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The canonical subgroup for families of abelian varieties

F. Andreatta and C. Gasbarri

Abstract

Let V be a complete discrete valuation ring with residue field k of characteristic p > 0 and
fraction field K of characteristic zero. Let S be a formal scheme over V and let X → S
be a locally projective formal abelian scheme. In this paper we prove that, under suitable
natural conditions on the Hasse–Witt matrix of X ⊗V V/pV , the kernel of the Frobenius
morphism on Xk can be canonically lifted to a finite and flat subgroup scheme of X over
an admissible blow-up of S, called the ‘canonical subgroup of X’. This is done by a careful
study of torsors under group schemes of order p over X. We also present a filtration
on H1(X, µp) in the spirit of the Hodge–Tate decomposition.

1. Introduction

In the seminal paper [Kat73], Katz developed the theory of p-adic modular forms in one variable.
One of the most interesting features is the introduction of p-adic modular forms with growth con-
dition. This has been the starting point of the theory of overconvergent eigenforms in one variable
with astonishing applications to the theory of two-dimensional Galois representations. In order to
go further in the comprehension of the Galois representations, one feels the need for a higher-
dimensional analogue of [Kat73]. The first serious difficulty one meets is the construction of the
canonical subgroup.

Let V be a complete discrete valuation ring (dvr) of unequal characteristic (0, p) with residue
field k and fraction field K. Let X be a g-dimensional abelian scheme over V with special fiber Xk.
The problem of constructing the canonical subgroup is the problem of lifting functorially in X the
kernel of Frobenius Hk on Xk to a subgroup scheme of X (finite and flat of rank pg over V ).

If Xk is ordinary, one proves that Hk can be lifted uniquely to a closed subgroup scheme HX

of X[p], finite and flat of rank pg over V ; see Proposition 3.4. In the general case, one looks for
conditions on X so that the canonical subgroup can be constructed. One can not hope to be able
to find the canonical subgroup in general, i.e. for any X. Indeed, in characteristic p, associating
the kernel of Frobenius to an elliptic curve gives rise to a canonical section of the modular curves
X0(p) ⊗ Fp → X0(1) ⊗ Fp, but such a section can not exist over Zp.

In this paper we give a construction of the canonical subgroup in the setting of rigid analytic
spaces à la Raynaud and in the setting of formal schemes. This is what is needed for a natural
generalization to higher dimensions of Katz’s approach to p-adic modular forms. We refer the reader
to § 3 for precise statements of our results. Furthermore, with this approach we provide the following.

(i) We give a geometric reinterpretation and a generalization of the Bloch–Kato filtration on
H1

et(XK , µp) (XK being the generic fiber of X), see § 6, and we explain its relation to the
canonical subgroup, see § 12.
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(ii) For p > 3 we provide H1
et(XK , µp) with a two-step filtration in the spirit of the Hodge–Tate

decomposition, see § 13.6. In particular, this answers a question asked in [AM04, Remark 6.1].
We also explain how it relates to the canonical subgroup and we show that, if Xk is not
ordinary, a ‘true’ Hodge–Tate decomposition does not exist.

We now give an outline of the main ideas in our approach. Let v be the valuation on K∗

normalized so that v(p) = 1. Let X → S be a g-dimensional locally projective abelian formal
scheme with S a formal scheme over V . If ιk : Gk → Xk is the kernel of Frobenius, the problem of
constructing the canonical subgroup is twofold: (1) to lift Gk to a finite and flat group scheme G
over S and (2) to lift the closed immersion ιk and these functorially in X and S. If G is a finite and
flat group scheme over S, one has a canonical isomorphism

H1
fppf(X

∨, G∨)/H1
fppf(S, G∨) ∼−→ Hom(G,X),

where G∨ is the Cartier dual of G and X∨ is the dual abelian scheme of X; see [Mil80, Proposi-
tion III.4.16]. This allows us to translate problem (2) to the problem of lifting G∨-torsors over X∨.
In the ordinary case this approach is very natural: the group scheme G∨

k is étale so that it lifts
uniquely and, consequently, G∨

k -torsors over Xk lift uniquely as well.
In § 11 we show how to reduce the problem to the case that S = Spf(R) with R a p-adically

complete and separated, flat, normal, noetherian V -algebra and X → S is the formal completion
of an abelian scheme X → Spec(R). On the generic fiber RK := R ⊗R K, the canonical subgroup
is, if it exists, a twisted form of (Z/pZ)g and corresponds, possibly after extending the base R,
to g ‘linearly independent’ subgroup schemes of X ⊗R RK of order p. Let F be the Frobenius
on H1(X ⊗ R/pR,OX⊗R/pR). If the ideal of R/pR defined by the determinant of F contains an
element of V/pV of valuation w < (p − 1)/(2p − 1), we show that, indeed, there exist a finite
and normal extension R ⊂ W , étale over RK , and a finite and flat group scheme Gλ of order p
over W , parameterized by λ ∈ V , such that H1

