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Abstract

A central problem in the theory of combustion, consisting of a nonlinear parabolic
equation together with initial and boundary conditions, is considered. The influence of the
initial and boundary data are examined. In the main part of the study, a two-step
linearization is developed such that the interesting features of the original problem are
given by the solution of a non-linear ordinary differential equation. Approximate solu-
tions are obtained and upper and lower solutions are used to assess the validity of the
approximations. Whenever possible, results are compared with those obtained previously
and there is good agreement in all cases.

1. Introduction

A central problem in combustion theory is the initial and boundary value
problem (IBVP) consisting of the nonlinear parabolic equation

a0

FTi 9+ 6f(6); xeD,t>0, (1-1)
where f(8) = exp[ad/(« + )], and the conditions
0(x,0)=h(x)>0, x€D, (1-2)
and
6(x,t) =g(x,1); xondD,t>0. (1-3)
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2] Parameters for a problem in combustion theory 417

Here, @ is the temperature, x and ¢ are the non-dimensionalized spatial and time
variables, 8 is a parameter incorporating the chemical properties of the combusti-
ble material, the temperature of assembly, as well as its geometrical dimensions,
and «a is a parameter related to the activation energy of the material occupying
the region D. Typically, « is considerably greater than unity.

A number of investigators have studied this problem. The derivation of (1-1)
and reference to the early work can be found in [4]. A usual simplification is the
so-called “expanding the exponent”, namely, the nonlinear term in (1-1) is
replaced by exp(8). The result is that the time-independent version of (1-1) is
reduced to the Liouville equation, which is an important equation used to
describe a variety of physical phenomena, among them fluid mechanics and
plasma physics. Exact solutions can be found for the Liouville equation for
simple geometries, and the early analytical work on combustion theory is in this
category. It is found that when § exceeds a certain value, 8, which is dependent
on the geometry, the Liouville equation has no solution, which is interpreted to
mean that ignition results. While the simpler equation gives useful information on
8., it does have the disadvantage of losing track of the influence of a on §_,. More
importantly, replacing the term exp[af/(a + )], which is bounded by e* regard-
less of the value of 8, by the term exp(f), which grows exponentially with 6,
changes the character of the nonlinear term. The IBVP (1-1), (1-2), (1-3), has for
every L a unique solution bounded for all 0 < ¢ < L, [1], for all values of 8. Such
a result is not obtainable for the simplified equation without further restrictions.

In 1961, Parks [6] integrated numerically equations (1-1), (1-2), and (1-3),
with g(x,?) = h(x) = 0, and obtained the critical values 8, for a range of values
of a, for a number of simple geometrical shapes. In 1975, Sattinger [7] considered
the stability of the multiple time-independent solutions corresponding to (1-1),
(1-2), (1-3) with h(x) = g(x,¢) = 0, using a comparison theorem for parabolic
equations. An attempt was also made to construct an approximate solution, when
8 < &, and 8 remains small, based on the asymptotic consideration a > 1. A
number of studies on the critical value 8, and its dependence on «, have been
done by Fenaughty, Lacey and Wake [3), and Kordylewski [5], among others.
These studies are based on the time-independent equation corresponding to (1-1),
and the dependence of the number of solutions on a was examined.

The construction of upper and lower solutions for (1-1), (1-2), (1-3), and the
influence of the initial and boundary data, was studied in a number of papers by
Tam, [8], [9], [10], Tam and Kiang [14], Tam and Chapman [13]. These are also
for simple geometric configurations. Comparison theorems as well as iteration
schemes based on the integral equation derived from (1-1) are used.

In this paper, we present a procedure for the construction of upper and lower
solutions. The only restriction on the domain D is that the eigenvalue problem
Vv Xp = -N’; x € D; ¢ = 0 on 3D shall have a discrete spectrum of eigenvalues.
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In II, we reconsider the construction of upper and lower solutions with
homogeneous data. The importance of the first eigenfunction is emphasized. In
II1, we consider the influence of the initial data, with a view of constructing
approximate, as well as upper and lower solutions. A two-step linearization of the
given problem is introduced. In IV, we give a similar treatment for the influence
of the boundary conditions. In V, we consider the effect of the Biot number on
the critical parameter. Whenever possible, we compare the present results with
those obtained previously. There is good agreement in all cases.

Throughout this paper, we deal with a number of differential or transcendental
equations whose solutions depend on the parameters a and 8. They all share the
following feature: When «a is sufficiently large and 8 is greater than a critical
value, say 8_,, which is particular to the specific equation under consideration, the
equation has a unique solution whose maximum value is of order O(e®). When &
is less than J_,, but greater than an extinction value, say 8,, the equation has three
solutions, the largest of order O(e*) and the smallest of order O(1). When 8§ is
less than §,, there is again a unique solution of order O(1). We refer to the large
solution as ““super-critical” and the small solution as “sub-critical”. These terms
and the symbols 8_ and 8, are used generically. When we wish to refer to §_, or 8,
of a particular equation, we make them specific by referring to the equation either
by number or by context.

II. Upper and lower solutions with homogeneous data

In two previous papers [8], [10], the steady state upper solutions for the three
simple geometries, viz, slab, circular cylinder, and sphere, were obtained in the
manner to be described. Here, the result is presented for a general geometry, and
the steady state is that corresponding to homogeneous boundary data. The
construction for the lower solutions in [8], [10] was also based on the individual
cases. Here, it is for a general geometry and given in terms of the first eigenfunc-
tion. The significance of the first eigenfunction was recognized in [9], but has not
been exploited in the construction process.

