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The pseudo-incompressible approximation, which assumes small pressure perturbations
from a one-dimensional reference state, has long been used to model large-scale dynamics
in stellar and planetary atmospheres. However, existing implementations do not conserve
energy when the reference state is time-dependent. We use a variational formulation to
derive an energy-conserving pseudo-incompressible model in which the reference state
evolves while remaining hydrostatic. We present an algorithm for solving these equations
in the case of closed boundaries, for which the pseudo-incompressible velocity constraint
is degenerate. We implement the model within the low-Mach-number code MAESTROeX,
and validate it against a fully compressible model in several test cases, finding that our
hybrid pseudo-incompressible–hydrostatic model generally shows better agreement with
the compressible results than the existing MAESTROeX implementation.
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1. Introduction

In a wide variety of fluid dynamical systems sound waves play no significant role on the
time and length scales of interest. Yet their presence generally requires them to be resolved
in numerical calculations in order to maintain numerical stability. For explicit numerical
schemes, the time step �t cannot exceed �x/ max{c, u}, where �x is the smallest scale
resolved in the simulation, c is the sound speed and u is the magnitude of the fluid velocity.
For flows of very low Mach number, i.e. flows with u � c, this imposes an impracticable
limit on the numerical time step. So-called ‘sound-proof’ models explicitly remove sound
waves from the equations that are solved, so that the time step is no longer constrained by
the sound speed. In practical applications this may result in a reduction in computational
time by several orders of magnitude. Various sound-proof models have been derived for
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different applications, each of which requires particular physical assumptions and has its
own domain of validity.

A completely different approach is to solve the fully compressible equations using
an implicit (or semi-implicit) numerical scheme, which avoids the need for very small
computational time steps (e.g. Viallet et al. 2016). However, such methods do not remove
sound waves from the dynamics; rather they introduce numerical dissipation that prevents
sound waves from growing to significant amplitudes. To minimise the effect of this
numerical dissipation on the results, such models use preconditioning techniques that are
tailored to the particular problem of interest (Goffrey et al. 2017).

Of the various sound-proof approximations, the pseudo-incompressible approximation
has the advantage that it can be derived under a single assumption: that the (Eulerian)
pressure perturbations are small (Durran 1989, 2008; Vasil et al. 2013). In particular,
Vasil et al. (2013) have shown that the pseudo-incompressible equations can be obtained
by applying Hamilton’s principle to a suitable action, which is obtained simply by
linearising the pressure variable about a given ‘background’ field, P0. Although the
resulting equations describe only ideal (i.e. adiabatic) dynamics, they can be extended to
include non-ideal processes by invoking ‘thermodynamic consistency’ (Klein & Pauluis
2012), or by using an extended variational principle (Gay-Balmaz 2019). The main
advantage of using a variational formalism is that it guarantees (via Noether’s theorem)
that the equations obey conservation laws that are directly analogous to those of the
unapproximated system.

In the simplest implementation of the pseudo-incompressible approximation, the
background pressure, P0, is a fixed function of altitude. However, the resulting equations
have two shortcomings:

(i) they become inaccurate on large horizontal scales (for which pressure perturbations
are significant e.g. Davies et al. 2003); and

(ii) they imply a constraint on the velocity field that cannot generally be maintained in
the presence of heat sources, at least for certain choices of the boundary conditions
(e.g. Rehm & Baum 1978; Lecoanet et al. 2014).

For these reasons, and for the sake of greater generality, it is desirable to allow
the background pressure field to evolve in time, whilst maintaining hydrostatic balance
(Almgren 2000; Almgren et al. 2008; O’Neill & Klein 2014). We refer to this as the hybrid
pseudo-incompressible–hydrostatic model. However, by allowing the background pressure
to evolve we violate one of the assumptions under which the variational derivations were
performed, and as a result the hybrid model generally does not maintain exact energy
conservation.

The purpose of this paper is to resolve this problem by generalising the method
of Vasil et al. (2013) to allow the background pressure P0 to vary in time, subject
to the constraint that the horizontally averaged dynamics is hydrostatic. To enforce
this additional constraint, we introduce an additional Lagrange multiplier into the fluid
action, which results in an additional force in the momentum equation. (Such a force is
expected whenever an additional constraint is imposed, though this point does not always
seem to have been recognised in the literature.) As a proof of concept we present an
implementation of our hybrid equations using the MAESTROeX code (Fan et al. 2019a).

We note that an alternative hybrid model can be obtained by generalising the
hydrostatic approximation (Miller & Pearce 1974; White 1989; Arakawa & Konor
2009), and a variational formalism has already been used to obtain ‘quasi-hydrostatic’
and ‘semi-hydrostatic’ approximations (Salmon & Smith 1994; Dubos & Voitus 2014).
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Such approximations are well suited to many meteorological applications, in which the
dynamics occurs on large horizontal scales (measured relative to a typical vertical scale
height). However, the pseudo-incompressible approximation is generally more accurate
for modelling dynamics on small horizontal length scales, such as atmospheric convection
and other buoyancy processes, which form the motivation for the present work.

