi, G., Dhiman, R., Kwon, H-M., Paxson, A.T., and Varanasi, K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315320 (2013).Google Scholar
Vachon, R.I., Nix, G.H., Tanger, G.E., and Cobb, R.O.: Pool boiling heat transfer from Teflon-coated stainless steel. J. Heat Transfer 91, 364369 (1969).Google Scholar
Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., and Nuzzo, R.G.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321335 (1989).Google Scholar
Balss, K.M., Avedisian, C.T., Cavicchi, R.E., and Tarlov, M.J.: Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers. Langmuir 21, 1045910467 (2005).Google Scholar
Bourdon, B., Rioboo, R., Marengo, M., Gosselin, E., and De Coninck, J.: Influence of the wettability on the boiling onset. Langmuir 28, 16181624 (2012).Google Scholar
Thomas, O.C., Cavicchi, R.E., and Tarlov, M.J.: Effect of surface wettability on fast transient microboiling behavior. Langmuir 19, 61686177 (2003).Google Scholar
Blackman, L.C.F., Dewar, M.J.S., and Hampson, H.: An investigation of compounds promoting the dropwise condensation of steam. J. Appl. Chem. 7, 160171 (1957).Google Scholar
Tanner, D.W., Pope, D., Potter, C.J., and West, D.: Heat transfer in dropwise condensation—Part II surface chemistry. Int. J. Heat Mass Transfer 8, 427436 (1965).Google Scholar
Hare, E.F., Shafrin, E.G., and Zisman, W.A.: Properties of films of adsorbed fluorinated acids. J. Phys. Chem. 58, 236239 (1954).Google Scholar
Zhao, Q., Zhang, D.C., Lin, J.F., and Wang, G.M.: Dropwise condensation on L-B film surface. Chem. Eng. Process. 35, 473477 (1996).Google Scholar
Forrest, E., Williamson, E., Buongiorno, J., Hu, L-W., Rubner, M., and Cohen, R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transfer 53, 5867 (2010).Google Scholar
Hsu, C-C. and Chen, P-H.: Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int. J. Heat Mass Transfer 55, 37133719 (2012).Google Scholar
Smith, J.D., Meuler, A.J., Bralower, H.L., Venkatesan, R., Subramanian, S., Cohen, R.E., McKinley, G.H., and Varanasi, K.K.: Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 14, 60136020 (2012).Google Scholar
Paxson, A.T., Yagüe, J.L., Gleason, K.K., and Varanasi, K.K.: Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418423 (2013).Google Scholar
Wen, D.S. and Wang, B.X.: Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int. J. Heat Mass Transfer 45, 17391747 (2002).Google Scholar
Morgenthaler, S., Zink, C., and Spencer, N.D.: Surface-chemical and -morphological gradients. Soft Matter 4, 419434 (2008).Google Scholar
Zhai, L., Berg, M.C., Cebeci, F.C., Kim, Y., Milwid, J.M., Rubner, M.F., and Cohen, R.E.: Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert Beetle. Nano Lett. 6, 12131217 (2006).Google Scholar
Parker, A.R. and Lawrence, C.R.: Water capture by a desert beetle. Nature 414, 3334 (2001).Google Scholar
Chaudhury, M.K. and Whitesides, G.M.: How to make water run uphill. Science 256, 15391541 (1992).Google Scholar
Gaertner, R.F.: Method and means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3301314, 1967.Google Scholar
Lopez, G.P., Biebuyck, H.A., Frisbie, C.D., and Whitesides, G.M.: Imaging of features on surfaces by condensation figures. Science 260, 647649 (1993).Google Scholar
Abbott, N.L., Folkers, J.P., and Whitesides, G.M.: Manipulation of the wettability of surfaces on the 0.1-micrometer to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 13801382 (1992).Google Scholar
Thickett, S.C., Neto, C., and Harris, A.T.: Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 23, 37183722 (2011).CrossRefGoogle ScholarPubMed
