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Abstract. Let m, n ∈ �, V be a 2m-dimensional complex vector space. The
irreducible representations of the Brauer’s centralizer algebra Bn(−2m) appearing in
V⊗n are in 1–1 correspondence to the set of pairs ( f, λ), where f ∈ � with 0 ≤ f ≤ [n/2],
and λ � n − 2f satisfying λ1 ≤ m. In this paper, we first show that each of these
representations has a basis consists of eigenvectors for the subalgebra of Bn(−2m)
generated by all the Jucys-Murphy operators, and we determine the corresponding
eigenvalues. Then we identify these representations with the irreducible representations
constructed from a cellular basis of Bn(−2m). Finally, an explicit description of the
action of each generator of Bn(−2m) on such a basis is also given, which generalizes
earlier work of [15] for Brauer’s centralizer algebra Bn(m).

2000 Mathematics Subject Classification. 16G99.

1. Introduction. Let m, n ∈ �, V be a m-dimensional (resp. 2m-dimensional)
complex vector space with a non-degenerate symmetric (resp. skew) bilinear form. Then
V defines the orthogonal group O(V ) (resp. symplectic group Sp(V )), the invertible
linear transformations which preserve this form.

In order to study how the n-tensor space V⊗n decompose into irreducible modules
over O(V ) or Sp(V ), Richard Brauer (see [1]) introduced a number of complex
associative algebras Bn(x) which are now called the Brauer’s centralizer algebras. These
algebras are finite-dimensional algebras indexed by a positive integer n and a complex
number x.

One takes x = m in the orthogonal case, and x = −2m in the symplectic case. Then
there is a right action of Bn(x) on the corresponding n-tensor space V⊗n, such that it
generates the centralizer algebra EndO(V )(V⊗n) or EndSp(V )(V⊗n).
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In this paper, we shall only be concerned with the symplectic case1.

THEOREM 1.1 ([1], [2], [3]). Let ϕ : Bn(−2m) → EndSp(V )(V⊗n) and ψ : �Sp(V ) →
EndBn(−2m)(V⊗n) be the natural algebra homomorphisms.

(1) Both ϕ and ψ are surjective, and if m ≥ n then ϕ is an isomorphism.
(2) There is an irreducible (�Sp(V ), (Bn(−2m))op)-bimodules decomposition

V⊗n =
[n/2]⊕
f =0

⊕
λ�n−2f
λ1≤m

Uλ ⊗ Vλ,

where Uλ (resp. Vλ) is an irreducible Sp(V )-module (resp. an irreducible Bn(−2m) module)
corresponding to λ.

Note that, unlike the symmetric group algebra, the Brauer’s centralizer algebra
Bn(−2m) over � in the above theorem is not necessarily semisimple. But its image under
ϕ, the centralizer algebra EndSp(V )(V⊗n), is always semisimple. It is for this reason that
the n-tensor space V⊗n is completely reducible as a module over the Brauer’s centralizer
algebras Bn(−2m).

The dimensions of these irreducible Bn(−2m)-modules Vλ are already known. See
(3.4) and [18] for the definition of permissible up-down tableaux.

THEOREM 1.2 ([18]). For any integer f with 0 ≤ f ≤ [n/2] and any partition λ of
n − 2f satisfying λ1 ≤ m, we have that

dim Vλ = #{(−2m)-permissible up-down tableaux of shape λ and length n.}

In [15], M. Nazarov introduced a remarkable family of pairwise commuting
elements in the Brauer’s centralizer algebra, which are called Jucys-Murphy operators.
Using Schur-Weyl duality between orthogonal groups Om(�) and Brauer’s centralizer
algebras Bn(m), he showed that each irreducible representation of Bn(m) appearing in
V⊗n has a canonical basis (whose vectors are defined up to scalar multipliers) consisting
of common eigenvectors for all the Jucys-Murphy operators, and he gave an explicit
description of the action of each generator of Bn(m) on such a basis. Note that for
m ≥ n, this description is already known by [14] (see also [11]). But Nazarov’s results
are valid for any integer m.

It is natural to ask for a similar result for the algebra Bn(−2m), which is one
starting point of this work. On the other hand, as it is well-known (see [7]), the
Brauer’s centralizer algebra Bn(x) (for any parameter x) is always a cellular algebra.
Hence the general theory of cellular algebra can apply. One has cell modules, and
modular irreducible modules which are defined to be some quotients of cell modules
modulo the radicals of certain naturally defined bilinear forms. Therefore one can also
ask what those irreducible representations appearing in V⊗n should look like in this
picture. Using Jucys-Murphy operators in the Brauer’s centralizer algebra Bn(−2m)
and Schur-Weyl duality between the symplectic group Sp2m(�) and Bn(−2m), we will
answer these two questions in this paper.

The content is organized as follows: in Section two we recall the definition
of Brauer’s centralizer algebra and the action of Bn(−2m) on n-tensor space V⊗n.

1The results for the orthogonal case are similar; see [1], [2] and [3].
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In Section three we first prove that the action of the sum of all the Jucys-Murphy
operators on V⊗n coincides up to sign with the action of a Casimir element in the
universal enveloping algebra U(sp2m) for the symplectic Lie algebra. Then we show
that each irreducible representation of Bn(−2m) found in V⊗n has a canonical basis
(whose vectors are defined up to scalar multipliers) consisting of common eigenvectors
of all the Jucys-Murphy operators. In Section four we identify these representations
with the irreducible representations constructed from a cellular basis of Bn(−2m). In
the final section, we shall, following the approach of [15], give an explicit description
of the action of each generator of Bn(−2m) on the canonical basis of each irreducible
representations appeared in V⊗n.