2. The constrained fluid action

2.1. The fully compressible fluid
To obtain the equations of motion using Hamilton’s principle, we first need to identify
the appropriate action for the dynamical system in question. For a fluid, the most
natural representation of the action is in terms of Lagrangian coordinates (Salmon 1988).
However, in applications it is far more convenient to express the equations in Eulerian
form, and so in what follows we take the standard ‘hybrid Lagrangian–Eulerian’ approach
(Bretherton 1970). The action is expressed in Eulerian form as the space–time integral

S =
∫∫

L d3x dt, (2.1)

where L is the Lagrangian density, the most concise form of which for a fully compressible
fluid is

L = 1
2ρ|u|2 − ρΦ − ρU(ρ, s). (2.2)

Here, ρ is the fluid density, u is the velocity, Φ is the gravitational potential and U is the
specific internal energy, which is naturally a function of the density and specific entropy,
s. We make the Cowling approximation by assuming that Φ is a given function of space
only, although the method can be generalised to include self-gravity if required. We now
calculate the first variation of the action with respect to the fields ρ, s and u:

δS =
∫∫ [(

1
2
|u|2 − Φ − U − ρ

∂U
∂ρ

)
δρ + ρu · δu − ρ

∂U
∂s

δs
]

d3x dt. (2.3)

The variations δS, δρ and δu are not independent, since they all result from the same
variation in the fluid element trajectories. We can express each of them in terms of the
Lagrangian displacement, ξ , as follows (Newcomb 1962):

δρ = −∇ · (ρξ), δs = −ξ · ∇s, δu = ∂ξ

∂t
+ u · ∇ξ − ξ · ∇u. (2.4a–c)

From these expressions, and integrating by parts, we can write the first variation of the
action as

δS = −
∫∫

ρξ ·
(

Du
Dt

+ ∇Φ + 1
ρ

∇P
)

d3x dt, (2.5)

where
D
Dt

≡ ∂

∂t
+ u · ∇ (2.6)

represents the usual Lagrangian derivative and P is the fluid pressure:

P = PEoS(ρ, s) ≡ ρ2
(

∂U
∂ρ

)
s
. (2.7)

We use the subscript ‘EoS’ to indicate a quantity that can be expressed explicitly as a
function of ρ and s via an equation of state.
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Hamilton’s principle states that δS must vanish for all possible choices of ξ , and hence
we obtain the usual Euler equation:

Du
Dt

= −∇Φ − 1
ρ

∇P. (2.8)

Moreover, the forms assumed for δρ and δs in (2.4a–c) guarantee the conservation of mass
and entropy, so we also have

∂ρ

∂t
= −∇ · (ρu) and

Ds
Dt

= 0. (2.9a,b)

Since the action contains no explicit time dependence, it follows from Noether’s theorem
that the system conserves a total energy, whose density, E say, we can deduce easily from
the action:

E = 1
2ρ|u|2 + ρΦ + ρU. (2.10)

We note that the correct definition of the fluid pressure, given by (2.7), follows directly
from the derivation. By contrast, since the dynamics arising from Hamilton’s principle
is necessarily adiabatic, we have not needed to define the fluid temperature. However,
the correct definition can be deduced by requiring that the laws of thermodynamics are
obeyed. Specifically, in the presence of a volumetric heat source, Q, we expect the fluid
entropy to obey a prognostic equation of the form

Ds
Dt

= Q
ρT

, (2.11)

and the temperature, T , must be defined such that the energy, E, remains a conserved
quantity; Klein & Pauluis (2012) refer to this as the principle of ‘thermodynamic
consistency’. In the case of a fully compressible fluid this leads, of course, to the usual
definition:

T = TEoS(ρ, s) ≡
(

∂U
∂s

)
ρ

. (2.12)

2.2. The pseudo-incompressible fluid
As shown by Vasil et al. (2013), the pseudo-incompressible approximation can be obtained
in a general form simply by supplementing the Lagrangian density L with an additional
term

− λ(PEoS − P0). (2.13)

Here, PEoS(ρ, s) is defined as previously, P0(x) is a prescribed background pressure and
λ(x, t) is a Lagrange multiplier. When Hamilton’s principle is applied, λ is regarded as
an additional, independent variable, and therefore serves to enforce the constraint PEoS =
P0. This constraint implies that the density, and hence the volume, of each fluid element
depends entirely on its entropy and its Eulerian position, without any reference to pressure
perturbations. In this way, acoustic waves are removed from the system (Durran 2008).

As discussed in the Introduction, the ‘generalised pseudo-incompressible’ equations
obtained by Vasil et al. (2013) can be extended to include diabatic processes by invoking
thermodynamic consistency. However, if the background pressure P0 is still regarded as
a fixed function of space only, then the resulting equations become ill-posed for certain
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boundary conditions. To see why, we take the Lagrangian derivative of the constraint
equation PEoS(ρ, s) = P0(x), which tells us that

∂PEoS

∂ρ

Dρ

Dt
+ ∂PEoS

∂s
Ds
Dt

= u · ∇P0. (2.14)

Using mass conservation and the diabatic heating equation (2.11), this becomes

ρc2∇ · u + u · ∇P0 = ∂2U
∂s∂ρ

ρQ
T

, (2.15)

where c2(ρ, s) ≡ ∂PEoS/∂ρ is the square of the sound speed. If, for example, Q represents
an external injection of heat into the fluid, then we expect the right-hand side of this
equation to be positive. This implies that the left-hand side must also be positive, and
hence the fluid must expand. But if we impose impenetrable boundary conditions over the
entire surface of the fluid, then expansion in any region of the fluid must be balanced by
contraction elsewhere, which is not compatible with (2.15). The obvious solution to this
problem is to allow the pressure P0 to change in response to heating, and as described
in the Introduction this has long been recognised in numerical implementations of the
pseudo-incompressible approximation. A further advantage of allowing the background
state to evolve is that it is more self-consistent, and leads to a more ‘universal’ model that
is free from any imposed background profiles. But if P0 is allowed to vary in time then
there is no longer any reason to expect the model to conserve energy.

