A GENERALIZATION OF CAUCHY'S DOUBLE ALTERNANT

David Carlson* and Chandler Davis**

(received October 21, 1963)

1. Introduction. The subject of alternants and alternating functions was widely studied during the last century (cf. Muir [6]). One of the best-known alternants is actually a double alternant (rows and columns) defined by Cauchy [2] in 1841. Cauchy's result may be stated as follows: If $D = [d_{pq}]$, p,q = 1,...,n, where $d_{pq} = (x_p + y_q)^{-1}$, then

(1) det D =
$$\frac{\prod_{\substack{1 \le p \le q \le n}} (x_q - x_p)(y_q - y_p)}{\prod_{\substack{1 \le p, q \le n}} (x_p + y_q)}$$

This result is used in several recent papers (cf. Hahn [3] and Marcus and Thompson [5]). In this paper we give a generalization (no longer an alternant) of Cauchy's matrix. In [1] Carlson gives bounds on the rank and inertia of Hermitian H which satisfy $R(AH) \ge 0$, of specified rank r. For the case when A is diagonalizable, Cauchy's result may be used to prove that the bounds are best-possible. When A is not diagonalizable, perturbation arguments do not seem to work, and a special case of our result, briefly indicated in §6 below, was employed in place of Cauchy's result in [1].

**

Research was supported in part by NSF Grant No. GP-1249.

Canad. Math. Bull. vol. 7, no. 2, April 1964

^{*} Now at Oregon State University. Research was supported in part by NSF Grant No. G-19052.

2. <u>Definitions</u>. Let $e_1, e_2, \ldots, e_k, f_1, f_2, \ldots, f_l$ k lbe positive integers such that $\Sigma e_p = \Sigma f_q = n$. Let p=1 p = q=1 q $x_1, \ldots, x_k, y_1, \ldots, y_l$ be given complex numbers for which (2) $x_p + y_q \neq 0$ for all p, q. We define an $n \times n$ matrix $D = [D_{pq}], p = 1, \ldots, k; q = 1, \ldots, l$,

we define an $n \times n$ matrix $D = [D_{pq}], p = 1, ..., k; q = 1, ..., l$, by defining each D_{pq} as an $e_p \times f$ matrix $[d_{ij}(x, y_q)],$ $i = 1, 2, ..., e_j; j = 1, 2, ..., f$. Here the functions d_{ij} are given by

(3)
$$d_{ij}(x, y) = (-1)^{i+j} \begin{pmatrix} i+j-2 \\ j-1 \end{pmatrix} (x+y)^{1-i-j}$$

We illustrate the form of D for $e_1 = 3$, $e_2 = 1$, $f_1 = 1$, $f_2 = 3$.

$$D = \begin{bmatrix} (x_1 + y_1)^{-1} & (x_1 + y_2)^{-1} & -(x_1 + y_2)^{-2} & (x_1 + y_2)^{-3} \\ -(x_1 + y_1)^{-2} & -(x_1 + y_2)^{-2} & 2(x_1 + y_2)^{-3} & -3(x_1 + y_2)^{-4} \\ (x_1 + y_1)^{-3} & (x_1 + y_2)^{-3} & -3(x_1 + y_2)^{-4} & 6(x_1 + y_2)^{-5} \\ (x_2 + y_1)^{-1} & (x_2 + y_2)^{-1} & -(x_2 + y_2)^{-2} & (x_2 + y_2)^{-3} \end{bmatrix}$$

We note that if $e_1 = \ldots = e_k = f_1 = \ldots = f_\ell = 1$, we have $D = [d_{11}(x_p, y_q)] = [(x_p+y_q)^{-1}]$, which is Cauchy's double alternant.

3. THEOREM. For D defined above, we have

274

(4) det D =
$$\frac{\prod_{\substack{1 \le p \le q \le k}} (x_q - x_p)^{pq} \prod_{\substack{q \ge p \le q \le l}} (y_q - y_p)^{pq}}{\prod_{\substack{e \ f \ p \le q \le l}} (x_q - y_p)^{pq}} \prod_{\substack{e \ f \ p \le q \le l}} (x_q - y_q)^{pq}$$

4. Note. We shall use (without proof; cf. [4], p. 205-206) the formula which follows: For any n-differentiable function f, let $f[x, \ldots, x, z]$ be the n-th divided difference of f with respect to x, \ldots, x (n times), z. Then

(5)
$$f(z) = \sum_{m=1}^{n-1} (1/m!) f^{(m)}(x) (z-x)^m + f[x, ..., x, z] (z-x)^n$$

m=1

and

(6)
$$\lim_{z \to x} f[x, ..., x, z] = (1/n!) f^{(n)}(x)$$

5. <u>Proof of Theorem</u>. We shall prove the theorem inductively. For $e_1 = \dots = e_k = f_1 = \dots = f_\ell = 1$, and any $x_1, \dots, x_k, y_1, \dots, y_\ell$ satisfying (2), the matrix D reduces to Cauchy's double alternant, and (4) reduces to (1) (for a simple proof of (1) see [5], p. 7). Our inductive inference is:

(7) the conclusion (4) holds for $e_1, \ldots, e_k, f_1, \ldots, f_l (e_1 > 1)$ and $x_1, \ldots, x_k, y_1, \ldots, y_l$ satisfying (2), if it holds for

 $e_1 = 1, 1, e_2, \dots, e_k, f_1, \dots, f_l$ and $x_1, z, x_2, \dots, x_k, y_1, \dots, y_l$ satisfying (2).

Let us see why (7) is enough to make the induction go. First, both sides of (4) are affected the same by rearrangements of rows of D; hence the fact that (7) refers to confluence of the first rows with the e_1 th row is no restriction. (7) will prove that any confluence of a single row with a group of other rows preserves (4). Second, the columns and rows enter into (4) symmetrically; thus it suffices to prove (7).