Varanasi, K.K., Hsu, M., Bhate, N., Yang, W., and Deng, T.: Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).Google Scholar
Mishchenko, L., Aizenberg, J., and Hatton, B.D.: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 40, 546551 (2013).Google Scholar
Jokinen, V., Sainiemi, L., and Franssila, S.: Complex droplets on chemically modified silicon nanograss. Adv. Mater. 20, 34533456 (2008).Google Scholar
Lee, A., Moon, M-W., Lim, H., Kim, W-D., and Kim, H-Y.: Water harvest via dewing. Langmuir 28, 1018310191 (2012).Google Scholar
Tadanaga, K., Morinaga, J., Matsuda, A., and Minami, T.: Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590592 (2000).CrossRefGoogle Scholar
Branson, E.D., Shah, P.B., Singh, S., and Brinker, C.J.: Preparation of hydrophobic coatings. U.S. Patent No. 7,485,343, 2009.Google Scholar
Garrod, R.P., Harris, L.G., Schofield, W.C.E., McGettrick, J., Ward, L.J., Teare, D.O.H., and Badyal, J.P.S.: Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23, 689693 (2007).Google Scholar
Pastine, S.J., Okawa, D., Kessler, B., Rolandi, M., Llorente, M., Zettl, A., and Frechet, J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 42384239 (2008).Google Scholar
Her, E.K., Ko, T.J., Lee, K.R., Oh, K.H., and Moon, M.W.: Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4, 29002905 (2012).Google Scholar
Kobaku, S.P.R., Kota, A.K., Lee, D.H., Mabry, J.M., and Tuteja, A.: Patterned superomniphobic-superomniphilic surfaces: Templates for site-selective self-assembly. Angew. Chem. Int. Ed. 51, 1010910113 (2012).Google Scholar
Schutzius, T.M., Bayer, I.S., Jursich, G.M., Das, A., and Megaridis, C.M.: Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films. Nanoscale 4, 53785385 (2012).Google Scholar
Ueda, E. and Levkin, P.A.: Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv. Mater. 25, 12341247 (2013).Google Scholar
Sarwar, M.S., Jeong, Y.H., and Chang, S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transfer 50, 36493657 (2007).Google Scholar
Zhou, X. and Bier, K.: Pool boiling heat transfer from a horizontal tube coated with oxide ceramics. Int. J. Refrig. 20, 552560 (1997).Google Scholar
Zimmermann, J., Rabe, M., Artus, G.R.J., and Seeger, S.: Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 4, 450452 (2008).Google Scholar
Jakob, M. and Fritz, W.: Versuche über den Verdampfungsvorgang. Forsch. Ingenieurwes. 2, 435447 (1931).Google Scholar
Corty, C. and Foust, A.S.: Surface variables in nucleate boiling. Chem. Eng. Prog., Symp. Ser. 51, 112 (1955).Google Scholar
Kurihara, H.M. and Myers, J.E.: The effects of superheat and surface roughness on boiling coefficients. AIChE J. 6, 8391 (1960).Google Scholar
Bergles, A.E. and Manglik, R.M.: Current progress and new developments in enhanced heat and mass transfer. J. Enhanced Heat Transfer 20, 115 (2013).Google Scholar
Bankoff, S.G.: Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4(1), 2426 (1958).Google Scholar
Bankoff, S.G.: Ebullition from solid surfaces in the presence of pre-existing gaseous phase. Trans. ASME 79, 735 (1957).Google Scholar
Lorenz, J.J., Mikic, B.B., and Rohsenow, W.M.: The Effects of Surface Conditions on Boiling Characteristics (Issue 79 of Technical Report) (M.I.T. Engineering Projects Laboratory, 1972).Google Scholar
Zhang, B.J., Kim, K.J., and Yoon, H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transfer 55, 74877498 (2012).Google Scholar
Kim, C-J.: Structured surfaces for enhanced nucleate boiling. M.S. Thesis, Iowa State University, 1985.Google Scholar
Clark, H.B., Strenge, P.S., and Westwater, J.: Active sites for nucleate boiling. Chem. Eng. Prog., Symp. Ser. 55, 103110 (1959).Google Scholar