2. Brauer’s centralizer algebra. Let x be an indeterminate over �. The (generic)
Brauer’s centralizer algebra Bn(x) can be defined as a �[x]-algebra with generators
s1, . . . , sn−1, e1, . . . , en−1 and relations:

s2
i = 1, e2

i = xei, eisi = ei = siei, ∀ 1 ≤ i ≤ n − 1,

sisj = sjsi, siej = ejsi, eiej = ejei, ∀ 1 ≤ i < j − 1 ≤ n − 2,

sisi+1si = si+1sisi+1, eiei+1ei = ei, ei+1eiei+1 = ei+1, ∀ 1 ≤ i ≤ n − 2,

siei+1ei = si+1ei, ei+1eisi+1 = ei+1si, ∀ 1 ≤ i ≤ n − 2.

One can also define Bn(x) in terms of Brauer n-diagrams and its multiplication in terms
of concatenation of Brauer n-diagrams. We omit the details (as it is wellknown) and
refer the readers to [1] and [8].

The algebra Bn(x) is a free �[x]-module of rank (2n − 1)(2n − 3) · · · 3 · 1, and
the subalgebra generated by s1, . . . , sn−1 is isomorphic to the group algebra of
the symmetric group Sn. For any noetherian commutative domain R which is a
�[x]-algebra, we define Bn(x)R = Bn(x) ⊗�[x] R. It is also wellknown that Bn(x)R is
canonically isomorphic to the algebra (over R) presented by the same generators and
relations as above.

In this paper, we will only be concerned with the Brauer’s centralizer algebra Bn(x)
over the complex numbers field �. Then � is a �[x]-algebra and we have an evaluation
homomorphism �[x] → �. By abuse of notation, we denote again by x its image in �.
It is wellknown that ([18]) Bn(x) is semisimple if x is not an integer. So we will only be
interested in the case where x is an integer in �. For certain integers x, there are Schur-
Weyl dualities between orthogonal groups (or symplectic groups) and corresponding
Brauer’s centralizer algebras Bn(x).

In the orthogonal case one takes x to be a positive integer, which was studied
in [15]. In this paper we will only be concerned with the symplectic case, i.e., x is a
negative even integer. Let m ∈ �, V be 2m-dimensional complex vector space with a
nondegenerate skew bilinear form ( , ). Then the symplectic group relative to ( , ) is
defined to be Sp(V ) := {g ∈ GL(V ) | (gv, gw) = (v,w), ∀ v,w ∈ V}.

We fixed an ordered basis {vi}2m
i=1 of V such that

(vi, vj) = 0 = (v2m+1−i, v2m+1−j), (vi, v2m+1−j) = δi j, ∀ 1 ≤ i, j ≤ m.

For simplicity, we shall write i′ := 2m + 1 − i for each 1 ≤ i ≤ 2m. There is a right
action of the Brauer’s centralizer algebra Bn(−2m) on n-tensor spaces V⊗n. The
definition depends on the above choice of orthogonal basis with respect to ( , ). Let δi j
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denote the value of the usual Kronecker function. Let I := {1, . . . , m, m′, . . . , 1′}. For
any i, j ∈ I , let

εi j :=


1 if j = i′,
−1 if i = j′,
0 otherwise.

The right action of Bn(−2m) on V⊗n is defined on generators by

(vi1 ⊗ · · · ⊗ vin )sj := −(vi1 ⊗ · · · ⊗ vij−1 ⊗ vij+1 ⊗ vij ⊗ vij+2 ⊗ · · · ⊗ vin ),

(vi1 ⊗ · · · ⊗ vin )ej := εij ij+1vi1 ⊗ · · · ⊗ vij−1 ⊗
(

m∑
k=1

(vk′ ⊗ vk − vk ⊗ vk′ )

)
⊗ vij+2

⊗ · · · ⊗ vin .

Then this right action of Bn(−2m) commutes with the natural left action of Sp(V ) on
V⊗n.

3. Jucys-Murphy operators and Casimir element. Recall that we have fixed an
ordered basis {v1, . . . , vm, vm′ , . . . , v1′ } of V . The bilinear form ( , ) relative to this basis
is given by the block matrix

J :=
(

0 Jm

−Jm 0

)
,

where Jm is the unique antidiagonal m × m permutation matrix.
Let ε1, . . . , ε2m be the standard basis of �2m. We identify V with �2m (and hence

GL(V ) with GL2m(�)) by mapping vi to εi for each 1 ≤ i ≤ 2m. Then Sp(V ) is identified
with Sp2m(�) := {A ∈ GL2m(�) | AT JA = J}. The symplectic Lie algebra sp2m(�) is
defined as sp2m(�) := {A ∈ M2m(�) | AT J + JA = 0}.

For each 1 ≤ i, j ≤ 2m, let Ei,j be the 2m × 2m matrix with an 1 in the (i, j) position
as its unique nonzero entry. It is easy to see that sp2m(�) is a finite dimensional �-vector
space with basis



Ei,j − Ej′,i′√
2

, 1 ≤ i, j ≤ m,

Ei,j′ + Ej,i′√
2

, 1 ≤ i < j ≤ m,

Ei′,j + Ej′,i√
2

, 1 ≤ i < j ≤ m,

Ei,i′ , Ei′,i, 1 ≤ i ≤ m.