fppf(X ⊗R W,Gλ)/H1
fppf(W,Gλ) is a Fp-vector space

of dimension g. In the ordinary case this is a consequence of Artin–Schreier theory. Our approach
is a generalization of this. We proceed as follows. In § 7 we give an analogue of Hensel’s lemma for
Gλ-torsors which allows us to reduce the problem to estimating the number of Gλ-torsors modulo pr

(0 � r = r(λ) � 1). In § 8 we further translate this problem into the question of finding zeroes of
the operator Frobenius−a, with a = a(λ) ∈ V , on H1(X ⊗ W/pW,OX⊗W/pW ) for a suitable W
(in the ordinary case a = 1). We deal with this question in § 9. The main ingredient in proving
the results in §§ 7–8 is the explicit description of torsors under group schemes of order p developed
in [AG] and briefly recalled in § 5. We then define the subgroup scheme GK of X∨

K as the image
of the induced map (Gλ

∨)g → X∨ ⊗R WK . This makes sense, i.e. it descends to a closed subgroup
scheme of X∨

K . It follows from § 12 that there exists an admissible blow-up S′ → S over which the
schematic closure of GK in X ×S S′ is a closed subgroup scheme finite and flat over S′. Eventually,
we define the canonical subgroup HX as the Cartier dual of X∨ ×S S′[p]/G. We prove that HX has
the required properties. See § 12 for the detailed argument.

In § 4 we show that the solution of the canonical subgroup problem, if it exists, is unique.
This allows us to prove that all possible constructions agree with ours, when comparable.

The problem of constructing the canonical subgroup has been solved completely in [Kat73]
for elliptic curves. The first solution in the higher-dimensional case is due to [AM04] for abelian
schemes over dvr’s in the case p � 3. In [AM04] the authors show how a solution of the canonical
subgroup problem implies the existence of generalized Atkin U operators on overconvergent Siegel
p-adic modular forms. In their case, the canonical subgroup is constructed when the determinant
of F contains an element of V/pV of valuation w < b(g, p), where b(g, p) is an explicit constant
depending on p and g with b(g, p) → 0 when g → +∞. The methods employed are, however, quite
different and rely on the ramification theory developed in [AS02] and syntomic cohomology.
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Subsequent constructions of the canonical subgroup in the rigid analytic setting, based on tech-
niques of rigid analytic geometry, have recently been proposed in [KL05] in the Hilbert–Blumenthal
case, in [GK06] for Shimura curves and in [Con05] in general. Another approach, based on a detailed
study of formal groups, can be found in [Nev03] for Hilbert–Blumenthal abelian schemes over dvr’s.

2. Notation and terminology

We let V be a complete discrete valuation ring of unequal characteristic 0–p with maximal ideal m,
fraction field K and residue field k. Let K be an algebraic closure of K and let v be the induced
valuation on K normalized so that v(p) = 1. By abuse of notation, if w ∈ Q>0, we denote by pw an
(any) element in K of valuation w. For every rational number r in v(m), let Vr := V/prV .

In this paper we follow the terminology and conventions of [BL93] concerning formal rigid
geometry à la Raynaud. In particular, an admissible V -algebra is a p-adically complete and separated
flat V -algebra topologically of finite type as in [BL93, § 1]. Formal schemes over V will always be
assumed to be admissible in the sense of [BL93, § 5], i.e. quasi-compact and with a covering by open
formal subschemes spectra of admissible V -algebras.

We say that a formal scheme X over S is projective if there exists n ∈ N such that X is a closed
formal subscheme of the formal n-dimensional projective space P̂n

S over S. We say that a formal
scheme X over S is locally projective if there exists a covering {Ui}i of S by open formal subschemes
such that X ×S Ui is projective over Ui.

If X (respectively, X) is a (formal) scheme over V , we denote by Xr (respectively, Xr) the pull-
back of X (respectively, X) to Vr and by ιr : Xr → X (respectively, ιr : Xr → X) the canonical closed
immersion. We denote by XK (respectively, Xan) the fiber product X ×V Spec(K) (respectively, the
associated rigid analytic space as in [BL93, § 5]).

We will have different notions of admissible blow-ups depending on the context. To avoid con-
fusion we gather them in the following definition.

