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Pollution, Infectious Disease, and 
Mortality: Evidence from the 1918 

Spanish Influenza Pandemic
Karen Clay, Joshua lewis, and edson severnini

The 1918 Influenza Pandemic killed millions worldwide and hundreds of 
thousands in the United States. This article studies the impact of air pollution 
on pandemic mortality. The analysis combines a panel dataset on infant and 
all-age mortality with a novel measure of air pollution based on the burning of 
coal in a large sample of U.S. cities. We estimate that air pollution contributed 
significantly to pandemic mortality. Cities that used more coal experienced tens of 
thousands of excess deaths in 1918 relative to cities that used less coal with similar 
pre-pandemic socioeconomic conditions and baseline health. Factors related to 
poverty, public health, and the timing of onset also affected pandemic mortality. 
The findings support recent medical evidence on the link between air pollution 
and influenza infection, and suggest that poor air quality was an important cause 
of mortality during the pandemic. 

The 1918 Influenza Pandemic was among the worst catastrophes in 
human history. The virus infected an estimated 500 million people 

worldwide, one-third of the population. It killed at least 50 million people, 
more than all twentieth century wars (Crosby 1989). In the United States, 
more than 30 percent of the population was infected, and approximately 
675,000 died (Crosby 1989). The 1918 Influenza Pandemic continues 
to be studied both as an extraordinary historical episode and because of 
its implications for current policy. As Jeffery Taubenberger and David 
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Morens (2006, p. 15) put it: “[u]nderstanding the 1918 pandemic and its 
implications for future pandemics requires careful experimentation and 
in-depth historical analysis.”

In the United States, the pandemic spread nationwide during September 
and October of 1918. There were large regional differences in pandemic 
mortality, but little consensus has emerged over the underlying causes of 
these mortality differences. Analysis of mortality rates in Chicago and 
Hartford shows that mortality rates were related to markers of poverty 
such as the percent foreign born, illiteracy, and homeownership (Tuckel 
et al. 2006; Grantz et al. 2016). Other scholars argue that pandemic timing 
and proximity to WWI military bases influenced severity (Sydenstricker 
1918; Barry 2004; Byerly 2010). Martin Bootsma and Neil Ferguson 
(2007) and Howard Markel et al. (2007) present evidence that public 
health measures such as school closings, cancelling of public meetings, 
and quarantines mitigated the effects. Still other researchers argue that 
pandemic-related mortality was unrelated to socioeconomic conditions or 
geography (Huntington 1923; Crosby 1989; Brainerd and Siegler 2003). 

The possible relationship between air pollution and pandemic mortality 
has been largely overlooked, despite evidence from human and animal 
studies that air pollution can increase susceptibility to viral infection and 
heighten the risk of severe complications, post-infection (Jakab 1993; 
Jaspers et al. 2005). This link could have been especially pronounced 
during the 1918 outbreak, given the devastating impact of the H1N1 virus 
on lung function (Ireland 1928) and the high levels of air pollution in 
U.S. cities (Online Appendix Tables A.1 and A.2). 

This article studies the impact of air pollution on mortality associated 
with the 1918 pandemic. The analysis draws on a panel of infant and all-age 
mortality for the period 1915 to 1925 in 180 U.S. cities, representing 60 
percent of the urban population and 30 percent of the total population. 
Mortality is linked to a novel measure of city air pollution: coal-fired 
capacity for electricity generation. Information on electricity plants with 
at least five megawatts of capacity is available in 1915 including location, 
capacity, and type of generation (coal or hydroelectric). 

Coal-fired electricity generation was a major source of urban air pollu-
tion in the early twentieth century. Given historical limitations in elec-
tricity transmission, coal-fired plants were typically located near urban 
areas, producing large volumes of unregulated emissions. A detailed 
study of Chicago found that in 1912 nearly one-half of the visible 
smoke was due to coal-fired electricity generation (Goss 1915). Unlike 
air pollution from residential coal use, which occurred primarily during 
the winter months (Barreca, Clay, and Tarr 2016), coal-fired plants 
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produced emissions throughout the fall outbreak of 1918. Coal-fired 
capacity varied widely across cities, in part, because of differences in the 
availability of fuel. The empirical analysis is based on a difference-in- 
differences approach that compares changes in mortality in 1918 in high 
and medium coal-fired capacity cities to mortality changes in cities with 
low coal-fired capacity with similar baseline socioeconomic conditions 
and pre-pandemic mortality rates. 

We find that air pollution exacerbated the impact of the 1918 Influenza 
Pandemic. Cities that used more coal for electricity generation experi-
enced large relative increases in 1918 infant and all-age mortality: infant 
mortality increased by 11 percent in high coal-capacity cities and 8 
percent in medium coal cities relative to low coal-capacity cities; mean-
while, the relative increases for all-age mortality were 10 and 5 percent in 
high and medium coal-capacity cities. The estimates imply that pollution 
in high and medium coal cities was responsible for 30,000 to 42,000 addi-
tional deaths during the pandemic, or 19 to 26 percent of total pandemic 
mortality. 

We evaluate alternative determinants of pandemic severity. Guided 
by the historical literature, we focus on factors related to city poverty, 
the timing of pandemic onset, and local public interventions. Pandemic 
mortality was somewhat more elevated in cities with high concentrations 
of immigrants and poor water quality, consistent with previous research on 
the relationship between poverty, baseline health, and pandemic severity. 
The timing of onset was also related to pandemic mortality. Cities hit by 
earlier outbreaks had particularly high mortality rates, consistent with 
the virus having weakened over time. We also find suggestive evidence 
that local interventions mitigated pandemic severity. The relationship 
between pollution and pandemic mortality is unaffected by the inclusion 
of controls for these alternative factors.   

The 1918 Influenza Pandemic continues to be widely studied because 
of its relevance to preventing future outbreaks. A large medical literature 
has sought to understand the particular characteristics of the H1N1 strain 
responsible for the pandemic (see Taubenberger and Morens 2006, for a 
discussion). Beginning with Douglas Almond (2006), economists have 
also used the pandemic to examine the long-term outcomes of survivors, 
although there has been some debate about the size of the effects (see 
Brown and Thomas 2016; Beach et al. 2018). This article contributes to 
this literature by providing evidence on another determinant of pandemic 
severity, air pollution. Drawing on a new panel dataset on mortality that 
covers a large sample of U.S. cities, we are also able to evaluate the 
importance of a number of determinants of pandemic severity that have 
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been previously identified by the historical literature. Given that the risks 
posed by a severe influenza pandemic are substantial and unlikely to be 
met by the existing medical infrastructure, the findings may be relevant 
to the public health response to future outbreaks. 

This article also contributes to the literature on air pollution and 
mortality by providing evidence on the interaction between air pollu-
tion and infectious disease. A number of studies have shown a causal 
link between air pollution and mortality (e.g., Chay and Greenstone 
2003a, 2003b; Currie and Neidell 2005). These studies typically rely on 
short-term variation in air pollution to identify the health impact. There 
has been less research on the interaction. A number of epidemiological 
studies indicate associations between exposure to air pollutants and 
increased risk for respiratory virus infections (Ciencewicki and Jaspers 
2007), although it is unclear whether those correlations have a causal 
interpretation. Our results demonstrate how exposure to air pollution can 
exacerbate the mortality effects of severe, if less frequent, health shocks.