2.3. The hybrid pseudo-incompressible–hydrostatic model
Our goal is to generalise the derivation of Vasil et al. (2013) to allow the background
pressure to evolve, but subject to the condition that it remains horizontally invariant, and
hydrostatic. At the level of the action, we can enforce this as a constraint by supplementing
the Lagrangian density with a term

μ

(
∂

∂z
PEoS − gρ

)
, (2.16)

where for simplicity we have assumed a plane-parallel atmosphere, with uniform
gravitational acceleration g = −∇Φ = gez. (We use the convention that g is negative.)
A similar constraint has previously been used to derive a ‘semi-hydrostatic’ model (Dubos
& Voitus 2014), but the difference here is that we only wish to impose this constraint
on the horizontally averaged fields. We therefore take the Lagrange multiplier μ to be
horizontally invariant, i.e. μ(z, t), so that the constraint it enforces is

∂

∂z
PEoS = gρ̄, (2.17)

where an overbar represents a horizontal average. Since we still want to make
the pseudo-incompressible approximation, we simultaneously enforce the constraint
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PEoS = PEoS. Thus, our pseudo-incompressible–hydrostatic action has the form

S =
∫∫ [

1
2
ρ|u|2 + gzρ − ρU − (λ− λ̄)PEoS + μ

(
∂

∂z
PEoS − gρ

)]
d3x dt, (2.18)

where we have used the fact that∫
λPEoS d3x =

∫
λ̄PEoS d3x (2.19)

to remove any explicit reference to PEoS from the action. We note that the action (2.18) only
depends on the non-horizontally averaged part of λ, that is (λ− λ̄), and so λ̄ is essentially
arbitrary; we will take advantage of this fact shortly.

It is now straightforward to obtain the equations of motion via Hamilton’s principle,
which leads to the following momentum equation:

ρ

(
Du
Dt

+ 1
ρ

∇PEoS − g∇(z − μ)

)
=

(
λ− λ̄+ ∂μ

∂z

)
∇PEoS − ∇

[(
λ− λ̄+ ∂μ

∂z

)
ρc2

]
.

(2.20)
Given that the horizontal average of λ is essentially arbitrary, we can simplify this result
by declaring that λ̄ = ∂μ/∂z. Our complete set of equations is then

ρ
Du
Dt

= (1 − λ̄)ρg − (1 − λ)∇P − ∇(λρc2), (2.21)

∂ρ

∂t
= −∇ · (ρu), (2.22)

Ds
Dt

= 0, (2.23)

∇P = ρ̄g, (2.24)

where, for brevity, we use the symbol P to refer to both PEoS and its horizontal average,
which are equal by construction. From this point onwards, it is more convenient to regard
P(z, t) as an independent variable, alongside ρ(x, t), rather than as a function of ρ and s.
We will therefore henceforth regard the quantities s and c as functions of P and ρ, and for
later convenience we introduce the quantity

sP ≡
(

∂s
∂P

)
ρ

. (2.25)

We note that our momentum equation (2.21) differs from that of Vasil et al. (2013) and
Klein & Pauluis (2012) only in the presence of λ̄, which serves to modify the effective
gravitational field. As in the model of Dubos & Voitus (2014), it is possible to interpret μ

(and hence λ̄) as a correction to the geopotential height.
As mentioned earlier, a major advantage of having made all of our approximations at

the level of the action is that the model is guaranteed to admit conservation laws similar
to those of the exact system, provided that our approximations do not violate the relevant
mathematical symmetries. In particular, the additional constraint terms in (2.18) do not
explicitly depend on either position or time, and so our hybrid model is guaranteed to
conserve momentum and energy in some form. Another conserved quantity, which is of
central importance in meteorology, is the potential vorticity, which owes its existence
to the indistinguishability of fluid particles lying within surfaces of constant entropy
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(Salmon 1982). In terms of our Lagrangian–Eulerian description, it can be shown that
potential vorticity is a materially conserved quantity provided that the first variation of the
action depends on ξ only through δρ, δs and δu (Vasil et al. 2013). This result can also
be derived directly from our momentum equation (2.21), whose curl yields the vorticity
equation

∂ω

∂t
− ∇ × (u × ω) = ∇

(
TEoS + λ

ρ sP

)
× ∇s, (2.26)

where ω ≡ ∇ × u is the vorticity. Because the right-hand side here is perpendicular to
∇s, it follows that the circulation around any isentropic material curve remains constant in
time, and hence that the quantity

q ≡ ω · ∇s
ρ

(2.27)

is materially conserved.

2.4. Thermodynamic consistency
As just mentioned, (2.21)–(2.24) are guaranteed to conserve energy in some form. In
fact, since the action (2.18) only differs from the fully compressible action by constraint
terms, the conserved energy must have exactly the form given by (2.10). Indeed, using
(2.21)–(2.24) it can be shown that

∂E
∂t

+ ∇ ·
[
(E + P + λρc2 + ρgμ)u + ∂P

∂t
μez

]
= −gμ

∂

∂t
(ρ − ρ̄) − (λ− λ̄)∂P

∂t
.

(2.28)
This result demonstrates that E is no longer a locally conserved quantity in our hybrid
approximation, i.e. it does not satisfy a local conservation law, unless the right-hand
side happens to be zero. However, the right-hand side has zero horizontal average, and
so the horizontally averaged energy, Ē, is still a conserved quantity, i.e. it does satisfy a
local conservation law. In other words, imposing hydrostatic balance causes energy to be
instantaneously redistributed within each horizontal surface, but energy is still conserved
locally in the vertical direction, and hence also globally.

We emphasise that in order to obtain this result, we needed to use the
momentum equation (2.21), which includes an additional force not present in previous
pseudo-incompressible models (e.g. Durran 1989; Almgren et al. 2008; Klein & Pauluis
2012; Vasil et al. 2013; O’Neill & Klein 2014; Fan et al. 2019a). The presence of this force
follows directly from Hamilton’s principle.

Another important feature of (2.28) is that it contains additional energy flux terms
compared with the fully compressible energy equation. The first of these, λρc2, was
already present in previous pseudo-incompressible models, where it was identified as a
pressure perturbation and often denoted as p′ or π. The other terms involve our new
Lagrange multiplier μ and therefore have not previously arisen. Their contribution to
the total energy budget can be made to vanish by imposing either that μ = 0 or that
∂P/∂t = −gρuz on the upper and lower boundaries. As we show in § 3, the latter is
appropriate if the domain has open boundaries, whereas the former is required for a closed
domain.