Let D denote (in accord with the previous notation) the matrix for which we are to prove (4). Let a matrix agreeing with D in all rows except the e_1 th, and having in that row the elements g_{jq} (q = 1,...,l; j = 1,...,f), be denoted $F(g_{jq})$. Thus $D = F(d_{e_1j}(x_1, y_q))$. The matrix for which (4) is asserted by the inductive hypothesis is $F(d_{1j}(z, y_q))$. Here d is defined by (3). We know $x_1 + y_q \neq 0$ for all q, and we will soon let $z \rightarrow x_1$, so we are assuming $z + y_q \neq 0$.

Now d_{ij} is an infinitely differentiable function of its first argument, so let us apply (5) to $d_i(x) \equiv d_{ij}(x, y_q)$ (the dependence on j and y is not indicated in the next few equations):

(8)
$$d_i(z) = \sum_{m=0}^{\infty} m! - 1 d_i^{(m)}(x_1)(z - x_1)^m + d_i[x_1, \dots, x_1, z](z - x_1)^{e_1 - 1}$$

From (3) we compute $d'_i = id_{i+1}$ and hence by induction

(9)
$$d_1^{(m)} = m! d_{m+1}$$

Substituting (9) in (8), we have

$$d_{1}(z) = \sum_{m=1}^{e_{1}-1} d_{m}(x_{1})(z-x_{1})^{m-1} + d_{1}[x_{1}, \dots, x_{1}, z](z-x_{1})^{e_{1}-1},$$

and from this we obtain

(10)
$$d_1[x_1, \dots, x_1, z] = d_1(z)(z - x_1)$$

 $\begin{pmatrix} 1 - e & e_1 - 1 & m - e_1 \\ - & \Sigma & d_m(x_1)(z - x_1) \\ m = 1 & m = 1 \end{pmatrix}$

On the other hand, by (6) and (9) we have

(11)
$$\lim_{z \to x_1} d_1[x_1, \dots, x_1, z] = ((e_1 - 1)!)^{-1} d_1^{(e_1 - 1)}(x_1) = d_{e_1}(x_1).$$

This completes the preliminaries to relating the determinants of D and $F(d_{1i}(z, y_{q}))$.

Applying the inductive hypothesis and dividing the e_1 th e_1^{-1} row of $F(d_{1j}(z,y_q))$ by $(z-x_1)^{-1}$, we obtain the following:

(12) det
$$F(d_{1j}(z, y_q)(z-x_1)) =$$

$$\frac{\prod_{\substack{(x_q-x_p) \\ 2 \le p \le q \le k}} e^{e_{p} \cdot q} \prod_{\substack{(x_p-x_1) \\ 2 \le p \le k}} e^{(e_1-1)e_{p}} \prod_{\substack{(x_p-z) \\ 2 \le p \le k}} e^{e_{p} \cdot q} \prod_{\substack{(x_p-y_p) \\ 1 \le p \le q \le l}} \frac{\prod_{\substack{(x_1+y_q) \\ 2 \le p \le k}} e^{e_1-1} (x_1+y_q) \prod_{\substack{(x_p+y_q) \\ 2 \le p \le k}} e^{e_{p} \cdot q} e^$$

Without affecting this value for the determinant, we can modify $1 - e_{1}$ the e_{1} th row of the matrix $F(d_{1j}(z, y_{q})(z - x_{1})^{1})$ by subtracting $m - e_{1}$ from it $(z - x_{1})^{1}$ times the mth row, for each $m = 1, \ldots, e_{1} - 1$. Referring to (10), one sees that we have proved det $F(d_{1}[x_{1}, \ldots, x_{1}, z])$ equals (12). But now let z approach x_{1} . The matrix, by (11), approaches $F(d_{e_{1}j}(x_{1}, y_{q})) = D$, while (12) plainly approaches the desired expression (4). This completes the proof.

6. <u>Remark.</u> If $e_p = f_p$ and $y_p = x_p$ (in this case, (2) is equivalent to $x_p + \overline{x}_q \neq 0$ for all p and q) then the matrix D is Hermitian. By numbering the blocks of D appropriately

we can assume for suitable s and t $(0 \le s \le t \le k)$ the following properties:

(13) $\{x_1, \dots, x_t\}$ is a maximal set of distinct elements of x_1, \dots, x_k ,

(14)
$$\operatorname{Re}(x_{p}) > 0$$
 if $1 \le p \le s$, $\operatorname{Re}(x_{p}) < 0$ if $s + 1 \le p \le t$,
p

and

(15) for $p \le t$, $e_p \ge e_q$ if $x = x_q$ (necessarily $q \ge t$).

Then it is an easy consequence of (4) and the theorems of [1] s t that D has Σ e positive and Σ e negative eigenvalues. p=1 p=s+1 p

REFERENCES

- David Carlson, Rank and inertia theorems for matrices, the semi-definite case, Ph. D. thesis, University of Wisconsin, Madison, Wisconsin, 1963.
- A. Cauchy, Mémoire sur les fonctions alternées et sur les sommes alternées. Exer. d'analyse et de phys. math., ii, pp. 151-159 (1841); or Oeuvres complètes IIe série xii.
- Wolfgang Hahn, Eine Bemerkung zur zweiten Methode von Lyapunov, Math. Nachrichten, 14 (1955), 349-354.
- A.S. Householder, Principles of Numerical Analysis, McGraw-Hill, New York, 1953.
- 5. Marvin Marcus and R.C. Thompson, The field of values of the Hadamard Product, University of British Columbia, Vancouver, 1962.
- Thomas Muir, The Theory of Determinants, Dover, New York, 1960.

University of Wisconsin University of Toronto

278