Let U(sp2m) be the universal enveloping algebra of sp2m(�). By differentiating, one gets
a natural action of sp2m(�) (and hence of U(sp2m)) on V⊗n. The Casimir element of
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U(sp2m) is defined as

C := 1
2

∑
1≤i,j≤m

(Ei,j − Ej′,i′ )(Ej,i − Ei′,j′ ) + 1
2

∑
1≤i<j≤m

(Ei,j′ + Ej,i′ )(Ei′,j + Ej′,i)

+ 1
2

∑
1≤i<j≤m

(Ei′,j + Ej′,i)(Ei,j′ + Ej,i′ ) +
∑

1≤i≤m

(Ei,i′Ei′,i + Ei′,iEi,i′ ).

Following Nazarov [15], we define

L1 = −2m − 1
2

,

La := −2m − 1
2

+ sa−1 + sa−2sa−1sa−2 + · · · + s1s2 · · · sa−2sa−1sa−2 · · · s2s1

− (ea−1 + sa−2ea−1sa−2 + · · · + s1s2 · · · sa−2ea−1sa−2 · · · s2s1),

for any integer a with 2 ≤ a ≤ n. We call the elements L1, L2, . . . , Ln the Jucys-Murphy
operators for the Brauer’s centralizer algebra Bn(−2m). These elements behave very
much like the Jucys-Murphy operators for symmetric groups and associated Iwahori-
Hecke algebras (see [12]). For example, it is shown (in [15]) that L1, L2, . . . , Ln pairwise
commute with each other and the elements Li

1 + · · · + Li
n with i = 1, 3, . . . are central

in Bn(−2m). We have the following result2.

THEOREM 3.1. For any integers i1, . . . , in ∈ {1, 2, . . . , 2m}, we have that

(vi1 ⊗ · · · ⊗ vin )(L1 + · · · + Ln) = −C(vi1 ⊗ · · · ⊗ vin ).

Proof. We use induction on n. If n = 1, then

vi1 L1 = vi1
−2m − 1

2
= −

(
m + 1

2

)
vi1 ,

−C(vi1 ) = −
(

m
2

+ m − i1 + i1 − 1
2

+ 1
)

= −
(

m + 1
2

)
vi1 .

So the theorem is true in this case. Suppose that the theorem is true for n − 1.
That is, (vi1 ⊗ · · · ⊗ vin−1 )(L1 + · · · + Ln−1) = −C(vi1 ⊗ · · · ⊗ vin−1 ), for any integers
i1, . . . , in−1 ∈ {1, 2, . . . , 2m}.

Now for any integers i1, . . . , in ∈ {1, 2, . . . , 2m}, we have that

(vi1 ⊗ · · · ⊗ vin )(L1 + · · · + Ln)

= (vi1 ⊗ · · · ⊗ vin )(L1 + · · · + Ln−1) + (vi1 ⊗ · · · ⊗ vin )Ln

= ((vi1 ⊗ · · · ⊗ vin−1 )(L1 + · · · + Ln−1)) ⊗ vin + (vi1 ⊗ · · · ⊗ vin )Ln

= −C(vi1 ⊗ · · · ⊗ vin−1 ) ⊗ vin + (vi1 ⊗ · · · ⊗ vin )Ln. (3.2)

2In the orthogonal case (see the proof [15, (2.6)]), the action of the sum of all the Jucys-Murphy operators
coincides exactly (i.e., without a sign) with the action of a Casimir element C of the universal enveloping
algebra U(som) on V⊗n.
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Now by a direct calculation, one can show that

C(vi1 ⊗ · · · ⊗ vin ) − C(vi1 ⊗ · · · ⊗ vin−1 ) ⊗ vin = −(vi1 ⊗ · · · ⊗ vin )Ln,

as required. This completes the proof of the theorem.

COROLLARY 3.3. Let λ be a partition of n − 2f (where f is an integer with 0 ≤ f ≤
[n/2]) satisfying λ1 ≤ m. Then the central element L1 + · · · + Ln acts as the scalar(

−1
2

− m
)

(n − 2f ) +
∑

(i,j)∈[λ]

( j − i)

on Vλ.

Proof. Let Vλ(n − 2f ) be the irreducible representation of Bn−2f (−2m)
corresponding to λ and occurring in V⊗n−2f . Let Vλ := Vλ(n) be the irreducible
representation of Bn(−2m) corresponding to λ and occurring in V⊗n. Let w be any
nonzero element in Vλ. By [17], any vector in Uλ ⊗ Vλ(n − 2f ) is traceless (w.r.t.
Bn−2f (−2m)). That is, (Uλ ⊗ Vλ(n − 2f ))ei = 0 for any integer i with 1 ≤ i < n − 2f .
Therefore, for any 0 �= v ∈ Uλ, 0 �= w′ ∈ Vλ(n − 2f ), we have (by Theorem 3.1)

−C(v ⊗ w′) = (v ⊗ w′)(L1 + · · · + Ln−2f )

= (v ⊗ w′)
(−2m − 1

2
(n − 2f ) + L̃2 + · · · + L̃n−2f

)

= (v ⊗ w′)

−2m − 1
2

(n − 2f ) +
∑

(i,j)∈[λ]

( j − i)

 ,

where L̃a := sa−1 + sa−2sa−1sa−2 + · · · + s1s2 · · · sa−2sa−1sa−2 · · · s2s1 (for each integer
a with 2 ≤ a ≤ n − 2f ) is the usual Jucys-Murphy operator of the symmetric group
algebra �Sn−2f . Note that the Casimir element C is in the center of U(sp2m) and hence
acts as a scalar on irreducible module Uλ. It follows that

−Cv =
−2m − 1

2
(n − 2f ) +

∑
(i,j)∈[λ]

( j − i)

 v.