Ia. The steady state

To start with, we take d/dt = h(x) = g(x,¢) = 0, and we focus our attention
on the influence of 8. Let A2 be the smallest eigenvalue with corresponding
normalized eigenfunctions ¢,(x) > 0 of the problem

v =-Np, x€D, (2-1)
e(x)=0, xondD. (2-2)
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Let k be a numerical constant whose magnitude is to be determined. We have:

LEMMA 1. Let N2 and @, be as defined in (2-1), (2-2) with ¢,,, denoting the
maximum value of ¢, on D; and let k be the solution (the smallest if there is more
than one solution) of

>‘21k(P1m = SCxp[akq)lm/(a + k‘le)]-

Then u = ko, is a lower solution of

v +8f(8)=0, xeD, (2-3)
6(x)=0, x€dD. (2-4)
f@)
A2ufs

FIGURE I. )\fu/s and f(u) vs. u.
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PrROOF. We write P8 = 38/9t — v 20 — §f(8). Hence we have Pu = Nu —
8/(u). Plotting A2u/8 and f(u) versus u in Figure I, it is clear that for u < kg,,,,
we have f(u) > ANu/8, with the equality sign holding for u = ke,,. Since
0 < ¢, < 9,,, we have P(k¢p,) <0, implying that k¢, is a lower solution.
Q.ED.

LEMMA 2. Let x be the solution of
vix=-1, x€D,
x(x)=0, xondD,

and x,, denote the maximum of x in D. Let K be the solution (the smallest if there
is more than one solution) of

K =8f(Kx,)- (2-5)
Then U = Kx is an upper solution of (2-3), (2-4).

PROOF. Since f(#) is an increasing function of §, we have
PU= K - 8{(Kx) > K — 8/(KX.,). (2-6)

Thus if K is determined from (2-5), we have PU > 0, implying that U is an
upper solution. Q.E.D.

Now, from Lemma 1, we can obtain an upper bound for §,,, for equations
(2-3), (2-4). It is clear from Figure I that if § is increased from zero until
A2u8! — f(u) has a double zero at k¢, ,, a critical value §_, is reached. Further
increase in 6 will lead to a value of k which is exponentially large, that is, the
lower solution for (2-3) and (2-4) becomes super-critical. Thus, a necessary
condition for the solution of (2-3) and (2-4) to remain subcritical is that its lower
solution k¢, must not be exponentially large, implying that we must have
8., < 8. The computation of §, is straightforward. We have

8., = Nu* exp|[-au*/(a + u*)]

where

u* = %{a(a -2)—ya*(a — 4)}

In a similar manner, we can also obtain from the upper solution a lower bound
for 8, say ... We have

8cr = Kl exp[_aXmKl/(a + XmKl)]
where
Kl = u*/Xm'
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Thus, we have §,, = §_,/(x ,A3)- We observe that these bounds cease to have any
meaning if a is decreased until (2-6) has only one solution regardless of the value
of 8.

IIb. The time-dependent case
With homogeneous initial and boundary data, the time-dependent case can be
dealt with in an entirely analogous manner.

LEMMA 1'. Let @, be defined as before and k(t) be a suitably chosen (as detailed
in proof') increasing function of t, tending to k,, ast = oo. Then u = ko, is a lower
solution of (1-1), (1-2), (1-3), with h(x) = g(x,1) = 0.

PROOF. Let g,,, be the maximum value of ¢,(x). We first consider § < §_,. We
have

Pu = k'gp, + Nko, — 8f(ko,).
If k(t) is determined from
k(1) = {8/ (ko1m) = Nik@ 1, } /91

satisfying k(0) = 0, it is easily seen that k(¢) is a monotonic increasing function,
reaching the equilibrium value k,, given by

8f(km¢1m) = A?ikm(plm‘ (2_7)
Thus, we have

Pu = :%{sf(k%m) - Nkoy, ) — {8f(key) — Neko,}.

For 0 < k < k,,, quantities in both brackets are positive. Thus, we have

Pu < (sf(k‘le) - Xllkq’lm) ~(8f(ke,) — Niko,). (2-8)
From Figure 1, it is clear that A kg, — 8f(k9;) < A k@, — 8f(k@y,,), so that
Pu < 0, implying that u = k¢, is a lower solution. For § > §_,, the inequality
(2-8) no longer holds. In this case, we determined k(¢) from the equation

kl(t) = ﬁ' {8f(kq)1m) - >‘21k¢1m}

where ¢ < 0, and so

Pu = £{8/'(1“1’1»;) - >‘21k‘P1m} + {)‘zlk(pl - Sf(k‘Pl)}- (2—9)
We observe that the quantity in the second bracket on the right is negative for
ke, < k,9,,,- Thus, if ¢ is sufficiently small, the right side of (2-9) remains
negative for k¢,,, < k,9,,,, and so we have Pu < 0, again implying that u = k¢
is a lower solution. In this case, the solution of (2-7) is O(e®). Q.E.D.
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As for the upper solution, we observe that for g(x,¢) = k(x) = 0, the upper
solution for the time-independent case also serves an upper solution for the
time-dependent case. If we want to have an explicit time-dependent upper
solution, we can use the upper solution for the time-dependent case to linearize
the given differential equation. The procedure is straightforward, and will not be
pursued.

II1. The influence of the initial data

For § in a certain range, and for a sufficiently large, the steady state equation
admits more than one solution. The intial and /or boundary data then determine
which steady state is realized. The influence of the initial data was investigated in
[9], [10]. The approach there was to re-write the partial differential equation as an
integral equation and to use an iteration scheme based on an asymptotic analysis
of the large time behaviour of the solution. The initial data were used in the first
iterate.

