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Double Binary Forms IV.*

(1) Apolarity; (2) Automorphic Transformations.

By Professor H. W. TURNBULL.

(Bead 6th February 1928. Received 12th April

§ 1. Introduction.
The first part of the following investigation was begun before

the discovery that Mr E. KASNER had already touched upon the
apolarity theory of double binary forms in an important work on
the Inversion Group (Transactions of the American Mathematical
Society, Vol. I (1900), pp. 471-473). The theory is carried further
in what follows, with special reference to the (2, 2) form. The
second part answers questions raised by Professor A. R. FORSYTH

in the Quarterly Journal, 1910, p. 113. It appears that the general
(2, 2) form admits of three independent automorphic transforma-
tions, but the general («, n) form admits of none, if n exceeds two.

An automorphic transformation is here a linear transformation
of the two independent binary variables of the (n, n) form, which
leaves the form unaltered except for a possible non-zero numerical
factor.

§ 2. Apolarity.
Let x, y be two independent variables and let two (m, n) forms

f, (j> be denoted as follows :

* » - * " . (2)

These forms are said to be apolar to each other if their line-linear
invariant

if, *r"-W"(«'6r=g(-r
vanishes identically.

* Previous discussions by the author are (1) Proc. Soy. Soc. Edin.,
XLIII. (1922-3), pp. 43-50; (2) Proc. Edin. Math. Soc, XII . (1922-3),
pp. 116-127, and (3) Proc. Roy. Soc. Edin., XLIV. (1923-4) pp. 23-50.
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Thus the apolar relation is symmetrical; also any form of total
odd order is apolar to itself.

Since the number of terms in the (m, n) form is (m+ 1) (n+ 1),
we can always find A. linear independent forms apolar to

linearly independent given forms : for the apolar condition is linear
in the coefficients of both forms.

Again if ^ is a form of orders (m + p, n + <r) where piO, <r>0,
/ i s apolar to ^ if

identically. So J is apolar to all polars of \p whose orders are not
less than m and n respectively.

§ 3. Connection with quaternary forms.
Kasner* points out that if m = n this apolarity condition is

equivalent to a certain projective apolarity condition of quaterrary
forms. This is most easily seen as follows:

Let quaternary variables £,, £2> £» £<> when limited to a certain
quadric, be defined by

xy x y \

Also let symbols r(, s{ be chosen such that

P

where r, = r ^ + rj£2 + r,£,

and dx = &tfc + 2̂» **y = *hy "̂" ŝ»

with a similar set for s in terms of the symbols 6, V. Then the
double binary equi-form (n, n) corresponds to a unique quaternary
form of order n; namely

/ = a^af corresponds to F=r*l,

and <$> = b*by ,, ,, # = «£,

* Loc. eit.
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and conversely, provided that these quaternary forms F, 4> each
satisfy the apolar conditions

with regard to the quadric

2 ( ^ - ^ 3 ) - ? | = ? | = ̂ 2 (7)

Geometrically f this correspondence is represented by stereo-
graphic projection from a sphere Q to a plane II, the quadric (7)
representing a sphere. If

x = X+iY y = X-iY,

then X, Fare rectangular Cartesian coordinates in the plane II j
/=0 , 4> = 0 are the equations of two (n, n) circular curves in this
plane; while F=0, # = 0 are the equations of two surface's of
order n through the spherical curves answering in this projection
to the plane curves. Equations (6) single out, from each singly
infinite system of n*11 order surfaces containing one spherical curve,
a unique surface apolar to the sphere.

If now we take the six line coordinates p^i, j=*\, 2, 3, 4 ; i =tj)
in space and write the line complex equation of the sphere as

0 = {qq'pf = (Qpf = (Q'pf = (Q"Pf = ... = {QMpf (8)

where Q, Q'...a,re equivalent symbols and

(Qp) = I m&u I.
then the apolarity conditions for double binary forms are readily
translated into quaternary symbols. In fact

'6')" = O (9)

becomes a condition which is identically true if n is odd, and
becomes

I={rsQ)\rsQlf...(rsQ^f = O (10)

when n is even, the number of factors (rsQ)2 here being \n. The
degrees of this invariant / are (1, 1, n) in the coefficients of F, 3>, and
the sphere respectively.

* An expretsire notation, apparently due to Dr R. Weitzenbock, meaning
tha*> the preceding statements are true/or ail values of£.

t Of. Proc. Roy. Soc. Edin, XLIV. p. 23.
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Conversely it is easy to shew that the only such invariant of
degrees (1, 1, n) in these coefficients is, in its symbolic form,

II (rsq^q'm)

where the 2n symbols qmq'm are composed of n pairs of equivalent
symbols q, q; q\ q'; . . . . Also this product reduces to zero if n is
odd, and to a numerical multiple of / if n is even, by a simple use
of the fundamental symbolic identities, such as

2(rsqq') (rsqq") (rsq'q'") = (rsqq'f(rsqq'").