Now applying Theorem 3.1 again, one gets that

(v ⊗ w)(L1 + · · · + Ln) = −C(v ⊗ w) = −Cv ⊗ w

=
−2m − 1

2
(n − 2f ) +

∑
(i,j)∈[λ]

( j − i)

 (v ⊗ w).

In particular, we get that

w(L1 + · · · + Ln) =
((

− 1
2

− m
)

(n − 2f ) +
∑

(i,j)∈[λ]

( j − i)
)

w,

as required.
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DEFINITION 3.4 ([18]). Let λ be a partition of n − 2f (where f is an integer with
0 ≤ f ≤ [n/2]) satisfying λ1 ≤ m. A (−2m)-permissible up-down tableau of shape λ and
length n is a sequence � = (∅ = �(0),�(1), . . . , �(n) = λ) of partitions, such that for
each 1 ≤ k ≤ n, �(k)1 ≤ m and the Young diagram [�(k)] differs from the Young
diagram [�(k − 1)] by either adding or removing a box. We denote by UDn,λ(−2m)
the set of all the (−2m)-permissible up-down tableaux of shape λ and length n.

DEFINITION 3.5. Let � = (∅ = �(0),�(1), . . . , �(n)) be a given (−2m) permissible
up-down tableau. Let a be any integer with 1 ≤ a ≤ n. Suppose that �(a − 1) differs
from �(a) by a box in row i and column j. Then the residue of a in � is defined to
be (−1/2) − m + j − i if �(a) ⊃ �(a − 1); or (1/2) + m + i − j if �(a) ⊂ �(a − 1). We
denote it by res�(a).

Let f be an integer with 0 ≤ f ≤ [n/2]. For each partition λ of n − 2f satisfying
λ1 ≤ m, we have that (by [18]) dim Vλ = #UDn,λ(−2m).

THEOREM 3.6. For any partition λ of n − 2f (where f is an integer with 0 ≤ f ≤ [n/2])
satisfying λ1 ≤ m, there is a canonical basis (whose vectors are defined up to scalar
multipliers) of Vλ, say, {v(�)}�∈UDn,λ(−2m), such that v(�)La = res�(a)v(�), for each
integer a with 1 ≤ a ≤ n.

Proof. By definition, Vλ is an irreducible representation of the semisimple �-
algebra Cn(m) := EndSp2m(�)(V⊗n) corresponding to λ. Note that there is a natural
embedding Cn−1(m) ↪→ Cn(m). By results of Wenzl [18], we have that

πn−1 : Vλ ↓Cn−1(m)
∼=

⊕
µ

Vµ, (3.7)

where the subscript runs over all the partitions µ such that µ1 ≤ m and the Young
diagram [µ] is obtained from the Young diagram [λ] by either adding a box or removing
a box.

We use induction on n. By the induction hypothesis, such a canonical basis is
already well-defined for each irreducible representation Vµ of Cn−1(m) (or equivalently,
of Bn−1(−2m)). Using the isomorphism of (3.7), we get a basis of Vλ. Applying
Corollary 3.3, it is easy to see that this basis has the desired property. This completes
the proof of the theorem.

LEMMA 3.8. Let �,�′ be any two (−2m)-permissible up-down tableaux of length n,
and a be an integer with 1 ≤ a ≤ n such that res�(a) = res�′(a).

(1) If �(a − 1) = �′(a − 1), then �(a) = �′(a).
(2) If �(a) = �′(a), then �(a − 1) = �′(a − 1).

Proof. Suppose that �(a − 1) = �′(a − 1). If �(a),�′(a) ⊃ �(a − 1) or �(a),
�′(a) ⊂ �(a − 1), then it is clear that res�(a) = res�′(a) implies that �(a) = �′(a). Now
without loss of generality, we assume that �(a) ⊃ �(a − 1) and �′(a) ⊂ �(a − 1). Let
(i, j) (resp. (i′, j′)) be the box by which �(a) (resp. �′(a)) differs from �(a − 1). Then

res�(a) − res�′(a) = −2m − 1 + j + j′ − i − i′ ≤ −2m − 1 + m + m − i − i′ < 0.

So res�(a) �= res�′(a), which is a contradiction. This proves (1). The proof of (2) is
similar and left to the readers.
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COROLLARY 3.9. Let �,�′ be any two (−2m)-permissible up-down tableaux of length
n. Suppose that for each integer a with 1 ≤ a ≤ n, res�(a) = res�′(a). Then � = �′.

The following corollary is similar to [15, 2.7]. But note that in our case we have no
restriction on m.

COROLLARY 3.10. (1) The image in Cn(m) of the Jucys-Murphy operators L1, . . . ,

Ln generate a maximal commutative subalgebra of Cn(m).
(2) The images in Cn(m) of the elements Li

1 + · · · + Li
n with i = 1, 3, . . . generate

the center of Cn(m).

Proof. For any integer f with 0 ≤ f ≤ [n/2] and any partition λ of n − 2f satisfying
λ1 ≤ m, we define nλ := #UDn,λ(−2m). Due to Theorem 3.6 and Lemma 3.8, there is
a natural isomorphism

Cn(m)
∼−→

[n/2]⊕
f =0

⊕
λ�n−2f
λ1≤m

End(Vλ) ∼=
[n/2]⊕
f =0

⊕
λ�n−2f
λ1≤m

Mnλ
(�),

such that the subalgebra of Cn(m) generated by L1, . . . , Ln is mapped onto the
subalgebra consists of all the diagonal matrices. This proves (1). (2) can be proved
in a similar way as the proof of [15, 2.7]. The only difference is that we require no
restriction on m in our case.