Yang, S.R. and Kim, R.H.: A mathematical model of the nucleation site density in terms of the surface characteristics. Int. J. Heat Mass Transfer 31, 11271135 (1988).Google Scholar
Griffith, P. and Wallis, J.D.: The Role of Surface Conditions in Nucleate Boiling (MIT, Cambridge, MA, 1958).Google Scholar
Shoji, M.: Studies of boiling chaos: A review. Int. J. Heat Mass Transfer 47, 11051128 (2004).Google Scholar
Marto, P.J. and Rohsenow, W.: Effects of surface conditions on nucleate pool boiling of sodium. J. Heat Transfer 88, 196203 (1966).Google Scholar
Milton, R.M.: Heat exchange system. U.S. Patent No. 3384154, 1968.Google Scholar
Milton, R.M.: Heat exchange system. U.S. Patent No. 3523577, 1970.Google Scholar
Milton, R.M.: Heat exchange system with porous boiling layer. U.S. Patent No. 3587730, 1971.Google Scholar
Chien, L.H. and Webb, R.L.: Visualization of pool boiling on enhanced surfaces. Exp. Therm. Fluid Sci. 16, 332341 (1998).Google Scholar
Chien, L-H. and Webb, R.L.: A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer 41, 21832195 (1998).Google Scholar
Ujereh, S., Fisher, T.S., and Mudawar, I.: Effect of carbon nanotube arrays on nucleate pool boiling. Int. J. Heat Mass Transfer 50, 40234038 (2007).Google Scholar
Gaertner, R.F.: Effect of Heater Surface Chemistry on the Level of Burnout Heat Flux in Pool Boiling (General Electric Laboratory, Schenectady, NY, 1963).Google Scholar
Bourdon, B., Di Marco, P., Rioboo, R., Marengo, M., and De Coninck, J.: Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces. Int. Commun. Heat Mass Transfer 45, 1115 (2013).Google Scholar
Takata, Y., Hidaka, S., and Uraguchi, T.: Boiling feature on a super water-repellent surface. Heat Transfer Eng. 27, 2530 (2006).Google Scholar
Lu, M-C., Chen, R., Srinivasan, V., Carey, V.P., and Majumdar, A.: Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int. J. Heat Mass Transfer 54, 53595367 (2011).Google Scholar
Chen, R., Lu, M.C., Srinivasan, V., Wang, Z., Cho, H.H., and Majumdar, A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548553 (2009).Google Scholar
Yao, Z., Lu, Y.W., and Kandlikar, S.G.: Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci. 50, 20842090 (2011).Google Scholar
Yao, Z., Lu, Y-W., and Kandlikar, S.G.: Direct growth of copper nanowires on a substrate for boiling applications. Micro Nano Lett. 6, 563566 (2011).Google Scholar
Dai, X., Huang, X., Yang, F., Li, X., Sightler, J., Yang, Y., and Li, C.: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102, 161605 (2013).Google Scholar
Hendricks, T.J., Krishnan, S., Choi, C., Chang, C-H., and Paul, B.: Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transfer 53, 33573365 (2010).Google Scholar
Li, S., Furberg, R., Toprak, M.S., Palm, B., and Muhammed, M.: Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 22152220 (2008).Google Scholar
Furberg, R., Palm, B., Li, S., Toprak, M., and Muhammed, M.: The use of a nano- and microporous surface layer to enhance boiling in a plate heat exchanger. J. Heat Transfer-Trans. ASME 131, 101010 (2009).Google Scholar
Ahn, H.S., Jo, H.J., Kang, S.H., and Kim, M.H.: Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 98, 071908 (2011).Google Scholar
Shen, J., Graber, C., Liburdy, J., Pence, D., and Narayanan, V.: Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces. Exp. Therm. Fluid Sci. 34, 496503 (2010).Google Scholar
Lee, C.Y., Bhuiya, M.M.H., and Kim, K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transfer 53, 42744279 (2010).Google Scholar
Sathyamurthi, V., Ahn, H.S., Banerjee, D., and Lau, S.C.: Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J. Heat Transfer-Trans. ASME 131, 071501 (2009).Google Scholar