In the present paper, we approach the problem from the standpoint of
constructing upper and lower solutions. We begin by considering an associated
ordinary differential equation which we believe to contain the essence of the given
non-linear problem. We then show that upper and lower solutions to the given
problem can be constructed by using suitable multiples of the solution of the
ordinary differential equation to linearize the given problem. A similar idea has
been used by the author in the study of swirling-flow boundary layers in fluid
mechanics [12). Lastly, we compare the current result with those in [9], [10].

IT1a. The associated ordinary differential equation
Let H(x, t) denote the solution of the IBVP

H,— v2H =0,
H(x,0)=h(x) 0, H(x,t)=0, xe&abD.

We have
H(x,1) = G(x,&1) - h(x) = [ G(x, & 1)h(8) v, (3-1)
where
Gt = T e, 009,(0 (3-2)
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and {A%} and {@,(x)} are respectively the eigenvalues and normalized eigenfunc-
tions of (2-1) and (2-2). Let T(¢) denote the solution of the IVP

—‘”‘;(tt) = _NT(¢) + 'o‘fD @, (£)exp aajT;(tt);p(;ifzS f(é(;))t) ]dV, (3-3)
7(0) = 0. (3-4)

Equivalently, T can be expressed as the solution of the integral equation
T(r),(§) + H(§, 7))
T = 8e- M [' Mg (£) - ex o L - dr. (3-5
e ool o0 + H (e ) (-9)
We observe that, since all eigenfunction components of H(X, t) decrease exponen-
tially to zero, the equilibrium values of T are the solutions of the equation

}\ZIT _ aT‘Pl(g)
-8__/0%(g)exp[————a n T%(g)]dV. (3-6)
oTo
o on(2)
/ A3r/s

2
AT

aTe
FIGURE II. }\% T/ and ¢, -+ exp L \ys. 7\%7’.
a+T¢l
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Plotting the two terms of (3-6) as solid lines in Figure II, we see that there are
three solutions in the situation depicted. We label the minimum solution as
sub-critical, and the maximum as super-critical. Clearly, there are two threshold
values for 6, viz, §,, and §_,, such that for § > §_,, there is only one (super-criti-
cal) solution; and for § < §,, there is again only one (sub-critical) solution. We
reiterate that at this point, the terms super-critical and sub-critical, as well as the
symbols 8, and §_, refer to (3-5) only. Suppose 8, < § < §,. We first consider
the particular case h(x) = c¢,9,(x), where ¢, is a constant. We have H(x,?) =
¢, exp(-Ni) @ (x). Let y = T(1) + ¢, exp(-A3t). In terms of y, (3-3) and (3-4)
become

X-Ny+sf wl(e)exp{ﬁ%%} av, (3-7)

¥(0) = c;. (3-8)
Except for the changed initial data, y(¢) has the same equilibrium values as T(¢).
Thus, it is clear from Figure II that if y(0) = ¢, > v* /A%, where v* is the middle
intersection of the curve ¢, exp[aTg,/(a + Te,)] with the straight line A37/8,
then y reaches the super-critical state, and if y(0) < v*/Ni, y reaches the
sub-critical state. We note that y(0) 2 v* /A% implies that

8fD<pl(§)exp{(ff—§f()£)} dv z v*. (3-9)
In terms of 7T, we have
1) moe| i )

Thus, we conclude that T reaches the super-critical state if dT(0)/dt > v*, and it
reaches the sub-critical state if dT(0)/dt < v*.
We now consider the case of an arbitrary h(x). We write

Hot) = 3 cpexp(-Nat)gn(x) = ¢y exp(-Nat) @y (x) + J(x, 1)

n=1

where
&= [ @, (n(x)av.
D

We again let y = T + ¢,;e~ N Equations (3-3) and (3-4) become

dy _ alye, +J] B
a =-Ny+ 8¢, exP{a+ytp1+J , (3-10)
yO =i 2O e sg, e (3)
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We seek conditions under which y tends to the super-critical state. Let I(z) be
defined as

1(1) = @,(x) - exp{ a(c,91(x)) +J(x,1) }

a+ @ (x)+J(x,1)

Let h(x) be such that the following two conditions are satisfied.

- 0. - ah . %% _
(1) 1(0) = ¢, exp{ — h} > @, exp{ — C1<P1} (3-12a)

where ¢, > v*/A%;
@ o foro<i<wm. (3-12b)

Since 8¢, - exp{ac,p,/(a + ¢;9,)} > -Nic;, we have dy(0)/dt > 0.
Suppose y does not tend to the super-critical state. Then dy/dt must become
negative and there exists ¢; < oo at which y(z,) = ¢,, with

dy(t)) _ a(cp, + J(x, 1)) <0
dr a+ e +J(x,0) [

Nic, + 8o, - exp{

However, by (3-12), I(¢) decreases monotonically to ¢, exp[ac,9,/(a + c;9,)].
Thus, we have

a(c,p, + J(x, 1)) { ac,p, }
6 . 1 _ AZ > 6 . _ >\2
#1 exp{ a+ oo +J(x, 1) 19 PP G €191 14

>0,

contradicting dy(t,)/dt < 0. Thus, y cannot resume to value c,, and so y tends
to the super-critical state as ¢t = oo. We summarize this result in

LEMMA 3. Let v* and I(t) be as defined. If h(x) satisfies the two conditions
(3.12a) and (3.12b), then the solution of equations (3-10), (3-11), and hence T,
tends to the super-critical value.