HISTORICAL BACKGROUND

The 1918–1919 Influenza Pandemic

The influenza pandemic of 1918–1919 was brief, but severe. Estimates 
of worldwide fatalities range from 50–100 million (Crosby 1989; Johnson 
and Mueller 2002). In the United States, fatalities were between 675,000 
and 850,000. In some victims, the virus triggered a “cytokine storm,” an 
overreaction of the body’s immune system that typically led to a rapid 
deterioration in health. The majority of deaths, however, were caused 
by a secondary infection, such as bacterial pneumonia, which typically 
developed in the days and weeks after initial infection (Barry 2004). 
Figure 1 reports national influenza and pneumonia death rates by month 
for the 1918–1919 period and the average over the previous five years. 
Pandemic-related mortality was particularly elevated from October 1918 
to January 1919. This four-month period accounted for more than 90 
percent of pandemic-related deaths. 

The pandemic was caused by the H1N1 virus. Unlike the seasonal 
flu, which is typically caused by slight variations in pre-existing 
strains, the vast majority of individuals lacked immunity to the virus.1 
Approximately 30 percent of the U.S. population contracted the H1N1 

1 There is some debate among medical historians over whether a previous strain of the virus 
was also responsible for the 1889–1890 pandemic (Barry 2004). 
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virus in 1918–1919, and fatality rates among those who contracted the 
virus exceeded 2.5 percent, which is far higher than the typical mortality 
of 0.1 percent (Collins 1930). The Spanish Flu was also characterized 
by an unusual “W” age distribution of mortality (see Online Appendix 
Figure A.1). The high mortality rates among young adults have been 
linked to an overreaction of the immune system (Barry 2004). Infant 
mortality was caused by both postnatal exposure to the virus and higher 
rates of premature birth (Reid 2005). 

The pandemic first appeared in the United States as part of a mild 
influenza outbreak during the spring of 1918. Historians have sought to 
identify the site of origin of the 1918 Influenza Pandemic. Some accounts 
suggest that the first human infection occurred in Haskell County, Kansas 
between late January and early February 1918, and then spread to Europe 
by U.S. troops (Barry 2004). It is believed that a mutation in the strain 
during the summer led to a sharp increase in virulence.

The most serious wave of the pandemic originated in Camp Devens 
near Boston in the first week of September 1918, and then spread rapidly 
throughout the country. By mid-September, the pandemic had surfaced 
in most East Coast cities and then moved westward, diffusing nationwide 
by early October (Sydenstricker 1918). 
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Figure 1
INFLUENZA AND PNEUMONIA DEATH RATES, MARCH 1918–JUNE 1919

Sources: Authors’ calculations based on the Mortality Statistics (various years).
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Determinants of Pandemic Mortality

There were wide cross-city differences in pandemic severity. Pandemic 
mortality was more than 2.5 times higher in cities at the 90th percentile 
relative to cities at the 10th percentile.2 Differences in pandemic mortality 
were large even among cities within the same state. For example, 
mortality rates in Gary, Indiana, were more than twice as high as those in 
Indianapolis. Although researchers have commented on the differences, 
there is little consensus on the underlying causes (Huntington 1923; 
Crosby 1989; Kolata 1999; Brainerd and Siegler 2003).

The medical and public health response to the pandemic appears to 
have been largely ineffective. Antibiotics had not yet been developed, 
and so could not be used to treat the bacterial pneumonia that often devel-
oped, and medicine, more generally, had little to offer beyond pallia-
tive care. Municipalities were often slow to adopt preventative measures, 
which included bans of public gatherings, regulations against spitting in 
public, and campaigns to the wearing of masks. Most researchers consider 
these public interventions to have had little effect on pandemic mortality 
(Brainerd and Siegler 2003; Crosby 1989).3

Historians have argued that the timing of local onset, driven in part 
by the movement of military personnel, influenced pandemic mortality 
(Barry 2004; Byerly 2010; Sydenstricker 1918; Crosby 1989). Some 
accounts suggest that the virus weakened substantially in mid-October 
of 1918, and that cities that experienced later outbreak were exposed to a 
less virulent strain. Poverty has also been linked to pandemic mortality, 
both because of higher transmission in poor neighborhoods and lower 
levels of baseline health capital, although notably no relationship has 
been found between crowding, measured by population density, and 
pandemic mortality (Clay, Lewis, and Severnini 2018; Grantz et al. 2016; 
Tuckel et al. 2006).

Pandemic Severity, Air Pollution, and Coal-Fired Electricity 
Generation

Air pollution has received almost no attention from the historical liter-
ature on the pandemic, despite emerging evidence that air pollution exac-
erbates pandemics. In randomized control trials, mice exposed to higher 

2 These calculations are based on the sample of 180 cities used in the analysis. 
3 In contrast, Bootsma and Ferguson (2007) and Markel et al. (2007) found evidence that 

public health interventions reduced pandemic mortality.
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levels of particulate matter (PM) experienced increased mortality when 
infected with a common strain of the influenza virus (Hahon et al. 1985; 
Harrod et al. 2003; Lee et al. 2014). Microbiology studies of respira-
tory cells also identify a link between pollution exposure and respira-
tory infection. Respiratory cells are the primary site for influenza virus 
infection and replication, and PM exposure increases the viral-load post- 
infection (Jaspers et al. 2005). Air pollution has also been shown to 
increase the severity of bacterial infections in the lungs (Jakab 1993). 

The effects of air pollution may have been particularly acute during 
the 1918 pandemic given the pathology of the H1N1 virus. Pandemic 
mortality was often caused by a secondary infection, such as bacterial 
pneumonia. Contemporary researchers noted the impact of the pandemic 
virus on lungs. As reported in the Journal of the American Medical 
Association, doctors noted that “lung lesions, complex and variable, 
struck one as being quite different in character to anything one had met 
with at all commonly in thousands of autopsies one had performed during 
the last 20 years” (Ireland 1928, p. 150). 

Although systematic cross-city information on air quality was not 
available until the mid-1950s, intermittent monitor readings during the 
early twentieth century suggest that air pollution was severe and widely 
varied across cities. Average levels of total suspended particulates (TSP) 
air pollution across 15 large U.S. cities were seven times higher than 
the annual threshold and twice the maximum daily threshold initially set 
under the Clean Air Act Amendments of 1970 (Online Appendix Table 
A.2). In 1912, the Bureau of Mines reported that 23 of 28 cities with 
populations with more than 200,000 were trying to combat smoke (Online 
Appendix Table A.1). Dozens of smaller cities also passed ordinances.

Electricity generation was a significant contributor to urban air pollution. 
In 1912, electricity generating plants accounted for 44 percent of visible 
smoke in Chicago, while residential coal consumption contributed just 4 
percent (Goss 1915).4 Moreover, coal-fired power plants operated continu-
ously throughout the fall of 1918, whereas residential coal consumption 
was concentrated in the winter months (Barreca, Clay, and Tarr 2016). 

There were large differences in the sources of electricity generation 
based on local availability of inputs. For example, both Grand Rapids 
and Lansing, Michigan had similar installed electricity capacity in 1915, 

4 These estimates were based on Ringelmann Chart measurements, a method used to quantify 
emission according to the density of observed smoke. Ringelmann measurements were widely 
used throughout the first half of the twentieth century to establish whether emissions exceeded the 
standards permissible under local ordinances (U.S. Department of the Interior 1967).
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although Grand Rapids, which had more abundant sources of hydro 
potential, generated more than twice as much power from hydroelec-
tricity. At the state level, there is a positive relationship between total 
coal consumption and coal-fired generating capacity, and a negative 
relationship between total coal consumption and hydro capacity (Online 
Appendix Figure A.2), reflecting the fact that coal-fired power was 
concentrated in the midwestern states with abundant coal resources.