We now invoke thermodynamic consistency to identify the appropriate definition of the
temperature in our hybrid model. If we replace the adiabatic heat equation (2.23) with
its diabatic counterpart (2.11), we find that the energy equation (2.28) now acquires an
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additional source term on its right-hand side,
[

TEoS + λ

ρ sP

]
Q
T

, (2.29)

but is otherwise unchanged. To preserve the first law of thermodynamics, we must
therefore define the temperature to be

T ≡ TEoS + λ

ρ sP
. (2.30)

The same result was obtained by Klein & Pauluis (2012) and Gay-Balmaz (2019).
We emphasise that, since this formula for T depends on the quantity λ, the ‘correct’
temperature cannot generally be obtained from the usual equation of state.

2.5. The velocity constraint and solvability
In summary, our diabatic equations are

ρ
Du
Dt

= (1 − λ̄)ρg − (1 − λ)∇P − ∇(λρc2), (2.31)

∂ρ

∂t
= −∇ · (ρu), (2.32)

Ds
Dt

= Q
ρT

, (2.33)

∇P = ρ̄g, (2.34)

T = TEoS + λ

ρ sP
. (2.35)

Although the set of (2.31)–(2.35) is complete, for the sake of obtaining solutions it is
convenient to rearrange them a little. First, the heat equation (2.33) can be expressed as an
evolution equation for P:

∂P
∂t

+ u · ∇P = −ρc2∇ · u + Q
ρT sP

. (2.36)

However, only the horizontally averaged part of this equation is required to evolve P, and
the rest serves as a constraint on the velocity. An alternative equation for ∂P/∂t can be
obtained by taking the Eulerian time derivative of the hydrostatic constraint (2.34). Using
the continuity equation (2.32), and assuming periodic or impenetrable side boundaries and
an impenetrable lower boundary, we find that

∂

∂z
∂P
∂t

= −g
∂

∂z
ρuz

⇒ ∂P
∂t

= −gρuz + Ṗb, (2.37)

where Ṗb(t) is the rate of change of the pressure on the lower boundary. This function will
depend on the choice of boundary condition at the upper boundary. For example, in the
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case where the upper boundary is impenetrable it is convenient to eliminate ∂P/∂t between
(2.36) and (2.37), leading to a constraint equation for the velocity field:

g
ρc2 (ρ̄uz − ρuz) + ∇ · u = S − Ṗb

ρc2 , (2.38)

where we have defined

S ≡ 1
ρ2c2 sP

Q
T

(2.39)

to match the notation used in the low-Mach-number literature (Fan et al. 2019a). If we
neglect the Ṗb term here then in general this equation has no solutions that meet the
impenetrable boundary conditions; this is just an example of the problem mentioned in
§ 2.2, and indicates that the velocity constraint is degenerate for this choice of boundary
conditions. The correct value for Ṗb must therefore be obtained as a solvability condition
for (2.38). For example, if the horizontal average of the first term in (2.38) can be
neglected, then taking the volume average of this equation we deduce that

Ṗb �
∫

V S d3x∫
V 1/(ρc2) d3x

(2.40)

(O’Neill & Klein 2014). An alternative scenario, more relevant to atmospheric
applications, is that of a semi-infinite atmosphere with an impenetrable lower boundary.
Since the total mass of the semi-infinite atmosphere remains constant, and is assumed
to remain in hydrostatic balance, it is arguable that the pressure on the lower boundary
should remain approximately constant, i.e. that Ṗb � 0 (Almgren 2000). This assumption
is implicit in the MAESTROeX model, which neglects the function Ṗb (Almgren et al.
2008), although in practice the equations are solved in a finite computational domain,
and the upper boundary is taken either to be impenetrable or to have a fixed pressure.
Furthermore (2.40) shows that, even in the limit of a semi-infinite atmosphere, we obtain
Ṗb = 0 only if the injected heat, Q, vanishes sufficiently rapidly with height.

In both of the cases just described, we arrive at an approximate expression for the
function Ṗb. Because the result is only approximate, if we use it we must necessarily
abandon (at least) one of the ‘exact’ (2.31)–(2.34). For example, O’Neill & Klein (2014)
chose to abandon hydrostatic balance and/or mass conservation in their model. (More
precisely, they allowed the ‘pseudo-density’, which satisfies the continuity equation,
to depart from the ‘background density’, which satisfies hydrostatic balance). In the
MAESTROeX model, which assumes that Ṗb = 0, the heat equation (2.33) is not used.

In the next section we describe a more consistent procedure for determining the
value of Ṗb, and how this can be implemented within the existing framework of the
MAESTROeX code. For definiteness we focus on the case of a closed domain, in which
the upper and lower boundaries are both impenetrable, so that the total energy ought to be
conserved.

3. The solution procedure

To avoid inessential complications, in what follows we consider an ideal gas, so that the
relations between the thermodynamic variables can be stated explicitly. Our complete set
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of equations is then

ρ
Du
Dt

= (ρ − ρ̄ − λ̄ρ)g − P1/γ ∇(γ P1−1/γ λ), (3.1)

∂ρ

∂t
= −∇ · (ρu), (3.2)

∇P = ρ̄g, (3.3)

γ P∇ · u + u · ∇P − gρuz = γ PS − Ṗb, (3.4)

S = Q/(γ P)

1
γ − 1

+ λ
. (3.5)

The MAESTROeX code (Fan et al. 2019a,b) is a massively parallel, finite-volume solver
for low-Mach-number astrophysical flows. It allows us to solve the above equations after
having modified the code to include the terms involving λ̄ and Ṗb for planar geometry
(avoiding the additional complexity of the spherical implementation for now). It also
allows for adaptive mesh refinement and reactions between multiple species, but we do
not consider those features here. Although we only consider an ideal gas here, our changes
to the code have been implemented for an arbitrary equation of state.