In an analogous manner, we have

LEMMA 3. Ler v* and I(t) be as defined in Lemma 3. If h(x) satisfies the two
conditions

(1) I(0) = o, - exp{ah/a + h} < @, - exp{ac,p,/(a + ¢,9,)}, where ¢, <
v* /N2

(2) dT/dt <0 for 0 <t < o0,
then the solution of equations (3-10), (3-11), and hence T, tends to the subcritical
value.
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A different set of sufficient conditions giving the same conclusion as in the
above Lemmas can be formulated. We observe that J(x, ¢) is the solution of the
heat equation

a—J=V2J; xeD;t>0,
ot
subject to
J(x,0)= Y cg,(x); J=0 ondD.
n=2

Suppose —a@,(x) < J(x,0) < Ap,(x) for suitably determined non-negative a, A4.
It is readily seen that

—aexp[—Azlt]q)l(x) < J(x,1) < Aexp[-At] o, (x).
Now we consider the equation
a( 7(1) @r(x)-aexp(-Ait) 1 (x))
a + §(1) y(x)-aexp(-Ni1) (%)

dy .
=N+ SfD qol(&)em[

av

with

4y(0)
1

7(0) = ¢, _a(_C;alL}

a+(c —a)g

Recalling that the function exp[au/(a + )] is an increasing function of u, it
follows from a comparison theorem for ordinary differential equation that y < y.
We note that the value v* determined before is also the middle intersection of the
curve @, explajp,/(a + yo,)] with A3 /8. Thus, if we require the function h(x)
to satisfy the two conditions (1) ¢, > v*/A? and

(2) 8¢, - exp{a(c; — a)g,/(a +(c; — a)p,)} = Aje; > 0,

we have dy(0)/dt > 0. We claim dy/dt can tend to zero only as t - co. Suppose

the contrary is true. Let dy/dt = 0 at ¢,, with dyp/dt > 0 for 0 < ¢t < t,. Then at
t,, we have

= —A3¢, + 8¢, - exp{

4% _ 5. i aMj exp(-Mt) 91 (x)
dr’ D o+ 5(1) @y (x)-aexp(-Nit) @, (0)]”

o] SO =~ aexp(-Air),(x)) ]dV
a + j(£) y(x) — aexp(-Air) gy (x)

which is positive, leading to a contradiction. Thus dy/dt > 0 for all finite ¢, and

y, and hence y and T all tend to the same super-critical value. The two conditions

imposed on h(x) together imply

a[h(x) = J(x,0) - ap,(x)]
SfD %(E)CXP{ a + h(x) — J(x,0) — ag,(x)

}dV > Ac, > v*. (3-13)
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We can summarize the above result as:

LEMMA 4. Let v*, J and a be as defined above. If h(x) satisfies (3-13), the
solution of (3-10), (3-11), and hence T, tends to the super-critical value.

In an analogous manner, we have:

LEMMA 4'. Let v*, J and A be as defined above. If h(X) satisfies the condition

a[h(x)—J(x,0)+A 1(")] 2 *
8[D <p1(£)exp{ at h() = J(x.0) + (qu>1(x) } dV < Nic, < v*, (3-14)

the solution of (3-10), (3-11), and hence T, tends to the sub-critical value.

We observe that the quantity 8¢, exp[ah/(a + h)] is bounded from below by
the integral in (3-13), and from above by the integral in (3-14). These bounds are
close when the derivations (J(x,0) + a¢,) and (A, — j(x,0)) are small.

We have considered in some detail the behaviour of a function 7'(¢). In the
next section, we shall use this function in the construction of upper and lower
solutions for 6(x, t); and also obtain an approximate solution for 8(x, ¢).

IIIb. Construction of upper and lower solutions
Let H and T be as defined in (3-1) and (3-5). Let m(x) > O be a function to
be determined. We consider the IBVP

a(mTe, + H)

U2y =
X = VX 8exPa+mT<pl+H

subject to x(x,0) = h(x); x(x,t) =0, x € dD. Since the equation is linear, its
solution can be obtained readily. We have (see [2], page 291)

a(mT(r)@i(%) + H(§, 7)) }dT
a+ mT(7)e,(8) + H(¢,7) |
(3-15)

Our objective is to choose m(x) so that x(x, t) is a lower solution of equation
(1-1), (1-2) and (1-3), with g(x, t) = 0, i.e. we wish to make

x(x,1) = H(x,1) + 8]: G(x, & tr)- exp[

ax
Px=x,-v2x—8exp(a+x)<0.

Now, we have

pr—s {p[ a(mT()e,(x) + H(x, 1)) ] e

a+ mT(t)e,(x) + H(x,t)

ax(x, t) }

a+ x(x,t)
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Since the function exp[au/(a + u)] is an increasing function of u, we will have
Px < 0if we can choose m to make

gy H < H 4 Gl i - ) enp| ST LG ],

a+mT(7)e, (&) + H(E,7)

or

a(mT(T)(Pl(E) + H(‘g"r)) }d‘r
a+mT(7)p,(§) + H(¢, 1) )

(3-16)

mT(t)e,(x) < 8]: G(x,&t—71)- exp{

From equation (3-5), we have

mT(t)p,(x) = 84’ G(x,&t—-171)- exp[

a(mT(7),(%) + H(%, 7)) }dT
a+ mT(7)p,(§) + H(&, 1)

o(T(7)g:(§) + H(£,7)) ]dT
a+ T(r)p(§) + H(E,7)

‘ a(mT()e,(§) + H(§ 7))
_8_/; G(x,§&1t—17)- exp{a " mT('r(;)q)l(E) T H(E ™) ]d'r. (3-17)

Since the exponential function in the integrands is bounded between 1 and
exp(a), and both ¢, and G are positive, it is clear that by choosing m sufficiently
small, the sum of the second and third integrals on the right of the above equation
can be made to be negative, thus ensuring that equation (3-16) is satisfied, and
therefore implying that the function x(x, t) given by (3-15) is a lower solution.
An entirely analogous procedure with M > 0 replacing m yields an upper
solution. By examining equation (3-14) we see that the deviation of m and M
from unity is governed by the magnitude of

S -N(r a(T(7) e, (§) + H(E, 7))
{Ez e )"’"(")"’"“)} 'e"p{a + T(r) . () + H(E, 7) }

Since the shape of the exponential function is not too different from that of const.
,(£), we expect the above quantity, and hence the deviation of m and M from
unity, to be small. In view of this, we can consider x as given by (3-15) with
m =1 as an approximation for 6, the solution of the original problem. An
examination of this solution shows that if T becomes large, (labelled as super-
critical), x will also be large, and if T remains small (labelled as sub-critical), x
will also remain small. Thus, the dependence of 7 on & and h(x) implies a
corresponding dependence of x on 8 and A(x), and this is the essence of the
two-step linearization that links 7, x and @ together.