DATA CONSTRUCTION AND CITY CHARACTERISTICS  
BY COAL-FIRED CAPACITY

To study the impact of air pollution on pandemic severity, we combine 
information on city coal-fired capacity with a panel dataset on mortality.5 
Infant and all-age deaths were collected from the Mortality Statistics for 
a panel of 180 registration cities for the period 1915–1925.6 We begin 
with an initial sample of 283 cities with a population of at least 20,000 
in 1921. From this sample, we drop 88 cities with missing information 
on covariates, and exclude an additional 15 cities located in states that 
did not use coal for electricity generation, leaving a final sample of 180 
cities. Cities are linked to pre-pandemic county-level demographic and 
economic characteristics drawn from the census of population and census 
of manufacturing (Haines and ICPSR 2010).

We combine the data on infant and all-age deaths with information on 
city population and births in 1921 to calculate the infant mortality rates 
per 1,000 live births in 1921, and the all-age mortality rates per 10,000 city 
residents in 1921. Infant mortality is widely used in studies of air pollu-
tion, since infants are especially vulnerable to environmental exposure 
and current air pollution concentrations are a better reflection of lifetime 
exposure (Currie et al. 2014). Contemporary evidence suggests that both 
infant and all-age deaths were accurately recorded, although there was 
substantial underregistration of births, particularly among minority popu-
lations (Grove 1943). Because underreporting of births may bias esti-
mates in panel regression analyses (Eriksson, Niemesh, and Thomasson 
2017), we explore the sensitivity of the main results to several alternative 
measures of the infant mortality rate.

To construct a proxy for city-level pollution, we digitized informa-
tion from a 1915 federal report on the location and capacity of coal-fired 
and hydroelectric power stations with installed capacity of at least five 

5 See Clay, Lewis, and Severnini (2018) for access to the dataset used in the empirical analysis.
6 Price Fishback generously provided these data.
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megawatts (U.S. Department of Agriculture 1916). These data account 
for 67 percent of installed coal-fired capacity and 83 percent of installed 
hydroelectric capacity in 1915.7 We calculate total coal-fired capacity 
within a 30-mile radius of each city-centroid, and classify cities into 
terciles (low, medium, high) of coal-fired capacity. This radius was 
chosen to capture the fact that the majority of power plant emissions 
are dispersed locally (Seinfeld and Pandis 2012).8 To assess whether 
local coal-fired capacity was related to urban air pollution, we estimate 
city-level regressions that compare the relationship between coal-fired 
capacity in 1915 and TSP concentrations in the mid-twentieth century, 
controlling for city population, the urban share, and total manufacturing 
employment.9 Despite a lag of almost 50 years, there is a clear positive 
relationship between coal-fired capacity and measured air pollution, and 
a negative relationship between hydro capacity and TSP concentrations 
(Online Appendix Figure A.3). 

Coal-fired generating capacity widely varied across cities. Cities with 
more coal capacity tended to have larger manufacturing sectors, perhaps 
reflecting higher electricity demand. They also tended to use more coal 
for residential purposes, reflecting greater local availability (see Online 
Appendix Table A.3). Despite these differences, almost half of the cross-
city variation in coal capacity cannot be explained by standard socio-
economic measures. This idiosyncratic variation in coal capacity across 
cities will form the basis of our empirical strategy.

Table 1 (column 1) reports mean characteristics for the sample of 
180 cities. The infant mortality rate was 86 per 1,000 live births, and 
decreased over the sample period (Figure 2a). The all-age mortality 
rate was 138 per 10,000 residents, and remained roughly stable in non-
pandemic years (Figure 2b). During the pandemic year, infant mortality 
exceeded its trend by 19 percent and all-age mortality exceeded its trend 
by 35 percent.

Table 1 reports estimated differences in city characteristics for medium 
coal capacity and high coal capacity relative to low coal capacity cities. We 
report unadjusted differences in outcomes (cols. 2 and 3) and propensity 

7 These calculations are derived from interpolated values of total installed generating capacity 
for electric utilities and industrial generating plants in 1912 and 1917 (U.S. Census Bureau 1976, 
p. 821).

8 Recent evidence from Illinois found that more than 40 percent of exposure occurred within 30 
miles of a power plant (Levy et al. 2002). Historically, air pollution would have been substantially 
more localized, given the increase in power plant smoke stack heights that has occurred over the 
past 50 years (Hales 1976, p. 10).

9 Given the paucity of data on early twentieth century city air quality, it is impossible to evaluate 
the contemporaneous link between local coal-fired capacity and air pollution.
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Table 1
SUMMARY STATISTICS

Differences Relative to Low Coal

Unadjusted Propensity Score Adjusted

Mean (All Cities)
(1)

Medium Coal
(2)

High Coal
(3)

Medium Coal
(4)

High Coal
(5)

Panel A: Infant and  all-age mortality, 1915–1925

Infant mortality rate,  
per 1,000 births

85.6 –1.53  
(2.43)

–1.76  
(3.46)

–3.65  
(2.58)

–5.81  
(3.57)

All-age mortality rate, 138.2 –11.20** –14.39*** –3.26 0.80
per 10,000 population (4.99) (4.97) (4.92) (5.47)

Infant mortality rate, 7.3 5.19 2.61 1.60 –4.31
∆ 1917–1915 (3.17) (3.53) (3.18) (4.39)

All-age mortality rate, 14.7 –0.27 0.99 –3.88 –5.95
∆ 1917–1915 (3.14) (3.69) (3.23) (4.32)

Infant mortality rate, –15.6 –4.04 –11.44** 1.08 –1.49
∆ 1925–1915 (4.25) (5.13) (4.17) (5.68)

All-age mortality rate, 12.1 –2.69 –4.72 0.51 1.49
∆ 1925–1915 (3.55) (4.63) (3.71) (4.78)

Excess infant mortality,  
in 1918 (percent)

18.5 7.45***  
(2.77)

10.50***  
(2.67)

7.64**  
(3.15)

10.80***  
(3.63)

Excess all-age mortality, 35.1 3.45 9.29*** 1.90 6.33**
in 1918 (percent) (2.15) (2.40) (2.29) (3.03)

Panel B: Coal and hydro capacity in 1915

Coal capacity,
< 30 miles (MWs)

182.8 50.7***  
(6.0)

473.3***  
(56.3)

22.9**  
(11.6)

420.2***  
(54.7)

Hydro capacity,
< 30 miles (MWs)

11.7 –8.7  
(6.8)

–25.0***  
(7.6)

–14.3  
(9.9)

–35.9**  
(14.1)

Panel C: Baseline population and  socioeconomic characteristics in 1910

Log population density, 8.59 0.053 0.397*** –0.067 0.168
in 1921 (0.094) (0.125) (0.107) (0.147)

Fraction urban 0.76 0.103*** 0.199*** 0.022 0.043
(0.029) (0.031) (0.030) (0.038)

Fraction white 0.95 0.019 0.022* 0.011 0.007
(0.017) (0.012) (0.019) (0.018)

Fraction foreign born 0.21 0.028**  
(0.014)

0.121***  
(0.015)

–0.017  
(0.013)

0.036**  
(0.016)

Fraction workers  
in manufacturing

0.34 0.054**  
(0.022)

0.087***  
(0.023)

–0.005  
(0.023)

–0.026  
(0.028)

Manufacturing payroll 5.25 0.23 –0.09 0.30 0.05
per worker, in 1900 (0.46) (0.46) (0.47) (0.494)