The code uses a predictor–corrector scheme, in which most quantities are updated
several times over the course of a single time step. However, for our purposes the essential
steps of the algorithm are:

(i) Timestep the momentum equation (3.1) using an ‘old’ value of λ.
(ii) Calculate the necessary correction to λ and u in order to meet the velocity constraint

(3.4).
(iii) Timestep the continuity equation (3.2).
(iv) Update the pressure by integrating the hydrostatic balance equation (3.3).

The critical step here is determining the correction to λ (which in practice is only
updated at the end of each time step). Suppose that the ‘true’ value of λ is larger than
the old value by �λ. Then the velocity we initially obtain after taking a time step of size
�t will be

u† = u + P1/γ

ρ
∇φ + φ̄

γ P1−1/γ
g, (3.6)

where u represents the ‘true’ velocity, and where we have defined φ ≡ γ P1−1/γ �λ�t.
Substituting this into the velocity constraint (3.4), we obtain the following equation for φ:

∇ ·
(

P2/γ

ρ
∇φ

)
− (γ − 1)gP2/γ

γ 2P2
∂P
∂z

φ̄ = ∇ · (P1/γ u†) − gP1/γ

γ P
ρu†

z − γ PS − Ṗb

γ P1−1/γ
.

(3.7)
In Appendix A we describe how this equation can be solved, by formulating its adjoint
problem, and the associated solvability condition for Ṗb. However, since implementing
this would require significant changes to the existing MAESTROeX algorithm, we here
present an approximate solution procedure that is more in keeping with the existing code.
We also note that MAESTROeX uses a slightly different definition for the quantity φ,
which has been found to improve numerical stability (Almgren, Bell & Crutchfield 2000;
Almgren et al. 2008) but is mathematically equivalent to what we present here.
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Currently, MAESTROeX actually implements the velocity constraint in two parts, by
writing the density and velocity fields as the sums of horizontally averaged and remainder
contributions: ρ = ρ̄ + ρ̃ and u = uzez + ũ. The velocity constraint (3.4) can then be
separated into two equations:

γ P
∂

∂z
uz − gρ̃ũz = γ PS̄ − Ṗb, (3.8)

∇ · (P1/γ ũ) = P1/γ (S − S̄). (3.9)

Equation (3.8) is solved for uz by integrating upward from the lower boundary, and using an
‘old’ value of ρ̃ũz. The quantity Ṗb is currently neglected in this calculation, which means
that the solution cannot generally be made to satisfy an impenetrable upper boundary
condition. In order to allow for impenetrable boundaries above and below, we must take

Ṗb =
∫ [

S + gρ̃ũz/(γ P)
]

d3x∫
1/(γ P) d3x

, (3.10)

which is a straightforward generalisation of the result (2.40) used by O’Neill & Klein
(2014). The value of Ṗb obtained here can then be used later for the lower boundary
condition in step (iv) of the algorithm described above. After uz is calculated from (3.8),
we can substitute (3.6) into (3.9), which leads to the following equation for φ:

∇ ·
(

P2/γ

ρ
∇φ

)
= ∇ ·

(
P1/γ

(
u†−uzez − φ̄g

γ P1−1/γ

))
− P1/γ (S − S̄). (3.11)

This differs from the equation currently solved in MAESTROeX because of the φ̄ term,
which arises because of the additional λ̄ term in the momentum (3.1). To solve this
equation using the existing MAESTROeX algorithm, we can use an ‘old’ value for φ̄

and, if desired, iterate to convergence. We then update λ and use (3.6) to obtain the
corrected velocity, u. The boundary conditions for (3.11) are chosen such that the corrected
velocity satisfies the impenetrable boundary conditions. However, the solution for φ is
then determined only up to a constant, which is a consequence of the degeneracy of the
velocity constraint for impenetrable boundary conditions. The value of this constant is
not arbitrary, because it affects the updated value of λ, and hence the temperature. To
determine this constant, we return to the point mentioned in § 2.4, that μ should vanish on
both of the impenetrable horizontal boundaries. Since ∂μ/∂z = λ̄, this condition requires
that the domain integral (or domain average) of λmust be zero, and so the domain average
of �λ ∝ φ/P1−1/γ must be zero also. In this way, the appropriate solution of (3.11) can
be determined uniquely.

4. Numerical tests

We have implemented the above solution procedure into a fork of the MAESTROeX code
at version 21.06. (The fork of the code can be found at https://github.com/asnodin/
MAESTROeX-hybrid.) Here we compare results obtained using this implementation, in a
number of test problems, with results obtained using the existing pseudo-incompressible
implementation in MAESTROeX (Fan et al. 2019a) and the fully compressible
CASTRO code (Almgren et al. 2010). To demonstrate the effect of each of our separate
changes to the model, we consider four levels of refinement: M0 denotes the original
implementation; M1, as M0, but including the Ṗb term; M2, as M1, but including the λ̄
term in the momentum equation; and M3, as M2, but also using the thermodynamically
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consistent T , rather than TEoS. Results from CASTRO are denoted with a C. Unless
otherwise specified, all tests here are for an ideal gas with γ = 5/3 in a two-dimensional
Cartesian box of size Lx × Lz, with periodic boundary conditions in the horizontal (x)
direction and impenetrable upper and lower boundaries in the vertical (z) direction. The
comparison with model M0 is complicated by the fact that, with the Ṗb term omitted, it
is not possible to satisfy the velocity constraint (3.4) exactly for impenetrable boundary
conditions. Moreover, because the value of Ṗb in this model is not calculated, the pressure
on the lower boundary is simply held fixed. We note that MAESTROeX provides several
methods for calculating the temperature, for example by solving an auxiliary equation for
the specific enthalpy, H, or specific internal energy, U. To avoid potential inconsistencies,
in all of our results using MAESTROeX the quantity TEoS is derived from P and ρ. In
Appendix B we present evolution equations for H and U that are consistent with our
model M3. Unless otherwise specified, our results are presented in c.g.s. units, which are
the default in MAESTROeX.