Kim, H.D. and Kim, M.H.: Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl. Phys. Lett. 91, 014104 (2007).Google Scholar
Chang, J.Y. and You, S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transfer 40, 44374447 (1997).Google Scholar
Moreno, G., Narumanchi, S., and King, C.: Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces. J. Heat Transfer 135, 111014 (2013).Google Scholar
Feng, B., Weaver, K., and Peterson, G.P.: Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl. Phys. Lett. 100, 053120 (2012).Google Scholar
Launay, S., Fedorov, A.G., Joshi, Y., Cao, A., and Ajayan, P.M.: Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron. J. 37, 11581164 (2006).Google Scholar
Webb, R.L.: Odyssey of the enhanced boiling surface. ASME Conf. Proc. 2004, 961969 (2004).Google Scholar
Liter, S.G. and Kaviany, M.: Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transfer 44, 42874311 (2001).Google Scholar
Kim, S., Kim, H.D., Kim, H., Ahn, H.S., Jo, H., Kim, J., and Kim, M.H.: Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp. Therm. Fluid Sci. 34, 487495 (2010).Google Scholar
Nam, Y. and Ju, Y.S.: Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles. Appl. Phys. Lett. 93, 103115 (2008).Google Scholar
Suroto, B.J., Tashiro, M., Hirabayashi, S., Hidaka, S., Kohno, M., and Takata, Y.: Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface. J. Therm. Sci. Technol. 8, 294308 (2013).Google Scholar
Wang, X., Song, Y., and Wang, H.: An experimental study of bubble formation on a microwire coated with superhydrophobic micropatterns. Heat Transfer Res. 44, 5970 (2013).Google Scholar
Bergles, A.E. and Morton, H.L.: Survey and Evaluation of Techniques to Augment Convective Heat Transfer (M.I.T. Dept. of Mechanical Engineering, Cambridge, Mass, 1965).Google Scholar
Williams, A.G., Nandapurkar, S.S., and Holland, F.A.: A review of methods for enhancing heat transfer rates in surface condensers. Trans. Inst. Chem. Eng. Chem. Eng. 46, CE367CE373 (1968).Google Scholar
Gregorig, R.: Film condensation on finely rippled surfaces with consideration of surface tension. Z. Angew. Math. Phys. 5, 3649 (1954).Google Scholar
Bansal, G.D., Khandekar, S., and Muralidhar, K.: Measurement of heat transfer during drop-wise condensation of water on polyethylene. Nanoscale Microscale Thermophys. Eng. 13, 184201 (2009).Google Scholar
Enright, R., Miljkovic, N., Alvarado, J.L., Kim, K., and Rose, J.W.: Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys. Eng. 18(3), (2014).Google Scholar
Miljkovic, N., Enright, R., and Wang, E.N.: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 17761785 (2012).Google Scholar
Boreyko, J.B. and Collier, C.P.: Dewetting transitions on superhydrophobic surfaces: When are Wenzel drops reversible? J. Phys. Chem. C 117(35), 1808418090 (2013).Google Scholar
Haraguchi, T., Shimada, R., Kumagai, S., and Takeyama, T.: The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation. Int. J. Heat Mass Transfer 34, 30473054 (1991).Google Scholar
Marto, P.J., Looney, D.J., Rose, J.W., and Wanniarachchi, A.S.: Evaluation of organic coatings for the promotion of dropwise condensation of steam. Int. J. Heat Mass Transfer 29, 11091117 (1986).Google Scholar
Vemuri, S. and Kim, K.J.: An experimental and theoretical study on the concept of dropwise condensation. Int. J. Heat Mass Transfer 49, 649657 (2006).Google Scholar
Vemuri, S., Kim, K.J., Wood, B.D., Govindaraju, S., and Bell, T.W.: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl. Therm. Eng. 26, 421429 (2006).Google Scholar
