A GENERALIZATION OF CAUCHY'S DOUBLE ALTERNANT

David Carlson* and Chandler Davis**

(received October 21, 1963)

1. Introduction. The subject of alternants and alternating functions was widely studied during the last century (cf. Muir [6]). One of the best-known alternants is actually a double alternant (rows and columns) defined by Cauchy [2] in 1841. Cauchy's result may be stated as follows: If $D=\left[d_{p q}\right], p, q=1, \ldots, n$, where $d_{p q}=\left(x_{p}+y_{q}\right)^{-1}$, then

$$
\begin{equation*}
\operatorname{det} D=\frac{1 \leq p<q \leq n \quad\left(x_{q}-x_{p}\right)\left(y_{q}-y_{p}\right)}{\Pi} . \tag{1}
\end{equation*}
$$

This result is used in several recent papers (cf. Hahn [3] and Marcus and Thompson [5]). In this paper we give a generalization (no longer an alternant) of Cauchy's matrix. In [1] Carlson gives bounds on the rank and inertia of Hermitian H which satisfy $R(A H) \geq 0$, of specified rank r. For the case when A is diagonalizable, Cauchy's result may be used to prove that the bounds are best-possible. When A is not diagonalizable, perturbation arguments do not seem to work, and a special case of our result, briefly indicated in $\S 6$ below, was employed in place of Cauchy's result in [1].

[^0]Canad. Math. Bull. vol. 7, no. 2, April 1964

> 2. Definitions. Let $e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots, f_{\ell}$ be positive integers such that $\sum_{p=1}^{k} e_{p}=\sum_{q=1}^{\ell} f_{q}=n$. Let $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}$ be given complex numbers for which
(2) $\mathrm{x}_{\mathrm{p}}+\mathrm{y}_{\mathrm{q}} \neq 0$ for all p, q.

We define an $n \times n$ matrix $D=\left[D_{p q}\right], p=1, \ldots, k ; q=1, \ldots, l$, by defining each $D_{p q}$ as an $e_{p} \times f_{q} \operatorname{matrix}\left[d_{i j}\left(x_{p}, y_{q}\right)\right]$, $i=1,2, \ldots, e_{p} ; j=1,2, \ldots, f_{q}$. Here the functions $d_{i j}$ are given by
(3) $\quad d_{i j}(x, y)=(-1)^{i+j}\binom{i+j-2}{j-1}(x+y)^{1-i-j}$.

We illustrate the form of D for $e_{1}=3, e_{2}=1, f_{1}=1, f_{2}=3$.
$D=\left[\begin{array}{cccc}\left(x_{1}+y_{1}\right)^{-1} & \left(x_{1}+y_{2}\right)^{-1} & -\left(x_{1}+y_{2}\right)^{-2} & \left(x_{1}+y_{2}\right)^{-3} \\ -\left(x_{1}+y_{1}\right)^{-2} & -\left(x_{1}+y_{2}\right)^{-2} & 2\left(x_{1}+y_{2}\right)^{-3} & -3\left(x_{1}+y_{2}\right)^{-4} \\ \left(x_{1}+y_{1}\right)^{-3} & \left(x_{1}+y_{2}\right)^{-3} & -3\left(x_{1}+y_{2}\right)^{-4} & 6\left(x_{1}+y_{2}\right)^{-5} \\ \left(x_{2}+y_{1}\right)^{-1} & \left(x_{2}+y_{2}\right)^{-1} & -\left(x_{2}+y_{2}\right)^{-2} & \left(x_{2}+y_{2}\right)^{-3}\end{array}\right]$
We note that if $e_{1}=\ldots=e_{k}=f_{1}=\ldots=f_{l}=1$, we have $\mathrm{D}=\left[\mathrm{d}_{11}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{q}}\right)\right]=\left[\left(\mathrm{x}_{\mathrm{p}}+\mathrm{y}_{\mathrm{q}}\right)^{-1}\right]$, which is Cauchy' s double alternant.
3. THEOREM. For D defined above, we have
(4)