To prove the equivalence of (9) and (10), we use the ratios (5)
and the values of qv given by (7), namely

?i4 = - ?!3 = 1. otherwise qv = 0: q= q',

9V = MJ'=9/1I'> hj> = l> 2> 3» 4-

Also by (5) rxri = riri, slsi = si8s. Thus

(rsQf = (rsqq'f = 2

on substituting its real values for §',

= - 2 {r^

using rlrl = r2r3 and s,«4 = «2s3,

= -j(ab)\a'b'f,

whence, if n is even,

/»:/=(-)?2"(a6)-(o'6')? (11)
The form (10) of the quaternary equivalent of double binary

apolarity is the proper interpretation to take since it is linear and
also symmetrical in the coeiEcients of the quaternary w-ics corre-
sponding to the given double binary forms. I t also lends itself to
the case of two equi-forms of orders (n + \, n + X) and (n, n) X>0.
The apolarity condition then is

where r?+ ? l is the higher of the two corresponding quaternary

forms.
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Other interpretations of (10) can however be given. Thus if
in (10) r is replaced throughout by u, where u denotes plane
coordinates contragredient to £, then (10) becomes the tangential
equation of the polar reciprocal "¥ of the surface 4> with regard to
the sphere. For the polar plane of a point (x) with regard to the
sphere has coordinates

and the result of substituting these values of ut for r in / vanishes
owing to conditions (6).

The same also holds with everything as between r and s inter-
changed. Hence

When I vanishes, the surface F is apolar to this polar reciprocal
of $, and •£ is apolar to the polar reciprocal of F: and the spherical
curves determined by F and 4> are then apolar to each other th the
double binary sense.

§4. The (2,2) form.

If m = n — 2 the form / h a s four linearly independent (1, 1)
polars, and geometrically/= 0 represents a bicircular quartic while
the (1, 1) polars represent circles, for the particular geometrical
interpretation already adopted.

Hence in general this quartic curve has no apolar circles, since
this would require all four first polar circles to have a common
apolar (i.e. orthogonal) circle. This only happens when the fourth
degree invariant* A4 vanishes, and conversely.

Canonical form of the apolar condition. We transform to tetra.
cyclic coordinates xx, x2, x3, a:4 which are linear functions of the
set (£), making equation (6) take the form

q\=KU*- Uz)=rt + *% + $ + <=W) (12)
This admits of a canonical form

(ax^^atf + a^ + a&l + a&l (13)

where (a) = a1 + a2 + a3 + ai-0 (14)

for the general (2, 2) form/.f

• Cf. Proc. Soy. Soc. Edin., XLIV. p. 30.
t Of. Kaaner, loc. cit. Also Proc. S. S. E., XLIV. p. 25.

https://doi.org/10.1017/S0013091500036142 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500036142


74

In this, the last condition (14) is the equivalent of (6); also,
regarded as a quaternary form, the spherical (2, 2) curve given by
(12) and (13) is associated with a definite quadric (13) containing
the curve, since of all such quadrics

(ax-) + X(ar) = 0

we choose the one when A. vanishes.

Now any other (2, i!) form <f> will be given by an expression

2bx&j = b^\ + b.^l + b3x] + b^l + 26]2a !̂r2 + ... + Sb^x, (15)

This will be apolar to / if

alb1 + a.2b2 + a3b3 + a4bt = 0 (16)

for this is the form taken by the invariant (rsQY when the quadrics
are of types (13), (15), (12).

If we replace 2tejCcy by TZbx/Xj + A (a?) the latter quadric also
satisfies this apolar condition (16) in virtue of (14). Hence when
two spherical (2, 2) curves are apolar, only one of the corresponding
quadrics F need be apolar to the sphere (and satisfy (14)), the other
(15) need not be.

§ 5. Pairs of circles and repeated circles apolar to a (2, 2) curve.

If the four circles, in the plane II, given by 0̂  = 0, i= 1, 2, 3, 4,
are called the fundamental circles, then any of the six pairs of
fundamental circles is apolar to the (2, 2) curve. For if $ = x^Xj the
condition (16) is satisfied.

, 6
Hence the co5 (2, 2) forms 2 PnX^ (ij=j) are apolar to the

doubly infinite system of (2, 2) forms which have four fundamental
circles in common.