4. Identifying Vλ with D̃ f,λ. In this section, we shall identify those irreducible
representations Vλ found in V⊗n with the irreducible representations constructed from
a cellular basis of Bn(−2m).

By [7] (see also [5]), the Brauer’s centralizer algebra Bn(x) (for any parameter x) is
always a cellular algebra. Throughout, we shall only be concerned with the case where
x = −2m. To describe its cellular structure, we need some combinatorial notations.
For each integer f with 0 ≤ f ≤ [n/2], and each partition λ � n − 2f , we denote by
Std(λ) the set of all the standard λ-tableaux with entries in {2f + 1, 2f + 2, . . . , n}. For
simplicity, we shall abbreviate the partition (2, . . . , 2︸ ︷︷ ︸

f copies

) as (2f ). We define λ := ((2f ), λ),

which is a bipartition of n. We also define tλ := (t(2f ), tλ), where t(2f ) (resp. tλ) is the
standard (2f )-tableau (resp. standard λ-tableau) in which the numbers {1, . . . , 2f } (resp.
{2f + 1, . . . , n}) are entered in increasing order from left to right along the rows.

DEFINITION 4.1. For each integer f with 0 ≤ f ≤ [n/2], and each partition λ �
n − 2f , we define

Dλ :=
{

d ∈ Sn

∣∣∣ (t(1), t(2)) = tλd is row standard and the first column of t(1) is
an increasing sequence when read from top to bottom.

}
.

Let ∗ be the anti-automorphism of Bn(−2m) which is defined on generators by
σ ∗ = σ−1, e∗

i = ei,∀ σ ∈ Sn, 1 ≤ i < n. By [5], the following set{
d∗

1 e1e3 · · · e2f −1d(s)∗xλd(t)d2

∣∣∣∣ 0 ≤ f ≤ [n/2], λ � n − 2f , s, t ∈ Std(λ),

d1, d2 ∈ D(n−2f ),

}
,
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where

xλ :=
∑

σ∈S(2f +1,...,2f +λ1)×S(2f +λ1+1,...,2f +λ1+λ2)×···
σ,

and d(s), d(t) ∈ S(2f +1,...,n) with tλd(s) = s, tλd(t) = t, forms a cellular basis of
Bn(−2m).

We define a partial order on the set {( f, λ)}, where 0 ≤ f ≤ [n/2] and λ � n − 2f ,
as follows.

DEFINITION 4.2. Say that ( f, λ) > (g, µ), where f, g are both integers with 0 ≤
f, g ≤ [n/2], and λ � n − 2f, µ � n − 2g, if

f > g or f = g and λ � µ

where “ �” is the usual dominance order (see [12]) defined on the set of all the partitions
of a given integer.

For simplicity, we shall write M( f,λ)
s,t,d1,d2

instead of d∗
1 e1e3 · · · e2f −1d(s)∗xλd(t)∗d2.

DEFINITION 4.3. For each integer f with 0 ≤ f ≤ [n/2], and each partition λ �
n − 2f , we define

N≥( f,λ) := �-Span
{

M(g,µ)
u,v,d1,d2

∣∣∣∣ 0 ≤ g ≤ [n/2], µ � n − 2g,

(g, µ) ≥ ( f, λ), u, v ∈ Std(µ)

}
,

N>( f,λ) := �-Span
{

M(g,µ)
u,v,d1,d2

∣∣∣∣ 0 ≤ g ≤ [n/2], µ � n − 2g,

(g, µ) > ( f, λ), u, v ∈ Std(µ)

}
,

mλ := e1e3 · · · e2f −1xλ,

and the Specht module S̃( f,λ) for Bn(−2m) is defined to be the right Bn(−2m)-submodule
of Bn(−2m)/N>( f,λ) generated by mλ + N>( f,λ).

For each integer f with 0 ≤ f ≤ [n/2], we define

Bf := two-sided ideal of Bn(−2m) generated by e1e3 · · · e2f −1.

By the general theory of cellular algebra, there is a bilinear form naturally defined on
S̃( f,λ), say, 〈,〉. We denote by rad〈,〉 the radical of this form.

We define D̃( f,λ) := S̃( f,λ)/rad〈,〉. Since we are working over the complex numbers
field �, it follows from [7, (4.17)] that D̃( f,λ) �= 0 for each integer f with 0 ≤ f ≤ [n/2],
and each partition λ � n − 2f . Hence the set{

D̃( f,λ) | 0 ≤ f ≤ [n/2], λ � n − 2f
}

forms a complete set of pairwise non-isomorphic absolutely irreducible Bn(−2m)-
modules.

THEOREM 4.4. For each integer f with 0 ≤ f ≤ [n/2], and each partition λ � n − 2f
with λ1 ≤ m, there is a nonzero Bn(−2m)-module homomorphism from S̃( f,λ) to V⊗n. In
particular, D̃( f,λ) is isomorphic to an irreducible Bn(−2m)-submodule of V⊗n.
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Proof. By definition, the set

{d(s)∗xµd(t) | µ � n − 2f, s, t ∈ Std(µ)},

where

xµ :=
∑

σ∈S(2f +1,...,2f +µ1)×S(2f +µ1+1,...,2f +µ1+µ2)×···
σ,

forms a cellular basis of the symmetric group algebra �S(2f +1,...,n). Let Sλ be the Specht
module (over S(2f +1,...,n)) corresponding to λ defined via the above cellular basis. Then
Sλ is generated (as right S(2f +1,...,n)-module) by xλ + N>λ, where

N>λ := �-Span{d(s)∗xµd(t) | s, t ∈ Std(µ), µ � λ}.