4.1. Internal gravity waves
We consider perturbations to an atmosphere that is initially isothermal and in hydrostatic
equilibrium. The domain has size Lx = Lz = L = 109 cm, and a numerical resolution of
64 × 64 cells. The initial density field is

ρ(t = 0) = ρ0e−z/L + 0.1ρ0 exp
(
− z

2L

)
cos

(mπx
L

)
sin

(nπz
L

)
, (4.1)

where ρ0 = 1/3 g cm−3, m = 4 and n = 2. The initial pressure is calculated assuming
hydrostatic balance, with uniform gravity g = −3 × 104 cm s−2, and bottom pressure
Pb = 1013 dyn cm−2. The form of the perturbation has been chosen to match a single
eigenmode of the linearised equations. For a small-amplitude perturbation, we would
therefore expect to see an oscillation with frequency ω given by the dispersion relation

ω2 = m2

m2 + n2 + 1/4π2 N2, (4.2)

where N2 = (γ − 1)(−g)/(γ L) is the Brunt–Väisälä frequency. We have chosen a
relatively large amplitude for the perturbation in order to test the conservation of energy,
which means that the waves break after only a few oscillation periods, t0 = 2π/ω. We
integrate the adiabatic equations up to t = 7t0 for models M0, M1 and M2. (Since this test
is adiabatic, model M3 is identical to M2.) Time series of the energy in each simulation
are plotted in figure 1. In model M0, the total energy oscillates significantly, by an amount
comparable to the oscillation in the individual contributions from internal, kinetic and
gravitational potential energy. By contrast, in models M1 and M2 the total energy is fairly
well conserved, to within approximately 0.01 % while the waves remain essentially linear,
and approximately 0.1 % once wave breaking occurs, at which point numerical dissipation
becomes significant. The flow in all three cases is very similar, and the main difference is
in the internal energy, as shown in figure 1(a,b). In this test, models M1 and M2 produce
very similar results, indicating that the λ̄ term in the momentum equation has a negligible
effect. This is perhaps unsurprising given that the horizontally averaged flow is very weak
in this case. The spurious oscillations in the internal energy in model M0 result from the
imposition of constant boundary pressure, which is relaxed in model M1.

936 A14-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

23
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.23


A hybrid pseudo-incompressible–hydrostatic model

0 1 2 3 4 5 6

t/t0 t/t0 t/t0

−2

−1

0

1

2

�
E/

E 0
(×10−3) (×10−3) (×10−3)

M0
�Eint
�Ekin
�Egrav

M2
�Eint
�Ekin
�Egrav

0 1 2 3 4 5 6

−2

−1

0

1

2

0 1 2 3 4 5 6

−2.5

−2.0

−1.5

−1.0

−0.5

0 �Etot
M0M1
M2

(a) (b) (c)

Figure 1. Time series of internal energy (Eint), kinetic energy (Ekin) and gravitational potential energy (Egrav)
in the internal gravity wave test, for models M0 (a) and M2 (b). Each plot shows the change relative to the initial
value as a fraction of the total initial energy. Plots for model M1 (not shown) are very similar to those in (b).
(c) The evolution of the total energy in models M0, M1 and M2.

4.2. Rayleigh–Taylor instability
For this test, we begin with a layer of fluid with density ρ1 overlaid by a layer with density
ρ2 > ρ1. The entire domain is initially hydrostatic, with a piecewise linear pressure profile.
Following the procedure described in Almgren et al. (2010), the density interface is then
slightly smoothed and perturbed, with

ρ(x, z) = ρ1 + ρ2 − ρ1

2

[
1 + tanh

(
z − Z(x)

w

)]
, (4.3)

where w is the smoothing width and Z(x) is the interface height:

Z(x) = Lz

2
+ A cos

(
2πx
Lx

)
. (4.4)

We take the domain size to be Lx × Lz = 0.5 cm × 1 cm, with a resolution of 256 × 512
grid cells. We choose ρ1 = 1 g cm−3, ρ2 = 2 g cm−3, w = 0.005 cm, A = 0.01 cm, g =
−1 cm s−2 and a bottom pressure of Pb = 5 dyn cm−2. This initial set-up was evolved
for models C, M0, M1 and M2 up to a time of t = 10 s. In figure 2(a) we show
contours of the density in models C and M2 at times t = 2 and 3 s. (Model M1 is very
similar to M2 at both of these times.) Up to time t = 2 s models C and M2 show close
agreement, but by t = 3 s the simulations diverge as secondary instabilities develop.
These differences are likely explained by the different advection schemes used in the
two codes (Almgren et al. 2010), rather than by differences in the models themselves.
In fact, the qualitative agreement between models C and M2 is surprising good, given that
the Mach number reaches a maximum of around 0.7 during the simulation, because the
pseudo-incompressible approximation is generally only expected to hold for low Mach
number. Moreover, our hybrid model assumes that the (horizontally averaged) pressure
remains in hydrostatic balance at all times, whereas in the CASTRO simulation there
are inversions in the horizontally averaged pressure profile, as shown in figure 2(b). The
pressure profiles in models M1 and M2 are essentially identical, whereas model M0 has a
significantly lower pressure, as a result of its pressure being fixed at the lower boundary.
Models M1 and M2 conserve the total energy to within approximately 0.1 %, as shown in
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Figure 2. Contour plots of density (in g cm−3) in the Rayleigh–Taylor test for models C and M2 at two times
(a). The two simulations remain in close agreement until t = 2 s, but then diverge as secondary instabilities
develop. At the same time, pressure inversions appear in the horizontally averaged pressure in model C (b),
whereas the pressure in model M2 is hydrostatic and therefore monotonic. In model M0, which omits the Ṗb
term, the pressure remains fixed at the upper and lower boundaries. (c) The evolution of the total energy in
models C, M1 and M2.

figure 2(c), whereas in model M0 the energy change is about an order of magnitude larger,
and is therefore not shown.