Definition 2.1. (1) Let S be a scheme and i : U ↪→ S be an open subscheme. A U -admissible
blow-up of S is a blow-up f : S′ → S along a closed subscheme C ↪→ S disjoint from U and defined
by an ideal of OS of finite presentation.

(2) If S is a scheme flat over V , a K-admissible blow-up of S is an admissible blow-up of S with
respect to the open subscheme SK ↪→ S.

(3) If S is a formal scheme over V , an admissible formal blow-up S ′ → S is a formal S-scheme

S ′ ∼= lim
h→∞

Proj
∞⊕

n=0

(An ⊗OX OX/ph+1OX),

where A ⊂ OX is a coherent open ideal sheaf. See [BL93, § 2].

Recall that the category T of quasi-separated paracompact rigid K-spaces of Tate is equivalent
to the category of admissible formal V -schemes, localized by admissible formal blow-ups [Ray74a],
[BL93, Theorem 4.1].

3. The main theorems

Let S be a formal scheme over V . Let f : X → S be a g-dimensional formal abelian scheme. Let F
be the Frobenius morphism on R1f∗OX1. We denote by det(F)OS1 the ideal locally generated by the
determinant of the matrix of F with respect to a basis of R1f∗OX1 . Observe that it is well defined.
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Definition 3.1. Let 0 � w < 1 be a rational number. We define a formal (w, g)-situation to be
f : X → S where:

(a) S is a formal scheme;

(b) f is a locally projective g-dimensional formal abelian scheme;

(c) pw ∈ det(F)OS1 .

Remark 3.2. To require that f : X → S is a formal (0, g)-situation is equivalent to requiring that
its geometric fibers are ordinary. Since being ordinary is an open condition, there exists a maximal
formal open subscheme S(0) of S such that X ×S S(0) → S(0) is a formal (0, g)-situation.

In the next lemma we determine the maximal locus where X → S is a (w, g)-situation.

Lemma 3.3. Let X → S be a locally projective formal abelian scheme over a formal scheme S.
For every rational number 0 � w < 1 with pw ∈ Γ(S,OS), there exists a formal scheme S(w) over S
such that:

(1) X ×S S(w) → S(w) is a (w, g)-situation;

(2) every morphism T → S of formal schemes for which X ×S T → T is a (w, g)-situation, factors
uniquely via S(w) → S.

Furthermore, S(w) is an open formal subscheme of an admissible blow-up of S. In particular, S(w)an

is an open rigid analytic subspace of San.

Proof. Due to property (2) it suffices to construct S(w) and to prove its claimed properties locally
on S. We may then assume that S = Spf(R) is affine and that H1(X,OX) is free as an OS -module.
Then, with the notation of Definition 3.1, we have that det(F)R1 is generated by one element
of R1. Fix a generator α and a lifting α ∈ R. Define R(w) := R{Y }/(Y α − pw) and S(w) :=
Spf(R(w)). One verifies that properties (1) and (2) hold. The last claims follow from the construction
of S(w).

Proposition 3.4. Let X → S be a (0, g)-situation. There is a unique closed subgroup scheme Hord
X

of X finite and flat over S such that Hord
X ⊗V k is the kernel of the relative Frobenius on X ⊗V k.

In particular, it is multiplicative and of order pg. Furthermore, the construction of Hord
X is functorial

for (0, g)-situations and commutes with base-change.

It is not difficult to deduce the proposition from the general fact that the étale topos of S
(respectively, X) is the same as the étale topos of S ⊗V k (respectively, of X ⊗V k). Nevertheless,
we prefer to give a different, probably less-efficient proof which follows closely and thus hopefully
clarifies the strategy for proving one of the main theorems of the paper (Theorem 3.5).

Proof. Due to the claimed uniqueness it suffices to construct Hord
X , and prove that it is unique,

Zariski locally on S. In particular, we may assume that S = Spf(R) is affine and that H1(X,OX)
is a free OS -module of rank g. By Artin–Schreier theory [Mil80, Proposition III.4.12] we have an
exact sequence

0 −→ H1(X1,Z/pZ)/H1(S1,Z/pZ) −→ H1(X1,OX1)
F−1−−→ H1(X1,OX1), (3.4.1)

where F is defined by Frobenius. Note that Ker(F − 1) is a Fp-vector space. We claim that there
exists a finite, étale and Galois morphism S ′

1 → S1 such that, if we put X′
1 := X1 ×S1 S ′

1, the kernel
of F − 1 on H1(X′

1,OX′
1
) is a Fp-vector space of dimension g.

Indeed, fix a basis B = {e1, . . . , eg} of H1(X1,OX1) as an R1-module and let U be the matrix
of Frobenius on H1(X1,OX1) with respect to B. The ordinarity of X → S is equivalent to requiring
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that U is invertible. Let W → S1 be the closed subscheme of Spec(R1[z1, . . . , zg]) defined by the
equations

U




zp
1
...
zp
g


 −




z1
...
zg


 = 0.

