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ON A SOLUTION OF THE HAMMERSTEIN 
EQUATION WITH SINGULAR NORMAL KERNELS 

BY 

CHARLES G. COSTLEY 

We consider here the equation 

(1) <P(*) + [ K(x, y)f(y, <p(y)) dy = 0. 

This equation was first studied by Hammerstein [4] under the assumption that the 
linear operator 

Af= j1
QK(x,y)f(y)dy 

is selfadjoint and completely continuous. V. Nemytsky [5] and M. Golomb [3] 
dropped the assumption that A be selfadjoint and positive. M. Vainberg [6] con
sidered (among other cases) the case in which A is a bounded operator generated 
by a Carleman kernel. The kernels considered in this work do not necessarily 
generate bounded, completely continuous or selfadjoint, operators. Although our 
theorem may be established with the aid of Schauder's second theorem our purpose 
here is to prove it directly by the classical method. For convenience we will use the 
familiar notation 

A = Kf= £ K(x, y)f(y) dy and ||?|| = { £ <p\x) dxY'2 

when there is no likelihood of confusion. 

THEOREM. Let K(x, y) be a singular normal kernel andf(t, u) be such that 

(i) f(t,u) = -u-h(t,u) 

where 

(ii) \h(t,u')-h(t,u)\ < uK-\t)\u'-u\, 

(iii) 0 < u < 1 + g , ! 

(iv) y(x) = J K(x, t)h(t, 0) dt c: L2 

(for definition of singular normal, and 8 see [2]). 
Then 

9(x) + £ K(x, t)f(t9 cp(t)) dt = 0 

has a solution (p(x) in L2. 
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Proof. Consider the associated inhomogeneous linear integral equation 

(2) 9(x)= [* K{x9tWf)dt+f{x) 
Jo 

where/(x), possibly complex valued is in L2. 

It is shown in [2] that equation (2) admits a solution y{x) in L2 such that 

o) iwi^a+s-wii 
(cpm being solution of the inhomogeneous equation with the approximating kernel 
Km involved in definition of singular normal kernel) 

(4) M < (l + S-i)||/ll-
Put 

(5) h(t,u) = h(t,0)+g(t,u). 

Clearly 
g(t,0) = 0 

(6) \g(t, u')-g(t, u)\ < M \K-\t)\ \u'-u\ : K2(x) = £ K\x, t) dt 

and we now write (1) in form 

(7) 9{x)- f K(x, t)<p(t) dt = y(x) + f K(x, i)g{t, <p{i)) dt. 
Jo Jo 

Define {?>„}, as follows 

9>o = 0 

(8) ?v~K<pv = y(x) + £ K(x, t)g(t, <pv-i(0) * , v ^ 1. 

Let 

rv(x) = 9v-ç> v - i . 
By (7) 

(9) rv - AT, = jQ K(x, t){g(t, <pv _ &)) -g(t, <pv _ 2(f))} dt = Wv^, v>2 

(10) n - *>! = y(x) + j 1 K(x, t)g(t, 0) dt = y(x) = W0. 

From (4) 

(il) IWI zQ+s-^W-A (v = i,2,...). 

In particular 

K|| < ( l + 8-i)||y||. 
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From (9) and (6) 

(12) | Wy-t] < ix £ \K(x, 0| K~\t) 1^.1(0-9,-2(01 * . " ^ 2 

(13) WU < M» £ (K(x, t)K-Ki))2 ^lkv-i«2 

and 

(14) ll^vlU^IW. 
In particular, from (11) 

|^||<(i+s-%|M|. 

With induction in view, suppose for some v > 2, 

05) IM <(i+B-1)V-1\\r\\ = Bi 

(16) I ^ I < ( l + S-i)V|H| f o r / = l , 2 , . . . , v - l . 

From (11) and (16) for i=v—l 

(17) IWUO+s-^v-lyll. 
With the aid of (14) we have 

08) l l^vl^d+s-^vdHI) 
proving the induction for (15), (16) since, from (11 and 14), 

N I < (l + S-i)||y|| and || Wi] < (l + S-*V||y|| forv = 1. 

From (15) and (iii) the series 

(19) S = 2 *i < °°. 

This implies that 

{wv} converges weakly to w(x) and 
(20) 

yv\\ < s, HI < s. 
Consequently, with aid of (6), 

||^(0^59v-i(0)ll ^ Mlkv-ill ^ i*Si 

and there exists a function W in L2 such that 

K(t)g(t, 9?v_!(0) converge weakly to W(t), and 
(21) 

W0II <"S-
We now write (7) in the form 
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(22) <pVl-K<pVt = Yfà + f1 K(x, t)K-\i)K{i)g{t, ^^(t)) dt = Pt(x). 

Since K(x, t)K-\t) is in L2(i), from (21) it follows that 

(23) limPi(x) = p(x) = y(x)+ f * *(*, t)K'\i)W{i) dt. 
i JO 

Since J jpfo f) <fc<oo, from (20) it follows that 

lim K<pVl = Kcp. 
i 

From (22) 

(24) lim<z>v. = K<p+p(x) = <p* 
i 

in ordinary sense, so from (21) we conclude that 

(25) 9* = y a.e. 