Residential coal per capita, 1 0.58*** 1.21*** 0.05 0.19
by tercile 0–2, in 1918 (0.13) (0.13) (0.11) (0.14)
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score adjusted differences (cols. 4 and 5).10 Over the full period, there 
is no statistically significant difference in unadjusted or adjusted infant 
mortality rates by coal capacity. There is a slightly negative relation-
ship between all-age mortality and coal capacity, indicating that healthier 
workers were somewhat more likely to reside in highly polluted cities, 
potentially drawn to better labor market opportunities. These differences 
are eliminated after adjusting for baseline socioeconomic conditions in 
columns 4 and 5.11 High and low coal cities are estimated to have had 

Table 1 (ConTinued)
SUMMARY STATISTICS

Differences Relative to Low Coal

Unadjusted Propensity Score Adjusted

Mean (All Cities)
(1)

Medium Coal
(2)

High Coal
(3)

Medium Coal
(4)

High Coal
(5)

Panel D: Other determinants of pandemic severity

Typhoid mortality rate per
100,000 population, 1900–1905

35.8 –9.8*  
(5.0)

–10.6*  
(6.2)

–11.9*  
(6.1)

–15.0*  
(8.4)

Late pandemic onset 0.29 –0.086  
(0.083)

–0.18**  
(0.077)

–0.03  
(0.092)

–0.06 
(0.105)

Distance to WWI base 87.5 –21.3  
(16.6)

–37.5**  
(15.1)

–31.1*  
(17.3)

–56.3***  
(19.7)

* = Significant at the 10 percent level.
** = Significant at the 5 percent level.
*** = Significant at the 1 percent level.
Notes: Column 1 reports unweighted average values for the  180 sample cities. Columns 2 and 3 report the  
difference in each relevant characteristic for medium and  high coal cities relative to low coal cities. These 
estimated differences are obtained from a single regression of the indicated characteristics on a dummy for 
medium and high coal (low coal is the omitted category) conditional on city longitude and latitude. Columns 
4 and 5 report the estimated difference in each characteristic conditional on longitude and latitude and a city-
specific propensity score. The  propensity score is obtained from an order probit regression model of tercile 
of coal capacity on baseline city socioeconomic conditions (log population, fraction white, fraction foreign  
born, fraction urban, log manufacturing employment, log manufacturing payroll per worker, and tercile of 
residential coal consumption). Robust standard errors are reported in parentheses. 
Sources: Authors’ calculations based on the Mortality Statistics, Haines and ICPSR (2010), and the U.S. 
Department of Agriculture (1916) (see text for details).

10 To construct propensity score adjusted differences we calculate a city-specific propensity 
score for tercile of coal use based on pre-pandemic socioeconomic conditions (log city population, 
fraction white, fraction foreign born, fraction urban, log manufacturing employment, log 
manufacturing payroll per worker, and tercile of residential coal consumption). Propensity scores 
are estimated using an ordered probit regression to allow for the three bin tercile specification. 
Adjusted differences in outcomes are then calculated using a linear regression model that controls 
for the propensity score.

11 These baseline differences suggest that the results are unlikely to be driven by the sorting of 
less healthy individuals into heavily polluted cities. Nevertheless, to the extent that less healthy 
individuals sorted into high pollution cities in ways that are not reflected by either pre-pandemic 
mortality rates or other socioeconomic variables, the estimates might overstate the influence of 
air pollution on pandemic severity.
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similar trends in mortality both prior to the pandemic and over the entire 
sample period. Despite these similarities in non-pandemic years, high 
coal cities experienced a differential rise in mortality in 1918. Cities in 
the top tercile had excess infant mortality rates that were 10.8 percentage 
points higher than cities in the bottom tercile, and the gap in excess all-age 
mortality rates was 6.3 percentage points. We also estimate large differ-
ences in coal-fired capacity across the three terciles that are not explained 
by baseline socioeconomic conditions (Panel B).

There were other differences in socioeconomic characteristics across 
the three terciles of coal-fired capacity. High coal cities were more popu-
lous, had larger manufacturing sectors, had a higher concentration of 
foreign-born residents, and burned more coal for residential use (Panels 
C and D). Adjusting for the propensity score largely eliminates these 
differences. To the extent that high and low coal cities were different in 
either pre-trends or levels, our empirical controls for both city and year 
fixed effects, and allows for differential non-pandemic trends in mortality 
and differential changes in mortality in 1918 according to each observ-
able pre-pandemic characteristic and baseline dependent variables.

EMPIRICAL FRAMEWORK

To study the effects of air pollution on pandemic mortality, we adopt 
a difference-in-differences approach that combines the sharp timing of 
the pandemic with large cross-city differences in coal-fired capacity. 

70
80

90
10

0
11

0
12

0
In

fa
nt

 m
or

ta
lit

y 
ra

te

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
Year

(a) Infant mortality

12
0

14
0

16
0

18
0

20
0

A
ll-

ag
e 

m
or

ta
lit

y 
ra

te

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
Year

(b) All-age mortality

Figure 2 
INFANT AND ALL-AGE MORTALITY, 1915–1925

Notes: This figure reports the annual mortality rate for the 180 cities used in the empirical analysis. 
The infant mortality rate is calculated per 1,000 live births in 1921. The all-age mortality rate is 
per 10,000 city residents in 1921.
Sources: Authors’ calculations based on the Mortality Statistics (various years).
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The empirical analysis is based on a comparison of average changes in 
mortality during the pandemic across cities with higher levels of coal-
fired capacity relative to changes in mortality in cities with lower levels 
of coal-fired capacity that had similar pre-pandemic observable charac-
teristics and similar pre-pandemic mortality rates.12 Formally, outcome 
Yct in city c and year t is regressed on city and year fixed effects (μc and 
λt), indicators for high coal capacity (Hc) and medium coal capacity (Mc) 
that are each interacted with year fixed effects, separate controls for pre-
pandemic mortality in 1915 and 1916 (Yc,pre) that are each interacted with 
year fixed effects, pre-pandemic county characteristics (Xc) that are each 
interacted with a linear time trend and an indicator for 1918, and an error 
term (εct):

Yct = β1t  Hc · λt + β2t  Mc · λt + γtYc,pre · λt + θXc · t + θ18Xc (1)
· I(18) + μc + λt + εct.

The coefficients for coal capacity (β1t and β2t) are allowed to vary in each 
year. We set 1917 as the reference year. As a result, each coefficient β1t 
(β2t) captures the differential change in mortality from 1917 to year t in 
high (medium) coal cities relative to the change in mortality in low coal 
cities over the same period. 

Equation (1) includes controls for baseline mortality in 1915 and 1916 
(separately) interacted with year fixed effects. These controls allow for 
differences in pandemic severity according to baseline population health. 
The vector Xc includes the baseline demographic and economic control 
reported in Table 1, panel C, along with city longitude and latitude. Each 
variable is interacted with a linear time trend and a dummy variable for 
1918.13 These controls allow for both differential trends in mortality and 
differential changes in mortality during the pandemic year according to 
city socioeconomic conditions and geography. 

The identification assumption is that the increase in mortality in 1918 
would have been similar across the three groups of cities in the absence 
of coal capacity differences. In practice, this assumption must hold after 
allowing for differential changes in mortality related to baseline city 
characteristics and pre-pandemic mortality rates. In the next section we 

12 The empirical strategy is similar to the approach used by Hornbeck (2012). 
13 Demographic controls include city population in 1921, and county-level variables for fraction 

urban, fraction foreign born, fraction nonwhite (all measured in 1910). Economic controls include 
manufacturing employment in 1910, manufacturing payroll per worker in 1900 (data is unavailable 
for 1910), and the tercile of residential coal use per capita in 1918 (Lesher 1918). Among other 
things, these manufacturing covariates control for alternative sources of city air pollution. 
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demonstrate the validity of the empirical methodology and assess threats 
to identification.