Let U be the subspace of V generated by v1, . . . , vm, then U⊗n−2f
naturally becomes a

subspace of V⊗n−2f
.

Let �(m, n − 2f ) be the set of compositions µ of n − 2f such that 
(µ) ≤ m. For
each composition µ ∈ �(m, n − 2f ), we define

yµ :=
∑

σ∈S(2f +1,...,2f +µ1)×S(2f +µ1+1,...,2f +µ1+µ2)×···
(−1)
(σ )σ,

vµ := v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
µ1 copies

⊗ · · · ⊗ vm ⊗ · · · ⊗ vm︸ ︷︷ ︸
µm copies

∈ U⊗n−2f
.

Let Dµ be the set of distinguished right coset representatives of S(2f +1,...,2f +µ1) ×
S(2f +µ1+1,...,2f +µ1+µ2) × · · · in S(2f +1,...,n). Then it is easy to see that the map which
sends each yµd (where d ∈ Dµ) to vµd extends linearly to a right S(2f +1,...,n)-module
isomorphism φ : ⊕µ∈�(m,n−2f )yµ�S(2f +1,...,n)

∼= U⊗n−2f
.

Note that λ′ ∈ �(m, n − 2f ). Denote by tλ
′

(resp. tλ′) the standard λ′-tableau in
which the numbers 2f + 1, . . . , n appear in order along successive rows (resp. columns).
Let wλ′ be the element in S(2f +1,...,n) such that tλ

′
wλ′ = tλ′ . Clearly, wλ′ ∈ Dλ′ . By [13,

(4.12)], yλ′N>λ = 0. Therefore the map which sends xλ + N>λ to vλ′wλ′xλ extends
naturally to a right S(2f +1,...,n)-module homomorphism πλ: Sλ → U⊗n−2f

↪→ V⊗n−2f
.

Moreover, as vλ′wλ′xλ = φ(yλ′wλ′xλ) �= 0, we see that πλ is nonzero.
We define

v0 :=
(
v1 ⊗ v1′︸ ︷︷ ︸⊗ · · · ⊗ v1 ⊗ v1′︸ ︷︷ ︸︸ ︷︷ ︸

f copies

)
⊗ vλ′wλ′ ∈ V⊗n.

We claim that the map π which sends e1e3 · · · e2f −1xλ + N>( f,λ) to

v0e1e3 · · · e2f −1xλ = (v1 ⊗ v1′ ⊗ · · · ⊗ v1 ⊗ v1′ )e1e3 · · · e2f −1 ⊗ vλ′wλ′xλ

naturally extends to a nonzero Bn(−2m)-module homomorphism from S̃( f,λ) to V⊗n.
It suffices to show that if e1e3 · · · e2f −1xλh ∈ N>( f,λ) for some h ∈ Bn(−2m), then

v0e1e3 · · · e2f −1xλh = 0.
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In fact, if e1e3 · · · e2f −1xλh ∈ N>( f,λ) for some h ∈ Bn(−2m), then by the definition
of multiplication in terms of concatenation of Brauer n-diagrams, it is easy to see that

e1e3 · · · e2f −1xλh = e1e3 · · · e2f −1

 ∑
µ�n−2f, µ�λ

s,t∈Std(µ), d2∈Dµ

d(s)∗xµd(t)d2

 + h2,

where h2 ∈ Bf +1.
Therefore

v0e1e3 · · · e2f −1xλh =
∑

µ�n−2f, µ�λ
s,t∈Std(µ), d2∈Dµ

{((v1 ⊗ v1′ ⊗ · · · ⊗ v1 ⊗ v1′ )e1e3 · · · e2f −1) ⊗

(vλ′wλ′d(s)∗xµd(t))}d2 + v0h2

= 0,

as required.
Now by the theory of cellular algebra, D̃( f,λ) is the unique simple Bn(−2m)-head of

S̃( f,λ). Hence D̃( f,λ) is also the unique simple Bn(−2m)-head of π (S̃( f,λ)) �= 0. It follows
that D̃( f,λ) is isomorphic to an irreducible Bn(−2m)-submodule of V⊗n. This completes
the proof of the theorem.

DEFINITION 4.5. For each integer f with 0 ≤ f ≤ [n/2], and each partition λ =
(λ1, λ2, . . .) of n − 2f with λ1 ≤ m, we denote by �f,λ the following (−2m)-permissible
up-down tableau of shape λ and length n:

�f,λ :=
(
∅, (1)︸ ︷︷ ︸,∅, (1)︸ ︷︷ ︸, . . . ,∅, (1)︸ ︷︷ ︸,∅, (1), (2), . . . , (λ1), (λ1, 1), . . . , λ︸ ︷︷ ︸

up tableau corresponding to tλ

)
.

By [4, (3.12)], we have the following result.

THEOREM 4.6 ([4, (3.12)]). For each integer f with 0 ≤ f ≤ [n/2], each partition
λ � n − 2f , and each integer a with 1 ≤ a ≤ n, we have that

e1e3 · · · e2f −1xλLa ≡ res�f,λ (a)e1e3 · · · e2f −1xλ

(
modN>( f,λ)).

Now we can give the main result in this section.