Since U is invertible, W → S1 is finite and flat of rank pg. By the Jacobian criterion it is also étale.
We then let S ′

1 → S1 be a finite, étale and Galois morphism such that W ×S1 S ′
1 splits as the disjoint

sum of pg-copies of S ′
1.

Let S ′ → S be the unique finite, étale and Galois morphism lifting S ′
1 → S1. Let G be the Galois

group. Define X′ := X×S S ′. Since any Z/pZ-torsor over X′
1 can be uniquely lifted to a Z/pZ-torsor

over X′, then H1(X′,Z/pZ)/H1(S ′,Z/pZ) is an Fp-vector space of dimension g and it is endowed
with an action of G given by the pull-back of torsors. This group is isomorphic to HomS′(µp, (X′)∨)
as a G-module (where G acts on the latter via its action on X′); see § 5.12. We then obtain a
homomorphism Ψ: µg

p → (X′)∨. Since µg
p is finite over S, the map Ψ is finite. Using again (3.4.1) for

every geometric point of S1, we deduce that the kernel of Ψ ×S S1 is trivial fiberwise over S1 and,
hence, is trivial. In particular, Ψ×SS1 is a closed immersion. Owing to [EGAIII, 4.8.10], this implies
that Ψ is a closed immersion. By étale descent, Ψ descends to a closed subgroup scheme G ⊂ X∨.
It is finite and flat of rank pg over S, it is annihilated by p and it is of multiplicative type. Define Hord

X

as the Cartier dual of X∨[p]/G. It is a finite and flat group scheme over S of rank pg and it is a
closed subgroup scheme of X[p]. Since X∨ is also ordinary, X∨[p]/G is an étale group scheme and,
hence, Hord

X is of multiplicative type. In particular, it lifts the kernel of Frobenius on X ⊗V k.

One of the main theorems of this paper is the following analogue of a classical theorem of Lubin
as stated in [Kat73, Theorem 3.1].

Theorem 3.5. There is the only way to attach to every formal (w, g)-situation X → S, with 0 �
w < (p−1)/(2p−1), a rigid analytic subgroup scheme Han

X of Xan finite and flat of rank pg over San,
called the canonical subgroup of Xan, such that:

(i) it depends only on the isomorphism class of Xan → San;

(ii) its construction commutes with base-change;

(iii) the restriction of Han
X to S(0)an is (Hord

X×SS(0))
an.

Remark 3.6. In part (i) we mean that for every formal (w′, g)-situation X′ → S ′, with 0 � w′ <
(p − 1)/(2p − 1) and with rigid analytic fiber Xan → San, we have Han

X = Han
X′ as rigid analytic

subgroups of Xan.
In part (ii), besides base-change via formal schemes over V , we also allow base-change via formal

schemes defined over different complete discrete valuation rings.

Proposition 3.7. Let X1 → S (respectively, X2 → S) be a formal (w1, g1)-situation (respectively,
a formal (w2, g2)-situation) with 0 � w1, w2 < (p − 1)/(2p − 1). Let h : X1 → X2 be a morphism of
formal abelian schemes. Then, han restricted to Han

X1
factors via Han

X2
↪→ Xan

2 .

In particular, if one takes X1 = X2 = X and h to be the identity, the proposition implies that Han
X

does not depend on whether we consider X → S as a formal (w, g) or as a formal (w′, g) situation.
Let f : X → S be a formal (w, g)-situation with 0 � w < (p − 1)/(2p − 1). We now show that

we can be more precise at the level of formal schemes, i.e. regarding the formal models of Han
X .

More precisely, one knows from [BL93, Theorem 4.1] that there exists a formal scheme whose rigid
analytic fiber is Han

X , but one has very little control on such a formal model. We can show that
there exists an admissible formal blow-up S ′ → S and a closed subgroup scheme of X ×S S ′, finite
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and flat of rank pg over S ′, whose rigid analytic fiber is Han
X . Furthermore, one can find a formal

scheme over S which is minimal in the following sense.

Definition 3.8. We say that a morphism of formal schemes π : S ′ → S is minimal with respect to
the given (w, g)-situation if:

(a) π is locally projective and it induces an isomorphism of the associated rigid analytic spaces;

(b) there exists a closed subgroup scheme H ′ of X×S S ′, finite and flat of order pg over S ′, whose
rigid analytic fiber is Han

X ;

(c) for every admissible blow-up h : T → S, such that X×S T admits a closed subgroup scheme H
finite and flat over T and whose rigid analytic fiber is Han

X ×San Tan, the morphism h factors
via π and H = H ′ ×S′ T.