Two other estimation details are worth noting. First, the regressions 
are unweighted. Standard errors are clustered at the city level to adjust for 
heteroskedasticity and within-city correlation over time.

RESULTS

Infant and All-Age Mortality

To illustrate the empirical approach, Figure 3 graphs estimated βs with 
different sets of controls (see equation (1)).14 This “event-study” design 
compares changes in mortality in each year from 1915 to 1925 relative 
to the 1917 baseline year. The figure allows us to assess the identifi-
cation assumption that absent the pandemic, mortality in high and low 
coal cities would have trended similarly in 1918. The left-hand figures 
report the coefficient estimates from regression models that include city 
fixed effects, year fixed effects, and geographic controls that capture the 
spread of the virus.15 The right-hand figures report the coefficient esti-
mates from the fully specified regression model reported in equation 
(1), with additional controls for 1915 and 1916 mortality interacted with 
year along with the full set of demographic and economic covariates. 
Panel A reports the results for infant mortality, and panel B for all-age  
mortality. 

In 1918, infant mortality and all-age mortality in high-capacity and 
medium-capacity cities increased relative to low-capacity cities. The rise 
in 1918 mortality was particularly large in high-capacity cities. The rela-
tive increases in mortality were temporary, and in the years following 
the pandemic, mortality changes were similar across the three groups of 
cities. In contrast, there is no statistically significant relationship between 
coal capacity and changes in mortality in non-pandemic years, supporting 
our identifying assumption that mortality would have trended similarly in 
1918 in the absence of the pandemic.

Table 2, columns 1–3, reports results for infant mortality from esti-
mating equation (1). In column 1, we include city and year fixed effects 
along with controls for baseline mortality and geography. In column 2, 

14 The coefficient estimates with the confidence intervals are reported in Online Appendix 
Figures A.5 and A.6.

15 The geographic controls are city longitude and latitude, each interacted with a linear trend 
and a dummy variable for 1918.
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we add controls for baseline city demographic characteristics, and, in 
column 3, we include the full set of economic controls as described in 
equation (1). There is a strong relationship between coal capacity and 
pandemic-related infant mortality that is stable across the different speci-
fications. In 1918, infant mortality increased by 11.0 percent more in 
high-capacity cities and 7.8 percent more in medium-capacity cities than 
in low-capacity cities (column 3). 
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Figure 3
ESTIMATED DIFFERENCES IN MORTALITY BY COAL-FIRED CAPACITY, 1915–1925

Notes: This figure reports the coefficient estimates from event study regressions based on 
different versions of equation (1) in the text. The coefficients estimates are relative to the 1917 
baseline year. In each year, the solid line represents the differential change in log mortality in 
high coal relative to low coal cities (β1t), and the dashed line represents the differential change in 
medium coal relative to low coal cities (β2t). The left-hand figures report the coefficient estimates 
based on regression models that include only city fixed effects, year fixed effects, and geographic 
controls (longitude and latitude interacted with a linear time trend and an indicator for 1918). 
The righthand figures report the coefficient estimates based on the full set of controls from 
equation (1). The corresponding regression estimates with 95% confidence intervals are reported 
in Appendix Figures A.5 and A.6.
Sources: Authors’ calculations based on the Mortality Statistics (various years), Haines and 
ICPSR (2010), and the U.S. Department of Agriculture (1916) (see text for details).
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There were similarly large relative increases in pandemic all-age 
mortality in high coal cities. Table 2, columns 4–6, reports the coefficient 
estimates for the 1918 interaction effect for high and medium coal cities. 
In 1918, all-age mortality increased by an additional 9.6 percent in high-
capacity cities and 5.4 percent in medium-capacity cities as compared to 
changes in low-capacity cities (column 6). 

Table 2
THE EFFECT OF THE PANDEMIC ON MORTALITY, BY COAL-FIRED CAPACITY

Estimated Effect

Dependent variable: Log(infant mortality)
(1) (2) (3)

I(Year=1918) ×
 Medium vs. low coal capacity 0.0649** 0.0823** 0.0784** 

(0.0317) (0.0330) (0.0340)

 High vs. low coal capacity 0.0827*** 0.118*** 0.109**
(0.0317) (0.0380) (0.0424)

Observations 1,771 1,771 1,771
R-squared 0.827 0.831 0.834
Cities 180 180 180

Dependent variable: Log(all-age mortality)
(4) (5) (6)

I(Year=1918) ×
 Medium vs. low coal capacity 0.0301 0.0509** 0.0544**

(0.0232) (0.0255) (0.0258)

 High vs. low coal capacity 0.0671** 0.0881*** 0.0964***
(0.0270) (0.0327) (0.0350)

Observations 1,770 1,770 1,770
R-squared 0.921 0.926 0.926
Cities 180 180 180
City and year fixed effects Yes Yes Yes
1915 and 1916 mortality × year Yes Yes Yes
Geographic controls Yes Yes Yes
Demographic controls Yes Yes
Economic controls Yes
* = Significant at the 10 percent level.
** = Significant at the 5 percent level.
*** = Significant at the 1 percent level.
Notes: Each column reports the coefficient estimates from a different regression from versions 
of equation (1) in the text. The coefficient estimates represent the interaction effects for medium 
vs. low coal (β2,1918) and high vs. low coal (β1,1918 ). Geographic controls include city longitude 
and latitude. Demographic controls include city population, and county-level controls for fraction 
urban, fraction foreign born, and fraction nonwhite. Economic controls include manufacturing 
employment, manufacturing payroll per worker, and tercile of residential coal use. Controls are 
interacted with a linear time and an indicator for 1918. Standard errors are clustered at the city-level.
Sources: See Table 1.
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The differential increases in mortality in high- and medium-capacity 
cities during the pandemic year are consistent with the epidemiological 
and experimental evidence on the role of air pollution in increasing influ-
enza morbidity and mortality. The observed relationships could reflect 
the effects of air pollution exposure in the months prior to the pandemic, 
exposure during the pandemic, or some combination of the two.

Because the regression models control flexibly for trends based on pre-
pandemic mortality rates, the coefficient estimates capture the impact of 
coal capacity on pandemic mortality across cities with similar baseline 
health. In the fully specified model, we also include baseline demo-
graphic and economic covariates, each interacted with a time trend and 
a 1918 dummy to allow for differences in pandemic mortality according 
to each pre-pandemic factor. The fact that these covariates have very 
little impact on the main coefficient estimates strongly suggests that there 
was an independent relationship between coal capacity and pandemic 
mortality that was not driven by differences in population characteristics 
or industrial composition.  

To quantify the impact of air pollution on pandemic severity we calcu-
late the number of deaths attributable to coal, based on the coefficient 
estimates from Table 2 and compare these to the total number of excess 
deaths in 1918 in the sample population. Table 3 reports the results. The 
top panel reports the estimates of the total number of excess deaths in 
1918 for cities in each of the three terciles of coal capacity (see Online 
Appendix B). In total, we calculate that there were 158,000 excess deaths 
in 1918 in the sample.16 Given that our sample comprises roughly 30 
percent of the U.S. population, these calculations fall within the range of 
previous estimates of total U.S. pandemic mortality (Crosby 1989). 