THEOREM 4.7. For each integer f with 0 ≤ f ≤ [n/2], and each partition λ � n − 2f
with λ1 ≤ m, there is a Bn(−2m)-module isomorphism from D̃( f,λ) onto Vλ.

Proof. By Theorem 4.4, we know that D̃( f,λ) is isomorphic (as Bn(−2m)-module)
to Vµ for some partition µ � n − 2g satisfying µ1 ≤ m, where g is an integer with
0 ≤ g ≤ [n/2]. It remains to show that f = g and λ = µ.

Let θ be the Bn(−2m)-module isomorphism D̃( f,λ) ∼= Vµ. Let [mλ] be the image of
e1e3 · · · e2f −1xλ + N>( f,λ) in D̃( f,λ). Suppose that

θ ([mλ]) =
∑

�∈UDn,µ(−2m)

a�v(�), (4.8)

where a� ∈ � for each � ∈ UDn,µ(−2m).

https://doi.org/10.1017/S001708950400196X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950400196X


510 JUN HU AND YICHUAN YANG

Let UDn(−2m) be the set of all the (−2m)-permissible up-down tableaux of length
n. We define

F̃ :=
n∏

a=1

∏
∈UDn(−2m)

res (a)�=res�f,λ (a)

La − res(a)
res�f,λ (a) − res(a)

.

By Theorem 4.6, [mλ]F̃ = [mλ]. By Corollary 3.9, it is easy to see that v(�)F̃ =
δ�,�f,λv(�f,λ). Applying F̃ to both sides of (4.8), we get that a� �= 0 unless � = �f,λ.
In particular, we get that f = g and λ = µ. This completes the proof of the theorem.

5. The matrix elements. In this section, we shall, following the approach of [15],
give an explicit description of the action of each generator of Bn(−2m) on the basis
{v(�)}�∈UDn,λ(−2m) (see Theorem 3.6) of the irreducible representations Vλ.

Let f be an integer with 0 ≤ f ≤ [n/2], λ be a partition of n − 2f satisfying λ1 ≤ m.
For each integer k with 1 ≤ k < n and �,�′ ∈ UDn,λ(−2m), there are matrix elements
Ak(�,�′), Bk(�,�′) ∈ �, such that

v(�)sk =
∑

�′∈UDn,λ(−2m)

Ak(�,�′)v(�′),

v(�)ek =
∑

�′∈UDn,λ(−2m)

Bk(�,�′)v(�′).

Our purpose is to determine these Ak(�,�′), Bk(�,�′). Let � ∈ UDn,λ(−2m),
k ∈ {1, . . . , n − 1} be fixed. Let Vλ(k) be the subspace in Vλ spanned by the vectors
v(�′) such that �′(l) = �(l) for any l �= k.

THEOREM 5.1. Ak(�,�′) = 0 (resp. Bk(�,�′) = 0) unless v(�′) ∈ Vλ(k). In
particular, the subspace Vλ(k) is stable under the actions of sk and ek.

Proof. We define

F� :=
∏

1≤a≤n
a�=k,k+1

∏
∈UDn,λ(−2m)
res (a)�=res�(a)

La − res(a)
res�(a) − res(a)

. (5.2)

For any v(�′) ∈ Vλ(k), we have that

v(�′)sk =
∑

�′′∈UDn,λ(−2m)

Ak(�′,�′′)v(�′′). (5.3)

By definition and [15, (2.3)], skF� = F�sk. Moreover, by Lemma 3.8 and the fact that
�(0) = �′′(0) = ∅,�(n) = �′′(n) = λ,

v(�′′)F� =
{

v(�′′) if v(�′′) ∈ Vλ(k),

0 otherwise.

Applying F� to (5.3), one can easily see that Ak(�,�′) = 0 unless v(�′) ∈ Vλ(k). The
same argument shows that Vλ(k) is stable under the action of sk. In a similar way, one
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can show that Bk(�,�′) = 0 unless v(�′) ∈ Vλ(k), and Vλ(k) is also stable under the
action of ek. �

LEMMA 5.4. For any integers k, l ∈ {1, . . . , n}, let (i, j) (resp. (i′, j′)) be the box by
which �(k) (resp. �(l)) differs from �(k − 1) (resp. from �(l − 1)).

(1) If res�(k) + res�(l) = 0, then j − i = j′ − i′, and either (i, j) is a removable box
of [�(k − 1)] and (i′, j′) is an addable box of [�(l − 1)], or (i, j) is an addable box of
[�(k − 1)] and (i′, j′) is a removable box of [�(l − 1)].

(2) If res�(k) − res�(l) = 0, then j − i = j′ − i′, and either (i, j) is a removable box
of [�(k − 1)] and (i′, j′) is a removable box of [�(l − 1)], or (i, j) is an addable box of
[�(k − 1)] and (i′, j′) is an addable box of [�(l − 1)].

Proof. This is easy to check by using the fact that j + j′ ≤ 2m.

COROLLARY 5.5. For any integers k ∈ {1, . . . , n − 1}, we have that
(1) if res�(k) + res�(k + 1) = 0, then �(k − 1) = �(k + 1),
(2) res�(k) �= res�(k + 1).

THEOREM 5.6. Suppose that �(k − 1) �= �(k + 1), then Bk(�,�′) = 0 for any �′ ∈
UDn,λ(−2m).

Proof. Suppose that �(k − 1) �= �(k + 1). By [15, (2.5)], (Lk + Lk+1)ek = 0. By
5.5.1, res�(k) + res�(k + 1) �= 0. Then it is easy to see that v(�)ek = 0, as required.