We first prove a lemma which guarantees that a flat formal model of Han
X , if it exists, is unique.

Lemma 3.9. Let f : X1 → X2 be a morphism of formal schemes over a formal scheme T. Let H1

(respectively, H2) be a formal closed subscheme of X1 (respectively, X2) such that H1 is flat over T.
Assume that fan restricted to Han

1 factors via Han
2 . Then, f restricted to H1 factors via H2.

Proof. Let g : U1 → U2 be the restriction of f to affine open formal subschemes of X1 and X2,
respectively. For i = 1, 2 we have the following commutative diagram.

Γ(Ui,OXi
) ��

ιi

��

Γ(Uan
i ,OXan

i
)

��
Γ(Ui,OHi)

ji �� Γ(Uan
i ,OHan

1
)

The vertical arrows are surjective since Hi ↪→ Xi and Han
i ↪→ Xan

i are closed immersions (as formal
schemes and as rigid analytic spaces, respectively). Let Ji be the kernel of ιi. The map j1 is injective
because Γ(Uan

1 ,OHan
1

) is Γ(U1,OH1) ⊗V K and H1 is flat over T by assumption. By assumption,
(gan)∗(J2) = j1◦ι1◦g∗(J2) is zero in Γ(Uan

1 ,OHan
1

). Hence, ι1◦g∗(J2) = 0. The conclusion follows.

The following theorem shows us that a flat formal model of Han
X exists over an admissible blow-up

of S with no need for further blow-ups (of the base-change) of X.

Theorem 3.10. Let f : X → S be a formal (w, g)-situation with 0 � w < (p − 1)/(2p − 1).

(1) There exists a minimal morphism, unique up to S-isomorphism, SX → S with respect to the
given (w, g)-situation.

(2) The formation of SX commutes with flat base-change, i.e. if T is a formal scheme flat over S,
we have TX ∼= T ×S SX.

In particular, there exists an admissible blow-up S ′ → S and a closed subgroup scheme H form
X of

X ×S S ′, finite and flat of order pg over S ′, whose rigid analytic fiber is Han
X .

Remark 3.11. Property (1) and Raynaud’s theorem [BL93, Theorem 4.1] imply that there exists an
admissible blow-up S ′ → S factoring via SX → S. This proves the last statement of the theorem.
We thank the referee for pointing out that this does not necessarily imply that SX → S is an
admissible blow-up.

As in the ordinary case we can also show that the special fiber of H form
X is the kernel of Frobenius

on the special fiber of the pull-back of X to S ′.
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Proposition 3.12. With the notation of Theorem 3.10 we have

H form
X ×S′ (S ′ ⊗V k)red = Ker(F) ×S (S ′ ⊗V k)red,

where (S ′ ⊗V k)red is the scheme S ′ ⊗V k with reduced induced structure and F is the relative
Frobenius on X ⊗V k.

The formal model of the canonical subgroup is functorial in X. Indeed, we deduce from Lemma 3.9
the following.

Proposition 3.13. Let f1 : X1 → S (respectively, f2 : X2 → S) be a formal (w, g1)-situation
(respectively, a formal (w, g2)-situation) with 0 � w < (p − 1)/(2p − 1). Let h : X1 → X2 be a
morphism of formal abelian schemes. Denote by S ′ → S an admissible blow-up such that there
exist group schemes H form

X1
⊂ X1 ×S S ′ and H form

X2
⊂ X2 ×S S ′ extending Han

X1
and Han

X2
as in

Theorem 3.10. Then, h ×S S ′ restricted to H form
X1

factors via H form
X2

.

4. Proof of the uniqueness

In this section we prove that the canonical subgroup, if it exists, is unique. More precisely, we show
in Proposition 4.6 that two rules satisfying Theorem 3.5(i)–(iii) coincide.

First of all we prove a general result on the rigid analytic connected components of suitable tubes
of moduli spaces of abelian varieties over V . This is the key ingredient in proving Proposition 4.6.
We start by recalling the notion of rigid analytic connectedness.

Definition 4.1 (Berthelot [Ber96, (0.1.12)]). Let Y be a rigid analytic space over K. We say that
Y is connected if one of the following equivalent conditions are satisfied:

(i) Γ(Y,OY ) does not contain idempotents different from 0 and 1;

(ii) Y does not admit an admissible covering consisting of two disjoint non-empty open rigid
analytic subspaces.