4. Note. We shall use (without proof; cf. [4], p. 205-206) the formula which follows: For any n-differentiable function f, let $f[x, \ldots, x, z]$ be the n-th divided difference of f with respect to x, \ldots, x (n times), z. Then

$$
\begin{equation*}
f(z)=\sum_{m=1}^{n-1}(1 / m!) f^{(m)}(x)(z-x)^{m}+f[x, \ldots, x, z](z-x)^{n} \tag{5}
\end{equation*}
$$

and
(6) $\quad \lim f[x, \ldots, x, z]=(1 / n!) f^{(n)}(x)$. $\mathrm{z} \rightarrow \mathrm{x}$
5. Proof of Theorem. We shall prove the theorem inductively. For $e_{1}=\ldots=e_{k}=f_{1}=\ldots=f_{l}=1$, and any $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}$ satisfying (2), the matrix D reduces to Cauchy's double alternant, and (4) reduces to (1) (for a simple proof of (1) see [5], p. 7). Our inductive inference is:
(7) the conclusion (4) holds for $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{\ell}\left(e_{1}>1\right)$
and $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}$ satisfying (2), if it holds for
$e_{1}-1,1, e_{2}, \ldots, e_{k}, f_{1}, \ldots, f_{l}$ and $x_{1}, z, x_{2}, \ldots, x_{k}, y_{1}, \ldots, y_{l}$
satisfying (2).
Let us see why (7) is enough to make the induction go. First, both sides of (4) are affected the same by rearrangements of rows of D; hence the fact that (7) refers to confluence of the first rows with the e_{1} th row is no restriction. (7) will prove that any confluence of a single row with a group of other
rows preserves (4). Second, the columns and rows enter into (4) symmetrically; thus it suffices to prove (7).

Let D denote (in accord with the previous notation) the matrix for which we are to prove (4). Let a matrix agreeing with D in all rows except the e_{1} th, and having in that row the elements $g_{j q}\left(q=1, \ldots, \ell ; j=1, \ldots, f_{q}\right)$, be denoted $F\left(g_{j q}\right)$. Thus $D=F\left(d_{e_{1}}\left(x_{1}, y_{q}\right)\right)$. The matrix for which (4) is asserted by the inductive hypothesis is $F\left(d_{1 j}\left(z, y_{q}\right)\right)$. Here $d_{i j}$ is defined by (3). We know $x_{1}+y_{q} \neq 0$ for all q, and we will soon let $z \rightarrow x_{1}$, so we are assuming $z+y_{q} \neq 0$.

Now d_{ij} is an infinitely differentiable function of its first argument, so let us apply (5) to $d_{i}(x) \equiv d_{i j}\left(x, y_{q}\right)$ (the dependence on j and y_{q} is not indicated in the next few equations):
(8) $\quad d_{i}(z)=\sum_{m=0}^{e_{1}^{-1}} m!^{-1}{\underset{i}{(m)}\left(x_{1}\right)\left(z-x_{1}\right)^{m}+d_{i}\left[x_{1}, \ldots, x_{1}, z\right]\left(z-x_{1}\right)^{e_{1}^{-1}} .}^{-}$

From (3) we compute $d_{i}=i d_{i+1}$ and hence by induction
(9) $\quad d_{1}^{(m)}=m!d_{m+1}$.

Substituting (9) in (8), we have

$$
d_{1}(z)=\sum_{m=1}^{e_{1}^{-1}} d_{m}\left(x_{1}\right)\left(z-x_{1}\right)^{m-1}+d_{1}\left[x_{1}, \ldots, x_{1}, z\right]\left(z-x_{1}\right)^{e_{1}^{-1}}
$$

and from this we obtain
(10) $d_{1}\left[x_{1}, \ldots, x_{1}, z\right]=d_{1}(z)\left(z-x_{1}\right)^{1-e_{1}}-\sum_{m=1}^{e_{1}^{-1}} d_{m}\left(x_{1}\right)\left(z-x_{1}\right)^{m-e} 1$.