As an illustration, we have computed m(x) and M(x) in the form of step
functions, for the case of an infinite slab, 0 < x < 1, taking a = 20, and

+om [ e H0=,(x),(8) exp[
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H(&, 1) = Sexp(-N21)e,(§) = 5V2 exp(—7 2r)sin r¢. We carried out the computa-
tion for a time interval of 0 < ¢ < 1.5, with a step size of 0.1 in ¢ as well as x. We
find
m(x)={l.0, 0<x<0.3, 0.7<x<1,
0.75, 03<x<07,

and

_ /31, 0<x<02, 08 <x<1,
M(x) = {1.1, 02<x<08.

Thus, for 0 <t < 1.5, x(m) and x(M) are respectively lower and upper solu-
tions of (1-1), (1-2) and (1-3) with g =0 and h = 5y2 sin7x. In this case, to use
m = 1 to provide an approximate solution gives quite reasonable results.

IIIc. Comparison with previous result

Previously, the author has considered the influence of the initial value by using
an iteration scheme, together with certain large-time asymptotic analysis. We now
demonstrate that the present approach yields similar results. Retaining the
notation in [9], [10], [11] we have

0n+l - K"8U1/>\21
and
0n+2 -~ Kn+18U1/>\21’

where

K,8U, /N
K,..=U- exp{L'_Ll_}_

a + K, 8U, /N

Here, U, is the first normalized eigenfunction with corresponding eigenvalue A3.
If we rewrite K,8/A} as T, i.e. K, = A3T/8, then the above equation becomes
K, ., = UexplaTU,/(a + TU,)}. Our previous result shows that if X, ,, > K,
then the iterates {6,} increase to a limit, and if X, , < K,,, {0,} decrease to a
limit. In particular, if § is in a range permitting multiple steady-state solutions,
then the solution will be super-critical if K, > v* /8, and sub-critical if K, < v* /8,
where v* is the middle intersection of the curve K,,, with K, plotted against
v = K,8. Referring to equation (3—6) and Figure 11, it is clear that the comparison
of K, with K, ., is exactly the comparison of the two terms of (3~6). Thus, the
values for 8,, 6, and v* obtained from the previous asymptotic results are
precisely those obtainable from the associated ordinary differential equation
studied here. The initial data 6(x,0) = h(x) were used previously to calculate
U, explah/(a + h)], which was then compared with v* /8. The solution § reaches
the super-critical state if U, exp[ah/(a + h)] > v*, and reaches the sub-critical
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state if 8U,exp[ah/(a € h)] < v*. In Lemmas 3.3', 4.4', we have obtained
sufficient conditions on & for T to become sub- or super-critical. By inference,
these are also sufficient conditions for x to be sub- or super-critical. It does
appear that the asymptotic result is consistent with the present results. We have
thus obtained some relevant information on the initial data and parameter
dependence for the original nonlinear parabolic equation by studying an associ-
ated ordinary differential equation.

IV. Influence of the boundary condition

In this section, we examine the influence of the boundary condition in
determining the nature of the steady state. Thus, we set the initial value to zero.
We first partition the problem into two parts so as to make the effect of the
boundary condition more transparent.

Let 8 = P + y, where P is governed by the system

P-viP=0, (4-1)
P(x,0) =0; P(x,t)=g(x,t) > 0,x € 3D, (4-2)
and ¢ is governed by the system
Vo= VY =8f(P+Y), (4-3)
¢¥(x,0) = 0; ¥(x,t)=0,x € 3D. (4-4)
The solution of (4-1) and (4-2) is given by (see [2], page 290)
P(x,1) = -fo’ j; a—G("’—ai;ei——")g(g, 1) dSdr. (4-5)

We observe that g > 0 implies that P(x, t) > 0, and we suppose that g is suitably
restricted to ensure that P(x, o) exists. Here, we differentiate between the two
cases P(x, 00) = 0 and P(x,00) = C(x) # 0.

To begin with, let 8 < §_, and let

cr?

aP
B = max j;)wlexp(a+P)dV.

O<t<oo

Suppose B occurs at ¢ = t; > (. Since t; > 0 implies {(x, ¢;) > 0, it is clear that
at t;, we have

a+ P+

With 7, taken as the new initial point for (4—3) and (4-4), the same consideration
as in section III shows that for ¥, and hence 4, to reach the super-critical state, it
is sufficient to have (P + )¢, satisfying conditions imposed on A as detailed in

fD ?, exp( “—(P—J”I’—)—) dV > B. (4-6)
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IITa. However, since we do not know the value of ¥ at ¢,, we have to be content
with the sufficiency condition being imposed on 8B. For the case of P(x, ) =0,
the above is the only information we can obtain. However, more can be said
about the case of P(x,00)> 0, x € D; and in what follows, our attention is
confined to this case. We note that the problem of a slab with unsymmetric
boundary temperatures considered by Tam and Chapman [13], among others,
belongs to this case.