Despite the eventual divergence of solutions between models C, M1 and M2, we
observe quite similar energy evolution, as shown in figure 3. Model M2 exhibits slightly
better agreement with model C, although there are more significant oscillations in the
gravitational and kinetic energy in model C. As shown in figure 2(c), model M2 maintains
better energy conservation than model M1 up to approximately t = 3.5 s, at which point the
Mach number reaches Ma � 0.4. This suggests slightly better energy conservation when
we include the λ̄ term in our equations.

4.3. Rising and falling bubbles in an atmosphere
The test cases considered so far were adiabatic, and so the ‘thermodynamically consistent’
expression for the temperature, used in model M3, had no effect on the results. We now
present a test case involving both prescribed heat sources and thermal diffusion, in order
to elucidate the effect of this change on the model. For this case the total heating, Q, has
the form

Q = ∇ · (K∇T) + Πt0,t1(t)f (x, z), (4.5)

where K is the thermal conductivity, which we take to be constant, and Πt0,t1 is the boxcar
function, meaning that external heating is applied only for t0 � t � t1. By default, thermal
diffusion is implemented in MAESTROeX in terms of the specific enthalpy (Malone et al.
2011), but for this test case we use the alternative implementation in terms of temperature,
so that we can work with the corrected temperature, T , rather than TEoS. This is important
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Figure 3. Evolution of energy contributions (as described in figure 1) in the Rayleigh–Taylor test for
(a) model C, (b) model M1 and (c) model M2.

because, when the heating (4.5) is introduced into the heat equation (2.33), we find that

∂

∂t
(ρs) + ∇ · (ρsu − K∇ ln T) = K|∇ ln T|2 + 1

T
Πt0,t1(t)f (x, z). (4.6)

So thermal diffusion introduces a positive-definite source of entropy, consistent with the
second law of thermodynamics.

The initial pressure and density are chosen to be

P = P0 (1 − z/L)γ /(γ−1) , ρ = 1
g

dP
dz

, (4.7a,b)

which implies that the initial temperature, T ∝ P/ρ, is linear in z and the initial specific
entropy, s ∝ ln(P/ργ ), is constant. This background state is chosen because it is steady
and marginally stable to convection. The temperature gradient is fixed to its initial value
at the top and bottom boundaries, so that there is no net heat flux into the domain.
We use a domain of size Lx = Lz = 2 cm, with 1024 × 1024 grid cells. The parameter
values are set as L = 2.5 cm, P0 = 1.65 × 106 dyn cm−2, g = −1 × 109 cm s−2 and K =
4 × 104 erg K−1 cm−1 s−1.

The form of the heating function, f (x, z), is chosen to produce a number of positively or
negatively buoyant ‘bubbles’, via localised heat sources:

f (x, z) =
∑

i

Ai (1 + tanh(2 − |x − xi|/wi)) , (4.8)

with the ith source centred at xi, with a width wi and an amplitude Ai.
We first consider the case of a single rising bubble, by taking x1 = (1, 0.7) cm,

A1 = 1 × 1013 erg cm−3 s−1 and w1 = 0.025 cm. This heating is applied between t0 =
1 × 10−5 s and t1 = 2 × 10−5 s. Figure 4 shows close-ups of the bubble at t = 2 × 10−4 s,
for models M2, M3 and C; this is the time at which differences between the simulations
became measurable. We do not present results from model M1 because in that simulation
the velocity projection failed to converge, which suggests that the λ̄ term in the momentum
equation is essential to this test case. Figure 4(a–c) shows temperature contours for each
model; the contours for model C are slightly sharper, which we attribute to the different
advection scheme used in CASTRO because all of the models have the same thermal
conductivity. The differences between the models are made clearer by plotting the relative
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Figure 4. Contour plots of temperature for a single rising bubble at t = 2 × 10−4 s for cases M2, M3 and C
(a–c). (d–f ) Relative temperature differences between plots in (a–c) as indicated in each panel. (g–i) Contours
of Mach number corresponding to the cases as in (a–c).

temperature differences, as is done in figure 4(d–f ). We see that the temperature correction
introduced in model M3 is positive in the vicinity of the bubble, making that bubble
slightly more buoyant compared to model M2. This correction to the temperature also
produces a better agreement between models M3 and C. Figure 4(g–i) shows the local
Mach number in the three models, which all agree to within 1 %.

Figure 5 shows time series of energy in the same simulations. After the initial injection
of heat, the total energy is conserved almost perfectly in model C and to within 0.001 % in
models M2 and M3. Cases M2 and M3 are essentially indistinguishable; in both cases the
gravitational potential energy steadily decreases as the bubble rises, leading to an increase
in kinetic energy and internal energy (through dissipative heating). The kinetic energy in
model C follows a very similar trajectory, as expected given the similarities in the flow
seen in figure 4. However, the internal and gravitational energy terms in model C exhibit a
more dramatic, quasi-periodic oscillation, which we attribute to lack of hydrostatic balance
in the horizontally averaged dynamics. The injection of heat in this fully compressible
model establishes a gentle vertical ‘sloshing’ that is associated with very small velocities
yet large changes in the internal and gravitational energy terms. In an attempt to reduce
this effect, and allow a more meaningful comparison with model C, we have considered
a second configuration with one rising bubble and one sinking bubble, as illustrated in
figure 6. For this case, we place heat sources at x+ = (2/3, 1) cm and x− = (4/3, 1) cm,
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Figure 5. Evolution of the energy for the single rising bubble test for case C (a), case M2 (b) and case M3

(c). The plotted components are as described in figure 1. The time axis starts at t = 1 × 10−5 s, when the
heating is turned on.
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Figure 6. The temperature at t = 1.9 × 10−4 s, minus the initial temperature, in the two-bubble test with
model C. (The results of models M2 and M3 are very similar.)