Pang, G.X., Dale, J.D., and Kwok, D.Y.: An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry. Int. J. Heat Mass Transfer 48, 307316 (2005).Google Scholar
Yang, Q. and Gu, A.: Dropwise condensation on SAM and electroless composite coating surfaces. J. Chem. Eng. Jpn. 39, 826830 (2006).Google Scholar
Yin, L., Wang, Y., Ding, J., Wang, Q., and Chen, Q.: Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258, 40634068 (2012).Google Scholar
Sikarwar, B.S., Battoo, N.K., Khandekar, S., and Muralidhar, K.: Dropwise condensation underneath chemically textured surfaces: Simulation and experiments. Journal of Heat Transfer-Trans. ASME 133, 021501 (2011).Google Scholar
Izumi, M., Kumagai, S., Shimada, R., and Yamakawa, N.: Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves. Exp. Therm. Fluid Sci. 28, 243248 (2004).Google Scholar
Narhe, R.D. and Beysens, D.A.: Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98104 (2006).Google Scholar
Jung, Y.C. and Bhushan, B.: Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127140 (2008).Google Scholar
Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C.V., and Wang, E.N.: Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 1442414432 (2012).Google Scholar
Rykaczewski, K., Osborn, W.A., Chinn, J., Walker, M.L., Scott, J.H.J., Jones, W., Hao, C.L., Yao, S.H., and Wang, Z.K.: How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 87868794 (2012).Google Scholar
Wier, K.A. and McCarthy, T.J.: Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 22, 24332436 (2006).Google Scholar
Lafuma, A. and Quere, D.: Superhydrophobic states. Nat. Mater. 2, 457460 (2003).Google Scholar
Narhe, R.D. and Beysens, D.A.: Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).Google Scholar
Narhe, R.D. and Beysens, D.A.: Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 64866489 (2007).Google Scholar
Cheng, Y.T., Rodak, D.E., Angelopoulos, A., and Gacek, T.: Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005).Google Scholar
Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 17011705 (2003).Google Scholar
Journet, C., Moulinet, S., Ybert, C., Purcell, S.T., and Bocquet, L.: Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys. Lett. 71, 104109 (2005).Google Scholar
Ma, X.H., Wang, S.F., Lan, Z., Peng, B.L., Ma, H.B., and Cheng, P.: Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J. Heat Transfer-Trans. ASME 134, 021501 (2012).Google Scholar
Lee, S., Cheng, K., Palmre, V., Bhuiya, M.H., Kim, K.J., Zhang, B.J., and Yoon, H.: Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface. Int. J. Heat Mass Transfer 65, 619626 (2013).Google Scholar
Tsuruta, T., Tanaka, H., and Togashi, S.: Experimental verification of constriction resistance theory in dropwise condensation heat transfer. Int. J. Heat Mass Transfer 34, 27872796 (1991).Google Scholar
Tsuruta, T. and Tanaka, H.: A theoretical study on the constriction resistance in dropwise condensation. Int. J. Heat Mass Transfer 34, 27792786 (1991).Google Scholar
Rykaczewski, K.: Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28, 77207729 (2012).Google Scholar
Miljkovic, N., Enright, R., Maroo, S.C., Cho, H.J., and Wang, E.N.: Liquid evaporation on superhydrophobic and superhydrophilic nanostructured surfaces. J. Heat Transfer-Trans. ASME 133, 080903 (2011).Google Scholar
Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., and Wang, E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179187 (2013).Google Scholar
Chen, X., Wu, J., Ma, R., Hua, M., Koratkar, N., Yao, S., and Wang, Z.: Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 46174623 (2011).Google Scholar
Cheng, J., Vandadi, A., and Chen, C-L.: Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).Google Scholar