The repeated circle, given by (fa;)2 = (1& + l^ct + lzx3 + 1^K4)
2 = 0, is

by (16) apolar to (ox2) if

/i^O, (17)

Hence the corresponding plane (!x) = 0 envelopes the quadric

(ar1/a) = 0
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which cuts the sphere in the degree three covariant curve C3*
of / = (ox2).

In particular if ^ = ̂ | = Z| = Z4 = 1, then there are eight different
planes (Ix) = 0 which satisfy (17). Hence the form

is apolar to / , Now by § I there are eight linearly independent
(2, 2) forms apolar to / , so at first sight we seem to have here a
possible expression of eight such forms as linear combinations of
the same eight squares. This is not so since two linear relations
connect these eight forms (â  + xi±xs±x^f :—

xt + xtf + (x1 - a?2 - x3 + x

- x2 + x3 - x4y + (

= (^ + a-2 + a;, - xtf + (xx + a-2 - x

+ (x1-xi + x3 + xtf + (-

= 0.

The first of these conditions is true identically, the second is
due to (12). Otherwise the eight forms are independent, as may
be verified. So six of them may be taken as linearly independent,
giving an alternative expression for the 005 set of (2, 2) curves
apolar to the doubly infinite set which possess the same funda-
mental circles.

S 6. Point circles and conjugate points apolar to a (2, 2) curve.
Again two points in the plane of a (2, 2) curve are defined lo

be conjugate, if the polar circle of one passes through the other.

Thus the points (a;, y) and (u, v) are conjugate for a^n'£ if
axaud/i, vanishes.

It follows that a pair of point circles (of zero radius), situated
at such a pair of conjugate points, is apolar to the (2, 2) curve, and
that no other pairs of point circles are apolar. For, in the tetra-
cyclic coordinates, (yx) = 0 represents a point circle only if (7') = 0,

* Cf. Proc. R. S. E., XL1V. p. 29.
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and two points, (y,, y2, y3, yt) and (y[, y'2t y's, y'J are conjugate if

(ayy') = 0,7,7', + "27272

which is the apolar condition for (aa?) and (705) (y'x).
In particular a repeated point circle (7a:)2 is only apolar to the

(2, 2) curve if its point lies on the curve; and conversely.
Suppose S4 = otjJ'/SJI1 = 0 to denote a point circle, so that a.,, and /8y

are real and not merely symbolic factors; then if eight points
(i= 1, 2, ... 8) be chosen in general position on the (2, 2) curve, and
if S{ = 0 denote the corresponding point circles, the expression

is the general (2, 2) form apolar to the given form.
Conversely eight linearly independent (2, 2) forms may each

be simultaneously expressed as the sum of squares of the same eight
linear degenerate (1, 1) forms, by choosing suitable eight points on
the unique apolar (2, 2) curve.

If seven points are taken in general position on the sphere, that
is to say, such that no linear relation connects the squares of the
forms &i(i= 1, 2, ... 7) determined by their seven-point circles, then
a singly infinite system of (2, 2) curves have these for common
points, together with an eighth associated point. Hence the seven
linearly independent (2, 2) curves all apolar to any two of this
system are simultaneously expressible as the sum of the same seven
squares.

§7. Curves of the Argand plane invariantive under a given
linear transformation

Z=(aW+b)/ (cW + d).

The questions raised by Professor A. R. FORSYTH* regarding
circular curves lend themselves to the foregoing treatment. These
questions are two: (1) What circular curves remain unaltered by
a given linear transformation as above? (2) How many such
transformations leave a given curve unaltered ?

* Homograph io Transformations. Quarterly Journal (1910), p. 113.
Also, in the same volume, a note by STEINTHAL on p. 221.
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Geometrically this transformation is equivalent, save for
translation, to two successive inversions with regard to two ortho-
gonal circles. Let x3, xt, denote such orthogonal circles; so that
we may take tetracyclic coordinates â , x2, x3, xt which satisfy
the identity

0 (18)

Then the operation of inversion with regard to the circle x3 may be
denoted by I{x3} and is analytically given by

*2, ass, xt)=f(xu a?2, - x3, xt).

Similarly

So a transformation T {x3. a:.,}, equivalent to two such inversions,
satisfies the relations

T{x3, aj4} - T{xt, xs}

x^yx3,xi)=f{xvx2, -xs, -xt) (19)

We deal with this modified form of the given transformation,
Z-¥W, from Z to W given above. The original transformation
may be written

(Z-p){W-q)=r

where p, q, r are arbitrary complex numbers. If we make p = q the
transformation is less general by loss of a translation in one or
other of the Z or W planes, but it becomes an exact equivalent of
the double inversion transformation T{x3, as4}.