Proposition 4.2. Let R be an admissible V -algebra. Fix α ∈ R, a generator π of the maximal ideal
of V and a non-negative rational number w such that pw ∈ R. Denote by X the formal scheme Spf(R)
and by X(w) the formal scheme Spf(R(w)) with R(w) := R{Y }/(αY − pw). If (π, α) is a regular
sequence in R, every connected component of X(w)an has non-empty intersection with X(0)an.

Proof. Write X(w)an as the disjoint union of its connected components �hX(w)anh . For every h let eh

in Γ(X(w)an,OX(w)an) be the function which is 1 on X(w)anh and 0 elsewhere. The set {eh}h consists
of idempotents of R(w)⊗V K such that 1 =

∑
h eh and ehe� = 0 if � 	= h. In particular, R(w)⊗V K

decomposes accordingly into the product
∏

h(R(w) ⊗V K)eh. The proposition follows if we prove
that for every h the map (R(w) ⊗V K)eh → (R(0) ⊗V K)eh is injective. This is proven in the
following lemmas.

Lemma 4.3. The map R/pnR → R/pnR[α−1] is injective for every n ∈ N. In particular, piR =
(piR̂[α−1]) ∩ RK (in R̂[α−1] ⊗V K).

Proof. The regularity of the sequence (π, α) implies that α is neither zero nor a zero divisor in R⊗V k,
i.e. the map R ⊗V k → R[α−1]⊗V k is injective. Since π is not a zero divisor in R, for every n ∈ N
the sequence

0 −−→ R/πR
·πn−1−→ R/πnR −−→ R/πn−1R −−→ 0

is exact. Proceeding inductively on n, one deduces that R/πnR → R[α−1]/πnR[α−1] is injective for
every n. We leave it to the reader to check that the second statement of the lemma is equivalent to
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showing that psR̂[α−1] ∩ R = psR for every s ∈ N. This follows from the injectivity of R/πrsR →
R/πrsR[α−1] where pV = πrV .

Lemma 4.4. The map (R{Y }/(αY − pw)) ⊗V K → R̂[α−1] ⊗V K is injective.

Proof. Write β := α/pw. Consider the following commutative diagram.

RK{Y } ι ��

ρ

��

(R̂[α−1] ⊗V K){Y }

��
RK{Y }/(βY − 1)

j �� (R̂[α−1] ⊗V K){Y }/(βY − 1) R̂[α−1] ⊗V K

The lemma asserts that j is injective. Due to Lemma 4.3 the map R → R̂[α−1] is injective since R is
p-adically complete and separated. Hence, the map ι is also injective. Let B =

∑
i biY

i ∈ RK{Y } be
such that j(ρ(B)) = 0, i.e. ι(B) = C(1−Y β) with C =

∑
i ciY

i ∈ (R̂[α−1]⊗V K){Y }. To have ι(B) =
C(1 − Y β) is equivalent to requiring that c0 = b0 and cn = cn−1β + bn for n � 1. It follows by
induction that cn ∈ RK , i.e. C ∈ RK [[Y ]]. For every s ∈ N there exists N ∈ N such that cn lies
in psR̂[α−1] for n � N . Hence, cn lies in (psR̂[α−1]) ∩ RK which is psR by Lemma 4.3. Hence, C
lies in ι(RK{Y }). In particular, ρ(B) = 0. The conclusion follows.

We apply Proposition 4.2 in the following geometric context. Fix positive integers n and d such
that n � 3, (n, p) = 1 and (n, d) = 1. Denote by Ag,d,n (respectively, A(p)

g,d,n) the moduli space
over V of g-dimensional abelian varieties with full level n structure, i.e. with a fixed isomorphism of
the n-torsion with (Z/nZ)2g, and a polarization of degree d2 (respectively, and a subgroup scheme
finite and flat over the base of order pg). They exist by [Mum65, Theorem 7.9], they are quasi-
projective and they are fine moduli spaces due to our assumption on n. In particular, there exists
a universal abelian scheme Xuniv → Ag,d,n. Let ρ : A(p)

g,d,n → Ag,d,n be the morphism induced by the
forgetful functor. Over K these moduli spaces are smooth and ρ is finite and étale. Let Ag,d,n be
the formal scheme associated to Ag,d,n. For 0 � w < 1 define (Ag,d,n)(w) as in Lemma 3.3.

Proposition 4.5. Every connected component of (Ag,d,n)(w)an, in the sense of Definition 4.1, has
non-empty intersection with (Ag,d,n)(0)an.

Proof. Let Anorm
g,d,n be the normalization of Ag,d,n and let T be the associated formal scheme.