Liu, T., Sun, W., Sun, X., and Ai, H.: Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Langmuir 26, 1483514841 (2010).Google Scholar
Liu, T.Q., Sun, W., Sun, X.Y., and Ai, H.R.: Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf., A 414, 366374 (2012).Google Scholar
Rykaczewski, K., Paxson, A.T., Anand, S., Chen, X.M., Wang, Z.K., and Varanasit, K.K.: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881891 (2013).Google Scholar
Kumar, A. and Whitesides, G.M.: Patterned condensation figures as optical diffraction gratings. Science 263, 6062 (1994).Google Scholar
Daniel, S., Chaudhury, M.K., and Chen, J.C.: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633636 (2001).Google Scholar
Derby, M.M., Chatterjee, A., Peles, A., and Jensen, M.K.: Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. Int. J. Heat Mass Transfer 68, 151160 (2014).Google Scholar
Xiao, R., Miljkovic, N., Enright, R., and Wang, E.: Immersion condensation on oil-infused heterogeneous surface for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).Google Scholar
Yao, C.W., Garvin, T.P., Alvarado, J.L., Jacobi, A.M., Jones, B.G., and Marsh, C.P.: Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties. Appl. Phys. Lett. 101, 111605 (2012).Google Scholar
Croutch, V.K. and Hartley, R.A.: Adhesion of ice to coatings and the performance of ice release coatings. J. Coat. Technol. 64, 4153 (1992).Google Scholar
Somlo, B. and Gupta, V.: A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech. Mater. 33, 471480 (2001).Google Scholar
Li, K., Xu, S., Shi, W., He, M., Li, H., Li, S., Zhou, X., Wang, J., and Song, Y.: Investigating the effects of solid surfaces on ice nucleation. Langmuir 28, 1074910754 (2012).Google Scholar
Saito, H., Takai, K., and Yamauchi, G.: Water- and ice-repellent coatings. JOCCA-Surf. Coat. Int. 80, 168171 (1997).Google Scholar
Charpentier, T.V., Neville, A., Millner, P., Hewson, R.W., and Morina, A.: Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. J. Colloid Interface Sci. 394, 539544 (2013).Google Scholar
Arianpour, F., Farzaneh, M., and Kulinich, S.A.: Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 265, 546552 (2013).Google Scholar
Boreyko, J.B. and Collier, C.P.: Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 16181627 (2013).Google Scholar
Zhang, Q., He, M., Chen, J., Wang, J., Song, Y., and Jiang, L.: Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 45164518 (2013).Google Scholar
He, M., Wang, J., Li, H., and Song, Y.: Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7, 3993 (2011).Google Scholar
Zhang, Q., He, M., Zeng, X., Li, K., Cui, D., Chen, J., Wang, J., Song, Y., and Jiang, L.: Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8, 8285 (2012).Google Scholar
Yin, L., Xia, Q., Xue, J., Yang, S., Wang, Q., and Chen, Q.: In situ investigation of ice formation on surfaces with representative wettability. Appl. Surf. Sci. 256, 67646769 (2010).Google Scholar
Guo, P., Zheng, Y., Wen, M., Song, C., Lin, Y., and Jiang, L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 26422648 (2012).Google Scholar
Boinovich, L.B., Zhevnenko, S.N., Emel’yanenko, A.M., Gol’dshtein, R.V., and Epifanov, V.P.: Adhesive strength of the contact of ice with a superhydrophobic coating. Dokl. Chem. 448, 7175 (2013).Google Scholar
Jafari, R., Menini, R., and Farzaneh, M.: Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl. Surf. Sci. 257, 15401543 (2010).Google Scholar
Kulinich, S.A. and Farzaneh, M.: Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255, 81538157 (2009).Google Scholar