IVa. The associated ordinary differential equation
Let T(¢) be the solution of the ordinary differential equation

a(T(1) g, (§) + P(£,1))
a+ T(1)e,(§) + P(£,1)

subject to T(0) = 0. Equivalently, T can be expressed as the solution of the
integral equation

T=5[ e q,(0)- exp[
0

ar
a - NT+s[ %(E)exp[

]dV (4-7)

a(T(7)g,(§) + P(§,7))
a+ T(1)p, (&) + P(&, 1)
Here, we have used T to denote a somewhat different quantity as in Section III,

but the possibility of confusion is more than compensated for by avoiding a
proliferation of symbols. In Figure 111, we superpose on Figure II the new curve

ex [ a(Te, + P(&, 0)) ]
P a+ To, + P(§,0) |

]d'T. (4-8)

It is clear that P(§, c0) > 0 implies that the new curve always lies above the curve
¢, - explaTe,/(a + Te,)]. Further, for a given § < §_, it is clear that if P(§, c0)
is sufficiently large, the new curve will intersect the straight line A\37/8 only at
one point. Moreover, since

a(T(pl + P(£7 w))
o orl S T he )

is bounded from above by ¢, - €* no matter how large P is, it is clear that the
intersection point decreases monotonically to zero with 8.

We now pose the same question as in Section III: for a given §, §, < § < §_,
such that A3T intersects

aTp,
PP\ Ty Ty,

at three points, how large must P(x,00) be for the solution of (4-7) to be
super-critical?
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We construct the curve

a(Tp, + C
v1 - exp L_))

a+Tp, +C

where C is a constant. We increase the value of C from zero to C*, at which
( a(T(Pl + C*) )
@, expl ———+;

a+ Tp, + C*

becomes tangent to A3T/8 at the point A3T = b*, as depicted schematically in
Figure I11. Now, suppose for a given g(x, t), we have

a( T, + P(&, o)) a(Te, + C*)
- e > @ exp| —————=| forT>0,
i a+ To, + P(§,00) | P Pl a+ To, + C*
T *
¢l *eXp ‘—a( ¢1+C)
a+Tp, +C*
A21/s
oqu)l
1 P cH—Tdbl
Lb*
: AT

2 «(To, +CO) 2
_ . 2T
FIGURE Ill. A{T/s and ¢, -exp (‘H’Td’] < | M
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then it is clear from (4-7) and Figure III that there is only one equilibrium value
for T, which is super-critical—in the sense that it is larger than the maximum of
the intersections of X3T/8 and

aTp, + C*

P1 " €XPp a+ To, + C*

Conversely, if

a(T‘Pl + P(E,oo))
P17 X [a+ T(p1+P(£,oo)]< 17 €

a(Te, + C*)
a+ Ty, + C*

ki

then the equilibrium value of T will be sub-critical, —in the sense that it is less
than b* /A%, Thus, the number C* provides a demarkation value in assessing the
influence of the boundary data g(x, ¢). Clearly, C* depends on 8.

As an illustration, we consider the case of an infinite slab, 0 < x < 1, with
non-zero boundary conditions. The quantities A, and ¢; are known from
previous studies to be A, = # and @, = V2 sinmx. We take a = 20, 6 = 5.61 X
1073, and we compute C* to be 11.91, and b* = 25.5. Now, if we take the
non-zero boundary conditions to 8(0,t)=A and 6(1,¢) =0, we find that
P(x,00) = A(1 ~ x). By varying the value of A, we see that the solution is
sub-critical if 4 < 20 and super-critical if A > 20, a result agreeing quite well
with that given in Tam and Chapman [13).

IVb. Construction of upper and lower solutions

Let P and T be as defined in (4-5) and equation (4-8). Let m(x) > 0 be a
function to be determined. We consider the IBVP
a(mTe, + P)

a+ mTe, + P (4-9)

X, — Vx = 8exp

subject to x(x,0) = 0; x(x,¢) = g(x,t) > 0, x € 9D. The solution of (4-9) and
(4-10) can be represented by (see [2], page 291)
‘ a(mT(r)e,(£) + P(£,7))
= t —_ . d
X(x,t) 8‘/(; G(x! E’ T) exp[a+mT(T)¢l(£)+P(£,T) T
+P(x,1t). (4-11)
As in section IIIb, we want to choose m so that x(x, ) is a lower solution of

equations (1-1), (1-2) and (1-3), with h(x) = 0. Thus, we are led to the
requirement

mT(1)p,(x) < sfo’ G(x, 81— 1)

a(mT()pu(£) + P(£, 7))
[a+ mT(Den (&) + P& |27 “12
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From equation (4-7) we have

mT(1)9:(x) = m [ exp[-N(t = )] 91(0)91(8)

ﬁm[dTUNKU+PGJD
a+ T(7)e,(§) + P(&,7)
Proceeding in exactly the same manner as in section IIIb, we see that a function
m(x) can be chosen to satisfy (4-12), thus making x(x, #) a lower solution. In an
analogous manner, and as in section IIIb, we can construct an upper solution. In
particular, we can consider the solution of (4-8) and (4-9) with m=1 as a
linearized approximate solution to the original problem.

dr.

IVc. The combined influence of the initial and boundary conditions

We now consider the full problem comprising equations (1-1), (1-2) and (1-3).
It is clear that if either h(x) or g(x, z) is such that one of the criteria obtained in
Sections III and IV for super-criticality is met, the solution will be super-critical.
The question therefore is: suppose taken separately, neither h(x) nor g(x,?)
causes super-criticality, will their combined effect be super-critical? To answer
this, we let S(x, 1) be the solution of IBVP

S, —-vi=0,
S(x,0) = h(x); S(x,t) = g(x,1),x € 3D.
If we now let 8 = + §, equations (1-1), (1-2) and (1-3) become
a(¢y + S
v = senp| S |
¥(x,00=0; ¢(x,t)=0,x €D,
and the solution can be expressed in terms of an integral equation.
+ S(§,7))
=sf JA—T)- oy dr.
¥ /OG(x,i T) - exp at 0t S(E7) T

Now, if at any time #;, S(x, ¢) evolves to such an extent that ( + §), satisfies
the sufficiency conditions as imposed on 4 in III, then our previous results show
that the solution of (1-1), (1-2) and (1-3) is super-critical. However, as remarked
after (4-6), since we do not know i at #;, we can only impose the sufficiency
condition for super-criticality on S.