Since h is continuous in u we have 

lim K(t)g(t9 9vi(0) = £(*)£& 9(0) 

and 

(26) lim f1 *(*, t)g(t, <pVt(t)) A = lim f *(*, t)K-\t)K{t)g{t, <pVl(t)) dt 
i JO i Jo 

= f K(x, t)g(t, <p(t)) dt. 

Putting v=vt in (8) we see that 

<Pvf - -Kpv, ~ y(x) - J Z(x, %(*, 9>v,(0) * 

= JV(x, *){*(*, <Pn - lif)) -g(t9 <pVi(t))} dt=-Wv (cf. 9). 

From (13), (15), and (19) it follows that 

lim W* = 0 
i 

and we have 

cp-Kcp-y(x)- j K(x, t)g(t, cp(t)) dt = 0. 

In view of (iv) and (5) we conclude that <p(x) is a solution of (1). 

EXAMPLE 1. To show explicitly that our singular kernel does not necessarily 
generate the selfadjoint operators we consider the following. 
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Let <pK(x) be Haar functions, let 

00 

2? = 0 

Then A = Kf is selfadjoint only if £v [2v/(l+0?)] is divergent (see [1, pp. 62-66]). 
If 2v [2V/(1 +#?)] is convergent as is the case when av = v.2vl2

9 i.e. 

K(x,t) = 2v-2vl2<pv(x)<Pv(y), 
V 

then K(x, y) is of Carleman class 2 and generates a nonselfadjoint operator (see 
[7, p. 422]). In either case the kernel is singular normal. 

EXAMPLE 2. Another construction of a singular normal kernel is as follows. Let 
?>mv be real functions in L2[0, 1] such that 

( 1 ) J q>mv(x)<PmAx) d* = °> v * J 

(2) J 9>mv(*) dx = 1, /w, v = 1, 2 , . . . 

(3) 9mv(*)9p/*) <fo = 0, m # p; i = 1,2, . . . . 

Let Amv be real numbers such that the series 

(4) ^ = 2 ^ ; ZI^-vM; 2#^? 
v / l m,v m v / vm,v v | A m , v | 

all converge for almost all x on [0, 1] while 

(5) S= f Sm 
ro = l 

diverges. Consider 

(6) gm(x, y) = 2 I T " ?m.v(*)9>mvG0. 

Clearly J J J J #m(x, j ) 2 ^ </y = Sm(m = 1, 2 , . . . ) exists. The gw(x, j>)(/w = 1, 2 , . . . ) 
are regular kernels. 

Define 

Kn(x,y) = gxix,y)+ • • • +#n(*, j) , « = 1,2, . . . . 
Now 

jl jl K*(x,y) dxdy = S±+ • • • + Sn < co. 

From (1) and (2) 

f1 1 
Sm(*, J>) dy = 2 T2- ^ v 

J o v Am,v 
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and 

JO m = l J o m = l v = l Amv 

00 

NOW #(*, j ) = 2 Smfo y) = l i m * n ( * > >>)• 
m = l n 

The Àmv(m = l , . . . , n, v = l , 2 , . . . ) are characteristic values of the approximating 
kernels Kn (see definition of singular normal kernels). Actually, these Kn(n = 1 , 2 , . . . ) 
are symmetric and therefore are also normal. Since JJ JJ K2(x, y) dx dy does not 
necessarily exist, the kernel K is not necessarily completely continuous or compact. 

THEOREM 2. Let K(x91) be a singular normal kernel such that 

(i) K(x9 y)= jl K(x9 i)K(y9 i) dt belong to L2 in x {also in y) 
(ii) h(t, y9 u)=K(y9 t)u — H(t, y9 u) where 

(iii) \H(t9y9u')-H(t9y9u)\ < / ^ ( O I K ' - K I 

(iv) y(x)=jl {ft K(x9 t)H(t, y, 0) dt dy in L2 

(v) p(x)=$l \K2(x9 i)\ K~\i) dt P=Jo p(x) dx exists, and 
(vi) 4p2p<l. 

Then the Urysohn equation 

(1) ?(*) + £ { £ K(x, t)h(t9 y, cp(y)) dtj dy = 0 

has a solution in L2. 

Proof. Equation (1) may be put in the form 

(2) 9(*)+y(x) + £ | £ K^ t)H(t, y9 <p{y))dt} dy = 0. 

Define {<pv} recursively as follows. 

9>o = 0 

cpv = -y(x)-j U K(x, t)H(t, y, cp(y)) dt\ dy, v > 1. 

The same technique as in Theorem 1 shows that {cpv} is uniformly bounded thus 
weakly compact so that {9 v} converges weakly to some function <p in L2 and 

lim<pv= - l i m f K(x, y)cpv(y) dy + y(x)+ lim (If K(x, t)G(t, y , <p(y)) dt\ dy 
V-*oo V-+oo J o V-+00J0 W O J 

= cp' (convergence in ordinary sense). 

Thus <p = q>' almost everywhere. 
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With the aid of the continuity of G(t, y9 u) in u and (v) we have 

lim F { F K(x, t)G(t, y, &-&)) dt\ dy = F { F K(x9 t)G(t, y, y(y)) dt\ dy. 
v-+cojo WO J Jo WO J 

In view of (2) and above our result follows. 
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