Menini, R. and Farzaneh, M.: Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces. Surf. Coat. Technol. 203, 19411946 (2009).Google Scholar
Sarkar, D.K. and Farzaneh, M.: Superhydrophobic coatings with reduced ice adhesion. J. Adhes. Sci. Technol. 23, 12151237 (2009).Google Scholar
Saleema, N., Farzaneh, M., Paynter, R.W., and Sarkar, D.K.: Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties. J. Adhes. Sci. Technol. 25, 2740 (2011).Google Scholar
Kulinich, S.A. and Farzaneh, M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 88548856 (2009).Google Scholar
Nosonovsky, M. and Hejazi, V.: Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 84888491 (2012).Google Scholar
Meuler, A.J., Smith, J.D., Varanasi, K.K., Mabry, J.M., McKinley, G.H., and Cohen, R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 31003110 (2010).Google Scholar
Kulinich, S.A., Farhadi, S., Nose, K., and Du, X.W.: Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27, 2529 (2011).Google Scholar
Yang, S., Xia, Q., Zhu, L., Xue, J., Wang, Q., and Chen, Q-M.: Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 257, 49564962 (2011).Google Scholar
Shirtcliffe, N.J., McHale, G., and Newton, M.I.: The superhydrophobicity of polymer surfaces: Recent developments. J. Polym. Sci. Part B: Polym. Phys. 49, 12031217 (2011).Google Scholar
Peng, C., Xing, S., Yuan, Z., Xiao, J., Wang, C., and Zeng, J.: Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 259, 764768 (2012).Google Scholar
Jing, T., Kim, Y., Lee, S., Kim, D., Kim, J., and Hwang, W.: Frosting and defrosting on rigid superhydrophobic surface. Appl. Surf. Sci. 276, 3742 (2013).Google Scholar
Meuler, A.J., McKinley, G.H., and Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 70487052 (2010).Google Scholar
Wang, F., Li, C., Lv, Y., Lv, F., and Du, Y.: Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg. Sci. Technol. 62, 2933 (2010).Google Scholar
Bahadur, V., Mishchenko, L., Hatton, B., Taylor, J.A., Aizenberg, J., and Krupenkin, T.: Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 1414314150 (2011).Google Scholar
Sarshar, M.A., Swarctz, C., Hunter, S., Simpson, J., and Choi, C-H.: Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym. Sci. 291, 427435 (2012).Google Scholar
Alizadeh, A., Yamada, M., Li, R., Shang, W., Otta, S., Zhong, S., Ge, L., Dhinojwala, A., Conway, K.R., Bahadur, V., Vinciquerra, A.J., Stephens, B., and Blohm, M.L.: Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 31803186 (2012).Google Scholar
Antonini, C., Innocenti, M., Horn, T., Marengo, M., and Amirfazli, A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 5867 (2011).Google Scholar
Xiao, J. and Chaudhuri, S.: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes. Langmuir 28, 44344446 (2012).Google Scholar
Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H.L., and Toumi, R.: Ice nucleation on soot particles. J. Aerosol Sci. 32, 199215 (2001).Google Scholar
Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P., and Poulikakos, D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172182 (2014).Google Scholar
Bird, J.C., Dhiman, R., Kwon, H.M., and Varanasi, K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385388 (2013).Google Scholar
Zhang, Y., Yu, X., Wu, H., and Wu, J.: Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Appl. Surf. Sci. 258, 82538257 (2012).Google Scholar
Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., and Aizenberg, J.: Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581585 (2013).Google Scholar
Rykaczewski, K., Anand, S., Subramanyam, S.B., and Varanasi, K.K.: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 52305238 (2013).Google Scholar