with amplitudes A = ±2 × 1013 erg cm−3 s−1 and the same width w = 0.025 cm. These
heat sources are both applied between t0 = 1 × 10−5 s and t1 = 7 × 10−5 s. For these
simulations we use a numerical resolution of 512 × 512 grid cells. The energy evolution
for this configuration is shown in figure 7 for models C, M2 and M3. We note that the heat
source and sink are not implemented exactly symmetrically, and so there is a slight drop
in the total energy between times t0 and t1. However, after this time the total energy is
conserved just as well as in the single bubble case. There are still significant fluctuations
in the gravitational and internal energy in model C, but these are of much lower amplitude
than in the single bubble case. Models M2 and M3 again produce very similar results,
although both have a slightly lower kinetic energy than model C. In model C, as shown in
figure 7(a), the gravitational potential energy remains nearly constant until t � 3 × 10−5 s,
which is roughly equal to the sound-crossing time in the domain. Up to this time, the
imposed heating produces an increase in the local fluid pressure without much change in
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Figure 7. Evolution of the energy as in figure 5, but for the rising and falling bubble test.

density. In models M2 and M3, by contrast, the imposed heating produces an instantaneous
expansion or contraction of the fluid, as dictated by the velocity constraint (3.4).

5. Summary and discussion

By formulating an appropriate action, we have derived a hybrid pseudo-incompressible–
hydrostatic model that conserves energy. In the case of closed boundaries, the velocity
must satisfy a degenerate constraint equation, and this degeneracy is broken by requiring
that the energy flux through the boundaries vanishes. We have implemented this model
within the existing MAESTROeX framework and validated it in a number of test cases,
including comparison with results from the fully compressible code CASTRO. Our
changes to the MAESTROeX algorithm generally have a small effect on the numerical
results, but in at least some cases they produce better energy conservation and better
agreement with the fully compressible code. The main benefit of using a sound-proof
model is that larger time steps can be used. For example, in the case shown in figure 4, we
used a time step of 3.28 × 10−7 s, whereas CASTRO required a time step of 3.34 × 10−8 s,
a factor of 10 smaller. In our test cases the Mach number was typically Ma � 0.5, whereas
in many practical applications one would have Ma � 1, in which case a sound-proof
model becomes much more efficient, as well as more accurate. Of course, the time step
may still be limited by other factors, such as the presence of high-frequency internal
gravity waves (Higl, Müller & Weiss 2021). In such cases, other numerical techniques
such as Runge–Kutta time integration may lead to greater numerical stability.

Although we have chosen to focus on the case of closed boundary conditions, the
approach we have outlined can also be applied to the case of ‘open’ boundary conditions.
If either the lower or upper boundary is open then the background pressure should be
evolved according to (2.37) but with the Ṗb term set to zero, as is already implemented in
MAESTROeX. As mentioned in § 2.4, this ensures that there are no unphysical boundary
fluxes associated with the Lagrange multiplier μ. For similar reasons, the other Lagrange
multiplier, λ, should be set to zero on any open boundaries; this also removes any
degeneracy when calculating the velocity correction.

All of the numerical test cases we have presented here involve a single (ideal) gas, but
MAESTROeX is designed for multi-fluid applications with complex reaction networks.
In such applications the reaction rates are often very temperature-sensitive, and we plan
to test whether using the corrected temperature, rather than TEoS, produces more accurate
results.
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Appendix A. Unsplit velocity projection

We would like to solve the equation

∇ ·
(

P2/γ

ρ
∇φ

)
− (γ − 1)gP2/γ

γ 2P2
∂P
∂z

φ̄ = ∇ · (P1/γ u†) − gP1/γ

γ P
ρu†

z − γ PS − Ṗb

γ P1−1/γ

(A1)
subject to the boundary condition

1
ρ

∂φ

∂z
+ gφ̄

γ P
= P−1/γ u†

z (A2)

on the upper and lower boundaries, which is obtained via (3.6), taking u to satisfy the
impenetrable boundary condition.

We consider the adjoint of (A1), using φ† to denote the adjoint variable. Since the
operator on the left-hand side of this equation is self-adjoint with respect to the usual
L2-norm, the adjoint problem is simply the homogeneous version of (A1)–(A2):

∇ ·
(

P2/γ

ρ
∇φ†

)
− (γ − 1)gP2/γ

γ 2P2
∂P
∂z

φ† = 0, (A3)

with boundary condition

1
ρ

∂φ†

∂z
+ gφ†

γ P
= 0. (A4)

The solution of this adjoint problem is unique, up to a constant multiplicative factor.
Multiplying (A1) by this solution, integrating by parts and applying the boundary
conditions for φ and φ†, we eventually obtain the solvability condition∫ [

u† · ∇φ†+ g
γ P

ρu†
z φ

†+Sφ†
]

P1/γ d3x = Ṗb

∫
φ†

γ P1−1/γ
d3x. (A5)

Therefore, assuming that the adjoint solution φ† can be computed, the necessary value for
Ṗb can be expressed as the ratio of two domain integrals. We recover our result (3.10) if we
approximate φ† � P−1/γ and ũ†

z = ũz; these approximations become exact if ρ happens
to be a function of z only, in which case we recover the formula (2.40) of O’Neill & Klein
(2014).

For this value of Ṗb, (A1) can be solved for φ, up to an arbitrary multiple of φ†. As in
§ 3, this remaining degeneracy is removed by the requirement that the domain average of
φ/P1−1/γ must be zero.
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Appendix B. Auxiliary evolution equations

The general hybrid equations (2.31)–(2.34) can be used to obtain evolution equations for
other thermodynamic quantities, e.g. the specific internal energy, U(ρ, s), or the specific
enthalpy, H = U + P/ρ:

ρ
DU
Dt

= −P∇ · u + TEoS

T
Q, (B1)

ρ
DH
Dt

= DP
Dt

+ TEoS

T
Q. (B2)

We note that, in both cases, the applied heating, Q, must be multiplied by the correction
factor TEoS/T .
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