AN ENUMERATION OF THE FIVE PARALLELOHEDRA

William Moser

(received October 17, 1960)

A parallelohedron is a convex polyhedron, in real affine three-dimensional space, which can be repeated by translation to fill the whole space without interstices. It has centrally symmetrical faces [4, p. 120] and hence is centrally symmetrical. ${ }^{1}$

Let F_{i} denote the number of faces each having exactly i edges, V_{i} denote the number of vertices each incident with exactly i edges, E denote the number of edges, n denote the number of sets of parallel edges, F denote the total number of faces, V denote the total number of vertices. Then $F_{i}=0$ for odd i, F_{i} is even for even i,

$$
\begin{aligned}
& F=\Sigma F_{i}, \quad V=\Sigma V_{i} \\
& \Sigma i V_{i}=\Sigma i F_{i}=2 E
\end{aligned}
$$

and

$$
V-E+F=2 .
$$

Hence

$$
E=\frac{1}{3} \Sigma i V_{i}+\frac{1}{6} \Sigma i F_{i}
$$

so that

$$
\Sigma V_{i}-\frac{1}{3} \Sigma i V_{i}-\frac{1}{6} \Sigma i F_{i}+\Sigma F_{i}=2,
$$

or

$$
2 \Sigma(3-i) V_{i}+\Sigma(6-i) F_{i}=12,
$$

or

$$
F_{4}=6+F_{8}+2 F_{10}+3 F_{12}+\ldots+V_{4}+2 V_{5}+3 V_{6}+\ldots
$$

which implies

$$
F_{4} \geq 6
$$

${ }^{1}$ This theorem is due to Alexandroff. See Burckhardt [1, pp. 149154].

Canad. Math. Bull. vol. 4, no. 1, January 1961

Of course, these statements apply to the larger class of polyhedra known as zonohedra [2, pp. 27-30], for which we also have

$$
F_{4}+3 F_{6}+6 F_{8}+10 F_{10}+\ldots+\frac{k(k-1)}{2} F_{2 k}+\ldots=n(n-1) .
$$

Voronoï [5, p. 278] and Minkowski [4, p. 120] showed that for a parallelohedron $F \leq 14$ and that the faces must in fact be parallelograms or parallel-sided hexagons, i.e., that $F_{2 k}=0(k=4,5,6, \ldots)$. Thus, for a parallelohedron

$$
F=F_{4}+F_{6} \leq 14, \quad F_{4} \geq 6, \quad F_{4}+3 F_{6}=n(n-1)
$$

It follows that

$$
\begin{aligned}
6 \leq n(n-1) & =F_{4}+3 F_{6}=F_{4}+3\left(F-F_{4}\right) \\
& =3 F-2 F_{4} \leq 3.14-2.6=30
\end{aligned}
$$

and hence $3 \leq n \leq 6$. Furthermore, these inequalities imply

$$
\frac{n(n-1)-14}{2} \leq F_{6} \leq \frac{n(n-1)-6}{3}
$$

Thus,

when	$n=3$,	$F_{6}=0 ;$
when	$n=4$,	$F_{6} \leq 2 ;$
when	$n=5$,	$F_{6}=4 ;$
when	$n=6$,	$F_{6}=8$.

We have the following possible parallelohedra [3, pp. 688689].

n	$n(n-1)$	F_{4}	$\mathrm{~F}_{6}$	parallelohedron
3	6	6	0	parallelepiped
4	12	12	0	rhombic dodecahedron
4	6	2	hexagonal prism	
5	20	8	4	elongated dodecahedron
6	30	6	8	truncated octahedron

REFERENCES

1. J. J. Burckhardt, Über konvexe Körper mit Mittelpunkt, Vierteljschr. Naturf. Ges. Zürich 85 (1940).
2. H. S. M. Coxeter, Regular Polytopes, (London, 1948).
3. E.S. Fedorov, Elemente der Gestaltenlehre, Mineralogicheskoe obshchestvo, Leningrad (2) 21 (1885).
4. H. Minkowski, Ges. Math. Abhandlungen 2.
5. G. Voronoĩ, Recherches surles paralléloèdres primitives, J. Reine Angew. Math. 134 (1908), 278.

University of Manitoba