On the other hand, by (6) and (9) we have
(11) $\lim _{z \rightarrow x_{1}} d_{1}\left[x_{1}, \ldots, x_{1}, z\right]=\left(\left(e_{1}-1\right)!\right)^{-1} d_{1}^{\left(e_{1}-1\right)}\left(x_{1}\right)=d_{e_{1}}\left(x_{1}\right)$.

This completes the preliminaries to relating the determinants of D and $F\left(d_{1 j}\left(z, y_{q}\right)\right)$.

Applying the inductive hypothesis and dividing the e_{1} th row of $F\left(d_{1 j}\left(z, y_{q}\right)\right)$ by $\left(z-x_{1}\right)^{e^{-1}}$, we obtain the following:
(12) $\operatorname{det} F\left(d_{1 j}\left(z, y_{q}\right)\left(z-x_{1}\right)^{1-e^{1}}\right)=$

Without affecting this value for the determinant, we can modify the e_{1} th row of the matrix $F\left(d_{1 j}\left(z, y_{q}\right)\left(z-x_{1}\right)^{1-e}{ }^{1}\right)$ by subtracting from it $\left(z-x_{1}\right)^{m-e} 1$ times the moth row, for each $m=1, \ldots, e_{1}-1$. Referring to (10), one sees that we have proved $\operatorname{det} F\left(d_{1}\left[x_{1}, \ldots, x_{1}, z\right]\right)$ equals (12). But now let z approach x_{1}. The matrix, by (11), approaches $F\left(d_{e_{1}}\left(x_{1}, y_{q}\right)\right)=D$,
while (12) plainly approaches the desired expression (4). This completes the proof.
6. Remark. If $e_{p}=f_{p}$ and $y_{p}=\bar{x}_{p}$ (in this case, (2) is equivalent to $x_{p}+\bar{x}_{q} \neq 0$ for all p and $\left.q\right)$ then the matrix D is Hermitian. By numbering the blocks of D appropriately
we can assume for suitable s and $t(0 \leq s \leq t \leq k)$ the following properties:
(13) $\left\{x_{1}, \ldots, x_{t}\right\}$ is a maximal set of distinct elements of x_{1}, \ldots, x_{k},
(14) $\operatorname{Re}\left(\mathrm{x}_{\mathrm{p}}\right)>0$ if $1 \leq \mathrm{p} \leq \mathrm{s}, \operatorname{Re}\left(\mathrm{x}_{\mathrm{p}}\right)<0$ if $\mathrm{s}+1 \leq \mathrm{p} \leq \mathrm{t}$, and

$$
\begin{equation*}
\text { for } p \leq t, e_{p} \geq e_{q} \text { if } x_{p}=x_{q} \text { (necessarily } q \geq t \text {). } \tag{15}
\end{equation*}
$$

Then it is an easy consequence of (4) and the theorems of [1] that D has $\sum_{p=1}^{s} e_{p}$ positive and $\sum_{p=s+1}^{t} e_{p}$ negative eigenvalues.

REFERENCES

1. David Carlson, Rank and inertia theorems for matrices, the semi-definite case, $\mathrm{Ph} . \mathrm{D}$. thesis, University of Wisconsin, Madison, Wisconsin, 1963.
2. A. Cauchy, Mémoire sur les fonctions alternées et sur les sommes alternées. Exer. d'analyse et de phys. math., ii, pp. 151-159 (1841); or Oeuvres complètes Ile série xii.
3. Wolfgang Hahn, Eine Bemerkung zur zweiten Methode von Lyapunov, Math. Nachrichten, 14 (1955), 349-354.
4. A.S. Householder, Principles of Numerical Analysis, McGraw-Hill, New York, 1953.
5. Marvin Marcus and R.C. Thompson, The field of values of the Hadamard Product, University of British Columbia, Vancouver, 1962.
6. Thomas Muir, The Theory of Determinants, Dover, New York, 1960.

University of Wisconsin
University of Toronto

[^0]: * Now at Oregon State University. Research was supported in part by NSF Grant No. G-19052.
 ** Research was supported in part by NSF Grant No. GP-1249.