V. The influence of the Biot number in the case of general boundary conditions

Instead of the boundary condition (1-3), a more general condition, taking into
account Newtonian cooling at the surface, is

g—f +86=0, xeaD, (5-1)
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where » is the outward normal direction. The parameter 8 > 0 is referred to as
the Biot number. The case B — oo yields the homogeneous boundary condition
0 = 0. Now, with 0 < 8 < oo, the boundary temperature will not be fixed at zero.
Consequently, the heat conduction away from the surface will be less pronounced,
implying that more heat will be retained in the body. Thus, we expect the
super-critical state will result with a smaller value of 8, and/or lower initial
temperature profile. Because of the relative ease of the required computation, we
shall treat the case with non-homogeneous initial data via the integral-equation
approach.

Let {x,) and {p2} be the normalized eigenfunctions and eigenvalues, respec-
tively, of the BVP

VX, = -pix. XED,

90X,
» + Bx,=0, x € 4D,

and let K(x, §, t) be the Robin function for the system (see page 289, [2])

K,-vk=0,
K(x,0) = 0; %%+BK=0;xeaD.
We have
Kt = £ expl-nte)x,00x.(0) (5-2)

Clearly, the eigenvalues now depend on the parameter 8. We rewrite equations
(1-1), (1-2) and (5-1) as the integral equation

6(x,t) = K(x,§&,t)-h(§) + 8'{)’ K(x, &1 1) exp{_aﬂ(i,_'r))} dr.

a+0(¢

(5-3)
Following our previous work, we can define an iteration process, and then use an
asymptotic argument to assess the influence of both h(x) and B. For the three
simple geometries (Class A), the respective eigenvalues and eigenfunctions are

given as follows:
(a)Slab: -1 < x <1

2p, VZC o
=| —" S I, X
Xn 2p, + sin’p, #

where p,, is determined from

pntanp, = B.
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TaBLE [a. Values of §,, §_,, and v*
for some values of a and B for the slab.

(21]

B=10 B=10
8 v* 8 v*
5, =375%x1072 48.2 8, = 0.10535 119.8
a=8 0.25 3.05 0.5 14
8, = 0314 1.41 8., = 0.855 3.5
8. = 15826 x 107 in2 5, =447 x10°8 932
a =20 0.1 4.2 0.2 13.1
8, = 0.286 1.2 8, =0.775 27
5, =134 x10°" 1576 8, =3.796 x 10714 3954.5
a =40 0.1 3.65 0.2 10
8., = 0.27027 110 5, = 0.7519 26
8, = overflow , = overflow
o =100 0.1 33 0.2 9.2
5, = 0.2703 1.0 5., =0.735 255
TaBLE Ib. Values of §,, 8, and v*
for some values of « and B for the slab.
B =100 B = 10000
8 v* 8 v*
8, = 0.1247 136 8, = 0.1274 138.3
a=38 0.5 16 0.2 16.4
8, =100 40 8., = 1.0204 40
8, =5293 x 10°¢ 1058 8, = 5.4085 x 107 1075
a =20 0.2 14.6 02 14.8
o, = 09174 31 &, = 0.926 33
8, =4.494 x 1071 4488 8, =4592x10™M 4561
a =40 0.2 121 0.2 13.7
8, = 0.885 3.05 5, = 0.910 3.1
8, overflow 8, overflow
a = 100 0.2 11.1 0.2 11.4
o, = 0.8696 3.0 8, = 0.885 3.0
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TaBLE Ila. Values of 8,, 8_, and v*

er Ycre

for some values of a and B for the sphere.

B=10 =10
é v* ) v*
8, = 0.1252 232.6 8, = 0.42986 5974
a=8 8 = 0.8333 15 6 =167 65.5
8, = 1.036 73 8., = 3.265 16.8
5, =528x10"° 1796 8, = 1.8446 x 10°° 47328
a=20 d=05 154 §=05 64
8., = 0.952 5.5 8, = 291 14.2
5, = 44746 X 1071 7609 5, =1571 x 10713 20170
a =40 d=05 13.7 8 =067 47
8, =093 51 8., = 2.857 13.8
8, overflow 8, overflow
a = 100 §=05 12.9 8 =067 43
8 =092 5.0 8, = 2.759 12.6

TABLE IIb. Values of §,, 8. and v*

€ cr

for some values of a and 8 for the sphere.

B =100 B = 10000
[ v* 8 v*
8, = 0519 629.2 8, = 0.5295 6324
a=8 8=2 70 8=2 715
5. = 3.846 18.75 8, =3.922 19.5
§,=223x10°3 4980.4 8, =2275 X103 5005.2
a=20 §=2 317 8=2 37.2
5, = 3.478 14.4 8., = 3.555 15.5
5, = 1.899% x 10713 21216 , = 1.9379 x 10713 21321.8
a =40 =2 32 =2 322
5., = 3.404 14.0 8, = 3.478 13.8
8, overflow 8, overflow
a =100 §=2 29.5 3=2 30
5, = 3.265 139 8., = 3333 132
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TasLE IIIa. Values of 8,, &, and v*
for some values of a and B for the cylinder.