THEOREM 5.7. If �(k − 1) �= �(k + 1), then
(1) Ak(�,�) = (res�(k + 1) − res�(k))−1;
(2) if v(�′) ∈ Vλ(k) with � �= �′, then

Ak(�,�′)Ak(�′,�) = 1 − (res�(k + 1) − res�(k))−2.

Proof. This can be proved directly in the same way as [15, (3.2), (3.3)] by using
the relations skLk+1 − Lksk = 1 − ek, s2

k = 1 and the fact that the space Vλ(k) has
dimension at most two.

The following two lemmas can also be proved in exactly the same way as [15, (3.5),
(3.6)].

LEMMA 5.8. If �(k − 1) = �(k + 1); then

Bk(�,�) = dim U�(k)

dim U�(k+1)
.

In particular, Bk(�,�) is explicitly known (as dim U�(k) and dim U�(k+1) are already
known by [6]).

LEMMA 5.9. Suppose that �(k − 1) = �(k + 1), then the image of the action of ek

in the subspace Vλ(k) is one-dimensional.

COROLLARY 5.10. Suppose that �(k − 1) = �(k + 1) and v(�′) ∈ Vλ(k). Then
Bk(�,�′)Bk(�′,�) = Bk(�,�)Bk(�′,�′).

Proof. We have that

v(�)ek = Bk(�,�)v(�) + Bk(�,�′)v(�′) + · · · ,
v(�′)ek = Bk(�′,�′)v(�′) + Bk(�′,�)v(�) + · · · .
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By Lemma 5.9, v(�)ek is a scalar multiple of v(�′)ek. It follows that

Bk(�,�′)Bk(�′,�) = Bk(�,�)Bk(�′,�′).

THEOREM 5.11. Suppose that �(k − 1) = �(k + 1) and v(�′) ∈ Vλ(k). Then
res�(k) + res�′(k) �= 0, and

Ak(�,�′) = (Bk(�,�′) − δ�,�′)(res�(k) + res�′(k))−1.

Proof. Let (i, j) (resp. (i′, j′)) be the box by which �(k) (resp. �′(k)) differs from
�(k − 1) (resp. from �′(k − 1)). Suppose that res�(k) + res�′(k) = 0. If either (i, j) is a
removable box of [�(k − 1)] and (i′, j′) is a removable box of [�′(k − 1)], or (i, j) is an
addable box of [�(k − 1)] and (i′, j′) is an addable box of [�′(k − 1)], then one has that

0 = −2m − 1
2

+ j − i + −2m − 1
2

+ j′ − i′ = −2m − 1 + j + j′ − i − i′,

which is impossible as j + j′ ≤ 2m. If either (i, j) is a removable box of [�(k − 1)] and
(i′, j′) is an addable box of [�′(k − 1)], or (i, j) is a removable box of [�(k − 1)] and
(i′, j′) is an addable box of [�′(k − 1)], then one has that

0 = −2m − 1
2

+ j − i − −2m − 1
2

− j′ + i′ = (j − i) − (j′ − i′).

Since �(k − 1) = �′(k − 1), it follows that i = i′ and j = j′, which is impossible. This
proves that res�(k) + res�′(k) �= 0. The remaining part of this theorem can be proved
directly in the same way as [15, (3.11)] by using the relation skLk − Lk+1sk = ek − 1.

Note that each vector of our basis {v(�)}�∈UDn,λ(−2m) is defined up to a scalar
multiplier.

THEOREM 5.12. The basis {v(�)}�∈UDn,λ(−2m) can be chosen so that for any v(�′) ∈
Vλ(k) with � �= �′, (1) and (2) hold.

(1) If �(k − 1) �= �(k + 1), then Ak(�,�′) = Ak(�′,�) > 0.

(2) If �(k − 1) = �(k + 1), then Bk(�,�′) = Bk(�′,�) > 0.

Proof. Let 〈, 〉 be the non-degenerate symmetric bilinear form on V which is
defined by 〈vi, vj〉 = δi,j for any i, j ∈ {1, . . . , m, m′, . . . , 1′}. Taking products we get a
non-degenerate symmetric bilinear form on V⊗n. We denote it by 〈, 〉n. It is easy to
verify that the action of each generators of Bn(−2m) on V⊗n is self-adjoint with respect
to 〈, 〉n. Therefore, we get (by restriction) a non-degenerate symmetric bilinear form
on the irreducible module Vλ. By construction, the isomorphism πn−1 in (3.7) can be
chosen such that

〈x, y〉n = 〈πn−1(x), πn−1(y)〉n−1.

Note that our basis {v(�)}�∈UDn,λ(−2m) was inductively defined via the isomorphism
πn−1. It follows that the basis {v(�)}�∈UDn,λ(−2m) can be chosen such that
〈v(�), v(�′)〉n = δ�,�′ for any �,�′ ∈ UDn,λ(−2m). In other words, the map
which sends v(�) to v(�)∗ for each �′ ∈ UDn,λ(−2m) defines a Bn(−2m)-module
isomorphism Vλ ∼= (Vλ)∗. From this it follows that Ak(�,�′) = Ak(�′,�) and
Bk(�,�′) = Bk(�′,�) for any �,�′ ∈ UDn,λ(−2m). The remaining part of this
theorem can be proved in exactly the same way as the proof of [15, (3.12)].
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Now Theorem 5.1, Theorem 5.6, Theorem 5.7, Lemma 5.8, Corollary 5.10,
Theorem 5.11 and Theorem 5.12 completely determine all the matrix elements
Bk(�,�′) and Ak(�,�′).
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