Since Ag,d,n ⊗V K is smooth we have T(w)an = (Ag,d,n)(w)an so that it suffices to prove the lemma
for T(w)an. Since Ag,d,n is of finite type over V , it is an excellent scheme and its normalization is
finite over Ag,d,n and it is itself excellent. Since Anorm

g,d,n is flat over V and V is universally catenary,
by [EGAIV, 5.6.1] the irreducible components of Anorm

g,d,n ⊗V k all have the same dimension equal
to g(g + 1)/2. By [NO80, Theorem 3.1] every irreducible component of Ag,d,n ⊗V k has dimension
g(g + 1)/2. Since the map Anorm

g,d,n ⊗V k → Ag,d,n ⊗V k is finite, we deduce by dimension reasons that
every irreducible component of (Ag,d,n)norm⊗V k dominates an irreducible component of Ag,d,n⊗V k.
By [NO80, Theorem 3.1] the generic point of every irreducible component of Ag,d,n⊗V k is ordinary.
We conclude that the same holds for every irreducible component of the special fiber Anorm

g,d,n ⊗V k.
Let {Ui}i be a covering of Ag,d,n by affine open subschemes each dominating Spec(V ) and such

that, if Ui = Spec(Ai) and Xuniv
i → Ui is the restriction of the universal abelian scheme Xuniv to Ui,

then H1(Xuniv
i ,OXuniv

i
) is a free Ai-module. For every i let αi be a lift of a generator of the ideal

generated by det(F) on H1(Xuniv
i ,OXuniv

i
)/pH1(Xuniv

i ,OXuniv
i

). Each Ai is a V -algebra of finite type
and, hence, it is an excellent ring. In particular, the p-adic completion Ri of the normalization of Ai

is normal by [EGAIV, 7.8.3(v)]. Furthermore, {Spf(Ri)}i is a covering of T by affine open formal
subschemes. It follows from Lemma 3.3 that {Spf(Ri(w))}i, with Ri(w) := Ri{Yi}/(αiYi − pw),
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is a covering of T(w) by affine open formal subschemes. Since Spec((Ri ⊗V k)[α−1
i ]) is the ordinary

locus in Spec(Ri ⊗V k), the conclusion of the previous paragraph translates into the fact that αi

is not contained in any minimal prime ideal of Ri containing π. Since Ri is normal, we conclude
from [Bou98, IV.1.1, Proposition 2 and Corollary 3] that αi is not a zero divisor in Ri⊗V k. Hence, the
hypotheses of Proposition 4.2 are satisfied for R = Ri and α = αi and the proposition follows.

We now prove the main result of this section: the uniqueness of the canonical subgroup.

Proposition 4.6. Suppose that we have two rules Han and Gan satisfying Theorem 3.5(i)–(iii).
Then, Han and Gan coincide.

Proof. Let X → S be a formal (w, g)-situation, with w as in Theorem 3.5. We have to prove
that Han

X = Gan
X . If w = 0 this follows from property (iii). We then assume w > 0. We remark

that we can work locally in the fppf topology. By this we mean the following: let S ′ → S be a fppf
morphism of formal schemes and let X′ := X ×S S ′ → S ′ be the (w, g)-situation obtained by base-
change, then Han

X′ = Gan
X′ , as rigid analytic subspaces of X′, if and only if Han

X = Gan
X . Indeed, Han

X

and Gan
X define closed rigid analytic subspaces of X[p]an and the latter is finite over San. The same

applies replacing X with X′. Since the map of rigid analytic spaces associated to S ′ → S is fppf, in
the sense of [BL93, pp. 313–314], the claim follows from property (ii).

In particular, considering the base-change to a dvr finite over V , we may assume that pw ∈ V .
Possibly after localization on S, we may also suppose that X is projective over S and, in particular,
that it admits a polarization of degree d2 for some d. Eventually, we may suppose that X is endowed
with a full level n structure with n � 3, (n, p) = 1 and (n, d) = 1.

The formal abelian scheme X → S is obtained by a pull-back of the universal formal abelian
scheme Xuniv over Ag,d,n. Property (ii) reduces the proof of the uniqueness to the case of the universal
family over (Ag,d,n)(w); see Lemma 3.3 for the notation. Note that Han

X and Gan
X define two closed

immersions

σH , σG : (Ag,d,n)(w)an ↪→ (ρan)−1((Ag,d,n)(w)).

By property (iii) they coincide on the rigid analytic open subspace Ag,d,n(0)an. We deduce from
Proposition 4.5 that the latter has non-empty intersection with every connected component of
(Ag,d,n)(w)an. The conclusion then follows from the following lemma.

Lemma 4.7. Let X and Y be rigid analytic spaces. Assume that X is connected and that for
every x ∈ X the local ring OX,x is integral. Assume that we are given two closed immersions
α, β : X ↪→ Y coinciding on a non-empty open rigid analytic subspace U ⊂ X. Then, α = β.