We evaluate the number of pandemic-related deaths in a counterfac-
tual scenario in which coal capacity in high and medium is reduced to the 
low-capacity level. The calculations are derived based on the coefficient 
estimates in column 6 of Table 2. We rely on two different approaches 
to calculate the number of deaths averted. In the first approach, we 
multiply the total exposed population by the change in mortality prob-
ability implied by the regression coefficients. In the second approach, 
we compare the observed excess 1918 mortality rate to the counterfac-
tual excess mortality rate implied by the regression estimates (see Online 
Appendix B for calculations). Both approaches yield large counterfac-
tual reductions in mortality. We calculate that 30,000 to 42,000 total 

16 Infants accounted for less than 10 percent of total pandemic-related mortality.  
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deaths (5,600 to 6,500 infant deaths) would have been averted, a 19 to 
26 percent reduction in pandemic mortality. The majority of the deaths 
averted would have occurred in high-capacity cities. These cities tended 
to be more populous, so the health impacts of coal were particularly  
severe.  

The economic costs of air pollution during the pandemic were substan-
tial. Applying a $1.1 million (2015 dollars) value of a statistical life in 
1920 (Costa and Kahn 2004), we calculate that excess mortality in high 
and medium coal cities led to a loss of $45.9 billion, equivalent to almost 
6 percent of total U.S. GDP in 1918. These losses do not account for the 
morbidity effects and the losses in worker output in 1918. 

Poverty, Timing of Onset, Local Interventions, and Pandemic Mortality

Having established a link between coal capacity and pandemic 
mortality, we now explore other potential determinants of pandemic 
severity. Table 4 explores the importance of factors related to city poverty 
and the geographic spread of the pandemic throughout the country. 

We assess the impact of various proxies for city poverty on pandemic-
related mortality. We include measures of the percent white, percent 

Table 3
PANDEMIC-RELATED DEATHS AVERTED BY REDUCING COAL-FIRED CAPACITY

High Coal Medium Coal Low Coal All 
Cities Cities Cities Cities 

(1) (2) (3) (4) 

Excess deaths in 1918 
 Total 106,896 32,115 19,584 158,595 
 Per 10,000 population 56.6 46.2 45.5 52.2 
Deaths averted (approach 1) 
 Total 34,844 6,885 — 41,729 
 Per 10,000 population 18.5 9.9 13.7 

Deaths averted (approach 2) 
 Total 25,195 5,138 — 30,333 
Per 10,000 population 13.3 7.4 10.0 

Notes: Excess deaths in 1918 are calculated as the difference between ob served mortality in 1918 
and predicted mortality in 1918 based on a linear city-specific trend for the period 1915 to 1925. 
Estimates for approach 1 are calculated by multiplying the total population by the change in 
mortality probability implied by the estimated coefficients from Table 2, column 6. Esti mates for 
approach 2 are calculated by subtracting the coefficient estimates from Table 2, column 6 from 
observed excess mortality in 1918 and multiplying by total population. See Online Appendix B 
for details of calculations.
Sources: See Table 1. 
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foreign born, and the typhoid rate in 1900–1905, an indicator for poor 
quality of drinking water (Beach et al. 2016), all interacted with an indi-
cator for 1918.17 To separately identify the role of these poverty proxies, 
these regression models do not include baseline mortality controls. The 
coefficient estimates reflect the extent to which differences in various 
measures of socioeconomic conditions were related to pandemic  
severity. 

We find some evidence that city poverty and baseline health condi-
tions were related to pandemic mortality (Table 4, columns 1 and 2). 
Higher concentrations of foreign born are associated with excess all-age 
mortality, and the fraction white is negatively related to pandemic 
mortality although the coefficient estimates are not statistically signifi-
cant. Poor water quality, as proxied by typhoid mortality, is also posi-
tively related to all-age pandemic mortality.

Historians have argued that the timing of pandemic onset was related 
to its severity (Crosby 1989; Sydenstricker 1918). Researchers have 
claimed that the virus weakened over the course of the fall of 1918, so 
that locations that experienced a delayed onset were exposed to a less 
virulent strain. The ability of public officials to respond to the outbreak 
may also have been related to the timing of local onset. 

We assess whether factors related to the timing of onset were related to 
pandemic mortality. For this analysis, we omit controls for longitude and 
latitude to separately identify the role of geography. First, we use infor-
mation on the week of pandemic onset from Edgar Sydenstricker (1918). 
The pandemic first surfaced along the East Coast in early September, and 
moved westward, diffusing nationwide by mid-October. We construct 
a dummy variable for “late” arrival cities that experienced onset after 
September 27, and interact this variable with an indicator for 1918 to 
allow for differences in severity based on the time of onset.18 The results 
(reported in column 3) show that both infant and all-age mortality were 
significantly lower in late arrival cities, consistent with previous claims 
about the evolution of the virus.

Next, we assess the role of WWI in influencing local pandemic 
severity. The movement of military personnel is believed to have been 

17 Data on city typhoid mortality rates were compiled from Whipple (1908).
18 This specification is chosen to reflect the views of historians that the evolution of weekly 

pandemic virulence was nonlinear. In particular, estimates of weekly virulence from Baltimore, 
a city thought to be representative of the nation as a whole, indicate that the virus gained strength 
through September and then weakened significantly in mid-October (Sydenstricker 1918). In 
practice, we find qualitatively similar results in regression that use the continuous measure of 
week of onset. 
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an important determinant of pandemic timing. Alfred Crosby (1989), 
Gina Kolata (2001), John Barry (2004), and Carol Byerly (2010) provide 
detailed accounts of the pandemic in the military and the role of the Navy 
and Army in its spread. We digitized information on the location of major 
army training camps in 1918 (U.S. War Department 1919, p. 1519), and 
construct a dummy variable for whether a city was below- or above-
median distance from a base. We interact this variable with a 1918 indi-
cator to allow for differences in pandemic severity according to exposure 
to WWI military bases. The results (column 4) show that infant mortality 
was significantly higher in cities near a base. The coefficient estimates 
for all-age mortality are also positive, albeit smaller in magnitude and 
statistically insignificant.

Overall, the results in Table 4 support the historical narrative that both 
urban poverty and factors related to the timing of pandemic onset were 
related to local severity. Importantly, across all these alternative specifi-
cations and different samples, the impact of coal capacity remains stable, 
suggesting that the main results were not driven by one of these alterna-
tive mechanisms. 

Some researchers have argued that other local public interventions, 
such as quarantines and bans on public gatherings, influenced severity 
(Markel et al. 2007). To assess the role of the local public health effort, 
we use data from Markel et al. (2007) on local interventions for a sub-
sample of 32 cities and construct indicators for early and long-term inter-
ventions following their classification. We interact these indicators with 
the 1918 dummy, and re-estimate a simplified version of equation (1) for 
the sub-sample of cities.19 

The results are reported in Table 5. For comparison, we report the 
estimates from this modified specification in column 1. Restricting the 
sample to the 32 quarantine cities, the coefficient estimates for medium 
capacity are not statistically significant, although the coefficients for 
high coal-fired capacity remain statistically significant and similar in 
magnitude to the estimates in Table 2. The coefficient estimates for 
early and long-term intervention are negative although not statisti-
cally significant. Broadly, these findings support the conclusions of 
Markel et al. (2007) and Bootsma and Ferguson (2007) that local public 
health initiatives may have played a role in mitigating the effects of the  
pandemic.