Lee, H., Alcaraz, M.L., Rubner, M.F., and Cohen, R.E.: Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 7, 21722185 (2013).Google Scholar
Annual Energy Review 2011, U.S. Energy Information Administration, 2012.Google Scholar
Linnhoff, B.: A User Guide on Process Integration for the Efficient Use of Energy (Institution of Chemical Engineers, Great Britain, 1994).Google Scholar
Marlino, L.D.: Technology and Cost of the MY2007 Toyota Camry HEV - Final Report Oak Ridge National Laboratory, 2007.Google Scholar
Moreno, G.: Section 5.7 Two-phase cooling technology for power electronics with novel coolants. In Advanced Power Electronics and Electric Motors Annual Progress Report, FY 2011, U.S. Department of Energy Office of Vehicle Technologies, 2012.Google Scholar
Thevenin, R., Wu, Z., Keller, P., Cohen, R., Clanet, C., and Quere, D.: New Thermal-Sensitive Superhydrophobic Material (Pittsburgh, PA, 2013).Google Scholar
Yi, P., Khoshmanesh, K., Chrimes, A.F., Campbell, J.L., Ghorbani, K., Nahavandi, S., Rosengarten, G., and Kalantar-zadeh, K.: Dynamic nanofin heat sinks. Adv. Energy Mater. 4, n/a-n/a (2014).Google Scholar
Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R., and Zaleski, S.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Mécanique 339, 194207 (2011).Google Scholar
Raj, R., Kunkelmann, C., Stephan, P., Plawsky, J., and Kim, J.: Contact line behavior for a highly wetting fluid under superheated conditions. Int. J. Heat Mass Transfer 55, 26642675 (2012).Google Scholar
Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457487 (2005).Google Scholar
Kim, J.: Review of nucleate pool boiling bubble heat transfer mechanisms. Int. J. Multiphase Flow 35, 10671076 (2009).Google Scholar
Law, K-Y.: Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett. 5, 686688 (2014).Google Scholar
Rykaczewski, K., Paxson, A.T., Staymates, M., Walker, M.L., Sun, X., Anand, S., Srinivasan, S., McKinley, G.H., Chinn, J., Scott, J.H.J., and Varanasi, K.K.: Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (4151–4158) (2014).Google Scholar
Farhadi, S., Farzaneh, M., and Kulinich, S.A.: Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 62646269 (2011).Google Scholar
Wang, Y., Xue, J., Wang, Q., Chen, Q., and Ding, J.: Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5, 33703381 (2013).Google Scholar
Zhang, X., Kono, H., Liu, Z., Nishimoto, S., Tryk, D.A., Murakami, T., Sakai, H., Abe, M., and Fujishima, A.: A transparent and photo-patternable superhydrophobic film. Chem. Commun. 46, 49494951 (2007).Google Scholar
Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 1054810557 (2000).Google Scholar
Bott, T.R.: Fouling of Heat Exchangers (Elsevier, New York, 1995).Google Scholar
Humplik, T., Lee, J., O'Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., and Wang, E.N.: Nanostructured materials for water desalination. Nanotechnol. 22, 292001 (2011).Google Scholar
Choi, C-H. and Kim, C-J.: Green Tribology – Biomimetics, Energy Conservation, and Sustainability, Nosonovsky, M. and Bhushan, B. eds.; Springer: Heidelberg, Germany, 2012; pp. 79104.Google Scholar
Heo, S.Y., Koh, J.K., Kang, G., Ahn, S.H., Chi, W.S., Kim, K., and Kim, J.H.: Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects. Adv. Energy Mater. 4, n/a-n/a (2014).Google Scholar
Thome, J.R.: Enhanced Boiling Heat Transfer (Hemisphere Publishing Corporation, New York, 1989).Google Scholar
Thome, J.R.: Enhanced boiling of mixtures. Chem. Eng. Sci. 42, 19091917 (1987).Google Scholar
Scardino, A.J. and de Nys, R.: Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling 27, 7386 (2011).Google Scholar