§ 8. Now let [£, r)]" denote the general binary form in £: -q of
order p. With this notation it is easy t o write down the general
double binary (1, 1), (2, 2), ... equiforms which are left unaltered
by the given transformation. Owing to (19) they must be

(1, 1) axj + bxv and cx3 + dxt,
(2,2) [xux^+lx,, xtf,
(3, 3) [as,, z j ' + fo, x2] [>s, * 4 ] ! and

|>1, «2? |>j, O + [X3, Xt]
3,

(4, 4) [*,, xJ + [Xl, *J*[*S, xtf + [xs,

.(20)

https://doi.org/10.1017/S0013091500036142 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500036142


78

which are the most general forms unaltered when the signs of
x3, a;4 are simultaneously changed. Hence the corresponding
geometrical loci are unaltered by the double inversion.

In the above set the (2, 2) form has six arbitrary coefficients.
Since the identical relation, (z2) = 0, exists, these coefficients are
effectively five. Hence an oo4 of these (2, 2) curves exist.*

This completely answers the first of the two questions cited
above. The second is the converse question and requires a special
answer for each order of circular curve. I t will now be shewn that

Three and only three independent automorphic transformations
leave a given general (2, 2) form invariantive.

For writing the (2, 2) form symbolically as

then its branch quartic for the z rays is t

This is a binary quartic which must remain unaltered since the
(2, 2) form remains unaltered by the transformation T. Also the
transformation T is equivalent to a linear transformation as far as
this quartic is concerned. Since three, and only three, linear
transformations leave a given binary quartic unaltered, it follows
that not more than three transformations T leave the given (2, 2)
form unaltered.

But if we now refer the (2, 2) form to its canonical tetracyclic
form

axx\ + a^x^ + a3x% + atx\ = 0

where x^ + xl + x3 + x\ = 0,

we may account for exactly three independent transformations by
selecting

(1) T{Xl, x,} (2) T{xv x3) (3) T{xu x4}

* Cf. FORSYTH, loc. cit., § 12, which agrees with this result, as the (2, 2)
curve there treated is restricted by three condition.

t Cf. Proc. Roy. Soc. Edin., XLIV., p. 36. This geometrical application
of double binary algebra was suggested by Mr J. H. Grace, to whom my
thanks are due.
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or, what is the same thing,

(1) T{x3, xt} (2) T{a-2, xj (3) T{x2) x3}.

Thus the only automorpkic transformations which leave a given (2, 2)
plane curve unaltered are the three which are expressible by successive
inversion in any two of the four fundamental circles*

It follows at once that for the large class of circular curves,
whose equations can by proper choice of coordinates be reduced to
the type

f{x\, x\,x\, *i) = 0,

where/ is a rational homogeneous function of its arguments, there
are at least these three automorphic transformations which leave
the curves unaltered. v

I t also follows that

If an automorphic transformation leaves a given (2, 2) curve f
unaltered, it leaves unaltered all (2, 2) curves confocal with f, and,
more generally, the doubly infinite system of (2, 2) curves with the
same four fundamental circles.

For all these curves are expressible in the form

§ 9. It may now be shewn that/or all integral values of n greater
than 2 there is no automorphic transformation which leaves the general
(n, n) curve unaltered.

In fact let the general («, n) form in z, z' be written as

<£ = (a0, a,, a* ... »„)(«', l)n

a general binary n-ic in z where the coefficients o0 ... an are in turn
general binary n-ics in z. Then the discriminant of this binary
form in z' is of degree (2ra - 2) in the coefficients a and therefore is
a binary form of order n(2n - 2) in the variable z.

• Cf. FORSTTH, loc. cit., where the problem is suggested but unanswered.

The case when 2 — vani'hes, i.e. a third degree invariant vanishes, is solved.

An algebraic solution of the general problem is given by STEINTHAL, loc. cit.
but the method used throws no light on the geometrical theory.
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Neglecting terms in the discriminant D containing a,, a2, ... on_i
it may be written

D — a j - 'o j"1 mod alt a^, ... an_v

Now suppose an automorphic transformation T exists for the
form <f>, then the same transformation must leave D invariantive.
It is sufficient to shew that this is impossible even in the special
case when all au a2, ... an-1 vanish, and therefore

a0, an being arbitrary binary n ics in the other variable z. In this
case D is the (n - I)"1 power of an arbitrary 2n-ic, for which no
automorphic transformation exists if n > 2 For if the roots of D
are a.u 04,-... «.,- ... a..2n, such a transformation implies relations of
the type

pa-jCLj + qa.t + ra.j + s = 0, i, j — 1, 2, . . . In,

p, q, r, s being the same for all the relations. In every case when
n> 2, these relations imply, when p, q, r, s are eliminated, conditions
between the roots a. which by hypothesis are independent. This
proves the theorem
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