19 Given the limited sample size, we use a restricted set of covariates for city and year fixed 
effects, and longitude/latitude and city population (each interacted with a linear time trend and an 
indicator for 1918). 

https://doi.org/10.1017/S002205071800058X Published online by Cambridge University Press

https://doi.org/10.1017/S002205071800058X


Clay, Lewis, and Severnini1200
Ta

b
le

 5
LO

C
A

L 
IN

TE
R

V
EN

TI
O

N
S 

A
N

D
 P

A
N

D
EM

IC
 S

EV
ER

IT
Y

* 
= 

Si
gn

ifi
ca

nt
 a

t t
he

 1
0 

pe
rc

en
t l

ev
el

. 
**

 =
 S

ig
ni

fic
an

t a
t t

he
 5

 p
er

ce
nt

 le
ve

l. 
**

* 
= 

Si
gn

ifi
ca

nt
 a

t t
he

 1
 p

er
ce

nt
 le

ve
l.

N
ot

es
: E

ac
h 

co
lu

m
n 

re
po

rts
 th

e 
co

ef
fic

ie
nt

 e
st

im
at

es
 fr

om
 a

 d
iff

er
en

t r
eg

re
ss

io
n.

 A
ll 

m
od

el
s 

ar
e 

es
tim

at
ed

 fo
r a

 re
st

ric
te

d 
se

t o
f c

on
tro

ls
 th

at
 in

cl
ud

e 
ci

ty
 a

nd
 y

ea
r fi

xe
d 

ef
fe

ct
s, 

an
d 

lo
ng

itu
de

/la
tit

ud
e 

an
d 

ci
ty

 p
op

ul
at

io
n 

(e
ac

h 
va

ria
bl

e 
in

te
ra

ct
ed

 w
ith

 a
 li

ne
ar

 ti
m

e 
tre

nd
 a

nd
 a

n 
in

di
ca

to
r f

or
 1

91
8)

. T
he

 c
oe

ffi
ci

en
t e

st
im

at
es

 re
pr

es
en

t t
he

 in
te

ra
ct

io
n 

ef
fe

ct
s 

fo
r m

ed
iu

m
 v

s. 
lo

w
 c

oa
l (

β 2,
19

18
), 

hi
gh

 v
s. 

lo
w

 c
oa

l (
β 1,

19
18

), 
an

d 
ch

ar
ac

te
ris

tic
s 

of
 lo

ca
l n

on
ph

ar
m

ac
eu

tic
al

 in
te

rv
en

tio
ns

 fo
r a

 s
am

pl
e 

of
 3

2 
ci

tie
s 

fr
om

 M
ar

ke
t e

t a
l. 

(2
00

7)
. E

ar
ly

 
an

d 
lo

ng
 in

te
rv

en
tio

ns
 a

re
 c

la
ss

ifi
ed

 a
cc

or
di

ng
 to

 M
ar

ke
t e

t a
l. 

(2
00

7)
, w

he
re

 “
ea

rly
 in

te
rv

en
tio

n”
 is

 a
 d

um
m

y 
va

ria
bl

e 
fo

r c
iti

es
 th

at
 im

pl
em

en
te

d 
no

np
ha

rm
ac

eu
tic

al
 in

te
rv

en
tio

ns
 

w
ith

in
 o

ne
 w

ee
k 

of
 p

an
de

m
ic

 o
ns

et
, a

nd
 “

lo
ng

 in
te

rv
en

tio
n”

 is
 a

 d
um

m
y 

va
ria

bl
e 

fo
r c

iti
es

 th
at

 m
ai

nt
ai

ne
d 

no
np

ha
rm

ac
eu

tic
al

 in
te

rv
en

tio
ns

 fo
r a

t l
ea

st
 6

5 
da

ys
. S

ta
nd

ar
d 

er
ro

rs
 

ar
e 

cl
us

te
re

d 
at

 th
e 

ci
ty

-le
ve

l. 
So

ur
ce

s:
 D

at
a 

on
 n

on
ph

ar
m

ac
eu

tic
al

 in
te

rv
en

tio
ns

 a
re

 fr
om

 M
ar

ke
t e

t a
l. 

(2
00

7)
; o

th
er

 so
ur

ce
s a

re
 d

es
cr

ib
ed

 in
 T

ab
le

 1
. 

Lo
g(

in
fa

nt
 m

or
ta

lit
y)

 
Lo

g(
 a

ll-
ag

e 
m

or
ta

lit
y)

 

Fu
ll 

Sa
m

pl
e 

Q
ua

ra
nt

in
e 

Sa
m

pl
e 

Fu
ll 

Sa
m

pl
e 

Q
ua

ra
nt

in
e 

Sa
m

pl
e 

(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

(7
) 

(8
) 

I(
Y

ea
r=

19
18

) ×
 

M
ed

 v
s. 

lo
w

 c
ap

ac
ity

 
0.

08
58

**
* 

–0
.0

33
2 

–0
.0

25
2 

–0
.0

10
4 

0.
04

63
* 

–0
.0

04
37

 
–0

.0
01

76
 

0.
01

94
 

(0
.0

30
3)

 
(0

.0
44

7)
 

(0
.0

41
7)

 
(0

.0
41

8)
 

(0
.0

26
0)

 
(0

.0
43

4)
 

(0
.0

45
1)

 
(0

.0
45

5)
 

H
ig

h 
vs

. l
ow

 c
ap

ac
ity

 
0.

14
1*

**
 

0.
09

25
* 

0.
09

34
* 

0.
10

8*
* 

0.
10

9*
**

 
0.

14
9*

**
 

0.
14

9*
**

 
0.

16
5*

**
 

(0
.0

30
9)

 
(0

.0
48

2)
 

(0
.0

47
3)

 
(0

.0
47

8)
 

(0
.0

29
0)

 
(0

.0
43

9)
 

(0
.0

43
6)

 
(0

.0
45

8)
 

Ea
rly

 in
te

rv
en

tio
n 

–0
.0

23
4 

–0
.0

07
61

 
(0

.0
34

6)
 

(0
.0

38
2)

 

Lo
ng

 in
te

rv
en

tio
n 

–0
.0

60
0 

–0
.0

62
6 

(0
.0

36
5)

 
(0

.0
44

5)
 

O
bs

er
va

tio
ns

 
1,

77
1 

34
0 

34
0 

34
0 

1,
77

0 
34

0 
34

0 
34

0 
R

-s
qu

ar
ed

 
0.

75
5 

0.
87

4 
0.

87
4 

0.
87

4 
0.

89
3 

0.
92

6 
0.

92
6 

0.
92

6 
C

iti
es

 
18

0 
32

 
32

 
32

 
18

0 
32

 
32

 
32

 
R

es
tri

ct
ed

 c
on

tro
ls

 
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

https://doi.org/10.1017/S002205071800058X Published online by Cambridge University Press

https://doi.org/10.1017/S002205071800058X


Pollution, Infectious Disease, and Mortality 1201

Robustness Checks

One potential concern with the previous results is misreporting of the 
mortality rate. Although infant and all-age deaths are generally thought to 
have been accurately recorded, underregistration of births could bias the 
estimates for infant mortality (Eriksson, Niemesh and Thomasson 2017). 
Moreover, because our measure of the infant mortality rate is constructed 
based on births in 1921 rather than contemporaneous births, annual 
fluctuations in fertility could bias the main estimates. We explore the 
sensitivity of the results to two alternate measures of the infant mortality 
rate: infant deaths per 1,000 annual births and infant deaths per 10,000 
city residents in 1921. Estimates based on the first measure will not be 
biased by annual fluctuations in fertility, although because a number of 
cities began collecting information on births midway through the sample 
period, we must omit roughly one-quarter of the sample. Meanwhile, the 
second measure will not be affected by reporting error due to the under-
registration of births.  