(23]

B=10 B=10
8 v* 8 v*
8, = 0.1687 241.6 8, = 0.285 345
a=38§ 0.333 15 5=1 26
8, = 0.676 4.0 8, = 1.951 10
5, =171482 X 106 1882 8, =1218 x107° 2711
a=20 0.2 8.1 §=05 283
8, = 0.606 31 o, = 1.768 7.1
8, = 6.066 x 10714 7991.7 5, =1.0358 x 10713 11529
a=40 0.2 9.8 8 =025 243
5, = 0.592 3.0 5, = 1.728 73
d, overflow 6, overflow
a = 100 §=02 59 8 =025 22.4
3, = 0.588 27 3., = 1.684 72
TABLE IIIb. Values of 8,, §,, and v*
for some values of a and B for the cylinder.
B =100 B = 10000
] v* 8 v*
8, = 0.30274 356 8, = 0.305 357
a=§ &= 02833 575 0.986 50.7
8, = 2.286 11.0 8, = 2.350 10.6
8, = 12934 x 1073 2795 8, =130x10"° 2804
a=20 §=04 38 706 425
8, = 2.051 8.5 8., = 2.1086 8.5
8, =110x 101 11884 8, = 1.107 x 10-13 11922
a = 40 8 = 0.667 26.2 0.189 40
8, = 2.025 8.0 9, = 2.055 7.96
8, overflow 8, overflow
a =100 8 = 0.667 23.8 0.1130 40
8, =1.975 7.5 8, = 2.01926 7.697
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TaBLE IV. Comparison of a,, and &,
with results from Fenaughty et al.

Biot Stab Cylinder Sphere
No. present | Fenaughty | present | Fenaughty | present Fenaughty
result etal. result et al. result et al.
a, | 400004 |4 4.0015 4 4000002 |4
B =001 |8, |0.005395 | 0.00542 0.03038 | 0.01085 0.016273 | 0.01629

a,, | 400023 | 4.00016 4.0015 4.00016 4.00017 4.00016
0.052359 | 0.05262 0.323925 | 0.10609 0.1591718 | 0.15992
a,. | 401242 | 4.01220 4.0558 4.01494 4.01469 4.01445
0.399377 | 0.40049 1.734455 | 0.85234 1.33080 1.33340
a,, | 4.0642 4.06306 412352 | 411709 416843 4.16406
1.083952 | 1.08454 2.826147 | 248202 4.14390 4.14461
a, | 4.069395 | 4.06851 412833 | 4.130013 | 4.19165 4.18708
| 1.278937 | 1.28168 2.991818 | 2.94682 493478 4.94085

a, | 40694 4.06868 4.12875 | 4.130354 | 4.19196 4.18761
B =10000 | 8, |1.306765 | 1.30709 3.00997 | 3.00557 5.03346 5.03980

tr

(b) infinite cylinder: 0 < r <1
K,
7(12 + B2) Jo(n,)

Xn= Jo(p'nr)

where p, is determined from

BJO(P‘,.) = p’n"l(p‘n)'
(c)sphere: 0 <r <1

172 .
_ By sy, r
Xn [W(Zp." — sink?p,,) ] r

where p,, is determined from

cosp, = 0; B=1,

1
tanpn=m”n’ B#l.

Representative computations for &, 8,, and v* for some values of 8 and «a for
these cases are presented in Tables I, II and II1. The numbers in these three tables
are obtained graphically. In Table IV, we list the transitional values of «, with the
corresponding §,, for the three class 4 geometries. These numbers are de-

termined numerically on an IBM personal computer in an iteractive manner. The
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corresponding values obtained by Fenaughty er al. [3] are listed for comparison.
The agreement is good except for the values of 8, for the cylinder for 8 < 10. We
recall the transitional value a, is the value of a below which the time-indepen-
dent version of equations (1-1), (1-3) has no multiple solutions, and §,, is the
limit of 8, as a approaches a,, from above.

VI. Concluding remarks

We have studied a nonlinear parabolic equation arising from the theory of
autocatalytic reactions. For the case with homogeneous initial and Dirichlet
boundary conditions, and when the parameter a is sufficiently large, we con-
structed upper and lower solutions from which definitive bounds on the critical
value of 8 are obtained. The role of the first eigenfunction is emphasized. We
then consider the influence of the initial data. A two-step linearization method is
used to demonstrate a procedure for the construction of upper and lower
solutions, from which an approximate solution is obtained. The essence of the
two-step method is that the dependence of the solution of the original problem on
initial data and parameters can be inferred from the dependence of the solution
of an associated ordinary differential equation on those quantities. Sufficient
conditions for the solution of the ordinary differential equation to become
super-critical, and hence the solution of the original nonlinear parabolic equation
to become sub- or super-critical are obtained. Results obtained previously from
an asymptotic method are shown to be consistent with the current results. Since
the case with non-zero initial data includes the case with homogeneous initial data
as a special case, the approximate evaluation of 8, can be checked against the
definitive bounds obtained in II. The influence of the boundary condition is
considered next and tied in with the influence of the initial data. Lastly, we
introduce a new parameter, the Biot number, in the form of a Robin boundary
condition, and consider its influence of the solution. Values of é,, 8, v* and «,
as given by the asymptotic analysis are computed for a wide range of the Biot
number, for the class 4 geometries.

Of some interest is the two-step linearization method introduced in IIL. It is a
capitalization of the recognition that the first eigenfunction associated with the
linear problem plays a significant role in the nonlinear problem. Indeed, the
derivation of the ordinary differential equation is based on what we have learned
about the behaviour of the given parabolic equation, and is in the sense a
culmination of our past efforts. The idea of tackling a difficult problem in two
steps is not a new one, and conceivably this method may be used in other
situations.
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