Table 6 reports the results based on the alternate measures of infant 
mortality, which are both highly correlated with the original dependent 
variable. For reference, column 1 reports the baseline results. Column 2 
reports the results based on infant deaths per 1,000 annual births. Despite 
the limited sample size, the estimated effects are similar in magnitude 
to the original findings. Column 3 reports the results based on infant 
death per city population in 1921. The coefficient estimates are also very 
similar to the baseline estimates, providing confidence that the main find-
ings were not influenced by mismeasurement of births. 

Table 7 provides a number of robustness checks. For reference, column 
1 reports the baseline specification. Columns (2) to (4) explore sensitivity 
to alternate control variables. In column 2, we add controls for linear 
state-specific trends to allow for differential trends in mortality across 
states. The results are not affected by these covariates. In column 3, we 
replace the control for log population with log population density. This 
covariate allows for differences in pandemic transmission, for example, 
due to crowding. Because we lack information on contemporaneous 
population density, this variable is constructed by dividing city popula-
tion in 1921 by city area reported in the 1944 City Books (Haines and 
ICPSR 2010).20 The coefficient estimates are very similar to the main 

20 The 1920 Census of Population only reported information on population density for cities 
with at least 100,000 residents. Among cities for which we observe both measures of population 
density, the correlation between the two variables is 0.89. 
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findings, consistent with epidemiological evidence showing no associa-
tion between population density and pandemic mortality (Grantz et al. 
2016). In column (4), we explore the sensitivity of the main findings to 
controls for the population age structure. We add controls for the fraction 
of the population age 18 to 44, who were particularly susceptible to the 
virus. The main findings are unaffected by this covariate. 

Columns (5) to (8) examine the sensitivity of the results to alternate 
specifications and samples. In column 5, we re-estimate the model based 
on the mortality rate in levels rather than logs. The estimated effects are 
statistically significant and economically important. For infant mortality, 
the coefficient estimates imply increases in pandemic mortality of 15 
(=13.0/85.5) percent and 9 (=7.6/85.5) percent in high coal and medium 
coal cities relative to low coal cities. For all-age mortality, the implied 
relative increases are 8 (=11.0/138.2) percent and 15 (=21.1/138.2) 
percent in high and medium coal cities. In column 6, we report the results, 
dropping cities for which more than one year of mortality data is missing. 
In column 7, we drop cities in the South. The coefficients on coal-fired 

Table 6
ROBUSTNESS TESTS: ALTERNATIVE MEASURES OF INFANT MORTALITY

* = Significant at the 10 percent level. 
** = Significant at the 5 percent level. 
*** = Significant at the 1 percent level.
Notes: Each column reports the coefficient estimates from a different regression. All models 
include the full set of controls reported in Table 2, column 3. The coefficient estimates represent 
the interaction effects for medium vs. low coal (β2,1918) and high vs. low coal (β1,1918). Standard 
errors are clustered at the city-level. 
Sources: See Table 1. 

Dependent Variable: Log(infant mortality)

Infant Deaths  
Per 1,000 Births in 

1921 (Baseline)

Infant Deaths  
Per 1,000  

Annual Births

Infant Deaths 
Per 10,000 City 

Population  
in 1921

(1) (2) (3) 

Correlation with baseline dep. var. 0.91 0.90 

I(Year=1918) × 
 Medium vs. low coal capacity 0.0784** 0.0602* 0.0751 ** 

(0.0340) (0.0333) (0.0328) 

 High vs. low coal capacity 0.109** 0.0874** 0.0106** 
(0.0424) (0.0441) (0.0411) 

Observations 1,771 1,380 1,771 
Cities 180 137 180 
Full controls Yes Yes Yes
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capacity remain similar to the baseline values in sign, significance, and 
magnitude. In column 8, we re-estimate the regressions for cities with at 
least 50,000 residents in 1921 to examine the sensitivity of the results to 
outlier mortality rates in smaller cities. The results are not sensitive to 
this sample restriction.21 

To conclude the empirical analysis, we provide two additional tests of 
the research design. First, we explore heterogeneity in the coal-pandemic 
relationship according to average city wind speed. Intuitively, the local 
impact of coal consumption should be mitigated by higher wind speeds, 
which disperse pollutants over a wider region (e.g., Wang and Ogawa 
2015). We assemble information on average annual speed at an eleva-
tion of 80 meters from the U.S. Department of Energy (2017), to iden-
tify cities above-median and below-median wind, and allow the effects 
of coal capacity to vary according to this variable.22 The results show 
uniformly larger mortality effects in low wind cities (column 9), consis-
tent with higher winds having mitigating the local health impacts of air 
pollution during the pandemic.

Second, we estimate a set of placebo regressions based on hydroelec-
tric capacity, which generated electricity but was emissions free. In these 
regressions we interact indicators for medium and high hydroelectric 
capacity with 1918. The results show no significant relationship between 
hydro capacity and excess infant or all-age mortality in 1918 (column 
10).23

CONCLUDING REMARKS

The 1918 Influenza Pandemic was an exceptional historical episode, 
with death rates 5 to 20 times higher than typical pandemics. A century 
later, the “Spanish Flu” continues to be an active area of historical anal-
ysis, with researchers seeking to understand its origin, the sources of its 
virulence, and its epidemiological features. Despite ongoing research, 
basic questions remain about the spread of the virus, and the sources of 
the stark regional patterns in mortality. 

21 Coefficient estimates based on winsorized mortality rates are also similar in magnitude and 
significance. 

22 We focus on wind speed at an 80m elevation rather than at ground level to capture the 
dispersion of pollutants from power plant smoke stacks that typically exceeded 50m in the early 
twentieth century (Hales 1976).

23 In addition to these robustness tests, we have also explored the sensitivity of the main findings 
to a number of additional controls. The main findings cannot be attributed to differences in the 
size of the population eligible for military service, differences in city weather conditions during 
the pandemic, or access to the railway system. 
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This article provides new evidence on the role of air pollution in exac-
erbating the pandemic. The effects of air pollution on pandemic mortality 
were sizeable. Cities with high levels of coal capacity collectively expe-
rienced tens of thousands of excess deaths in 1918. Our analysis suggests 
that pre-pandemic socioeconomic and health conditions also contributed 
to pandemic severity as did the timing of its spread throughout the country. 

Despite improvements in preventative practices and the development 
of modern antiviral drugs and vaccines, a moderately severe modern 
pandemic could lead to 2 million excess deaths worldwide (Fan, Jamison, 
and Summers 2016), and a pandemic virus with similar pathogenicity to 
the 1918 virus would likely kill more than 100 million (Taubenberger 
and Morens 2006). A better understanding of the factors that influenced 
mortality during 1918 Influenza Pandemic may offer critical insights for 
the mitigation of contemporary pandemics.

Although air quality has improved dramatically over the past 100 years 
in the United States, urban air pollution remains a major problem in many 
developing countries. In fact, pollution in cities in India and China is 
comparable to levels in the United States in the early twentieth century 
(Online Appendix Table A.2). This study’s findings thus have particular 
relevance to the developing world, where air pollution is often severe 
and where there is limited medical infrastructure. Further research on 
more recent outbreaks may help shed light on the potential for improved 
medical treatments and targeted pollution abatement strategies to miti-
gate the risks posed by a global pandemic. 
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