Proof. One proves that the ideal sheaves in OY defining α and β coincide. One proceeds as in [Ber96,
Proposition 0.1.13]. Details are left to the reader.

Remark 4.8. One may observe that the main difficulty in the proof of the uniqueness is showing
that every connected component of (Ag,d,n)(w)an intersects the ordinary locus; if one is interested
just in principally polarized abelian varieties, this is obvious.

5. Torsors under group schemes of order p

In this section we review some of the results of [AG], in the special case needed in this paper,
concerning a description of torsors under group schemes of order p. This allows us to give explicit
equations for such torsors in the Zariski topology. We refer to [AG] for proofs, applications and
generalizations.
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Definition 5.1. For every λ ∈ V define G(λ) to be the V -scheme

Spec
(

V

[
T,

1
1 + λT

])
.

It has the structure of a V -group scheme defining the comultiplication by T �→ T⊗1+1⊗T +λT⊗T ,
the counit by T = 0 and the coinverse by T �→ −T/(1 + λT ).

For λ ∈ V with v(λ) � 1/(p − 1) let Pλ be the polynomial

Pλ(T ) :=
(1 + λT )p − 1

λp
.

Then, the map φλ : G(λ) → G(λp), defined at the level of Hopf algebras by T �→ Pλ(T ), is an isogeny
of degree p. Let

Gλ := Spec(V [T ]/(Pλ(T )))
be the kernel of φλ. It is a commutative, finite and flat group scheme over Spec(V ) of rank p.

Example 5.2. (a) If λ = 0, then G(0) � Ga. For future use, in this case, we pose T = W , consequently
Ga = Spec(V [W ]) with comultiplication W �→ W ⊗ 1 + 1 ⊗ W , coinverse W �→ −W and counit
W �→ 0.

(b) If λ is a unit, then G(λ) ∼= Gm,V . Write Gm,V as Spec(V [Z, 1
Z ]) with comultiplication

given by Z �→ Z ⊗ Z and counit defined by Z �→ 1; then, the isomorphism G(λ) ∼−→ Gm,V is given
by Z �→ 1 + λT .

(c) The group scheme Gλ is étale if and only if v(λ) = 1/(p − 1). It is multiplicative, i.e. its
Cartier dual is étale, if and only if λ is a unit.

5.3 Compatibilities
Let λ and ν be elements of V with v(ν) � v(λ). We have a natural morphism ηλ,ν : G(λ) −−→ G(ν)

of V -group schemes given by T �→ (λ/ν)T . It is an isomorphism over K. Assume that 0 � v(ν) �
v(λ) � 1/(p − 1). Then, one checks that the diagram

G(λ)
Φλ ��

ηλ,ν

��

G(λp)

ηλp,νp

��
G(ν)

Φν �� G(νp)

commutes. Hence, we obtain a homomorphism of V -group schemes ηλ,ν : Gλ → Gµ, which is an
isomorphism over K. In the case ν is a unit, thanks to Example 5.2(b), we obtain a homomorphism

ηλ : Gλ −−→ Gν
∼−→ µp.

For ν not necessarily a unit, one verifies that ηλ = ην ◦ ηλ,ν .

5.4 Relation with Oort–Tate theory
Although we do not need it explicitly, we describe here the relation with the Oort–Tate description of
group schemes of order p. For elements a, c in V satisfying ac = p, denote by G(a,c) the group scheme
over V defined in [OT70]: the structure as a V -scheme is given by G(a,c) := Spec(V [y]/(yp − ay)),
the co-multiplication by

y �→ y ⊗ 1 + 1 ⊗ y +
cwp−1

1 − p

p−1∑
i=1

yi

wi
⊗ yp−i

wp−i

and the counit by y = 0. Here, w1, . . . , wp−1 are the universal constants in V introduced in [OT70,
p. 9].
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Under the further assumption that cwp−1 admits a (p− 1)th root β in V , put λ(a) := β/(1− p).
Then, we have the isomorphism G(a,c) → Gλ(a) defined at the level of the underlying Hopf algebras
by T �→ ∑p−1

i=1 βi−1(yi/wi). Vice versa, given λ and letting c(λ) := (λ(1 − p))p−1/wp−1 and a(λ) :=
p/c(λ), we have Gλ

∼= G(a(λ),c(λ)).
Oort–Tate have proved that, Zariski locally on V , any finite and flat group scheme of rank p

over V is of the form above. In particular, the Gλ give an alternative description of all V -group
schemes of order p (possibly after a ramified extension of V ).

Definition 5.5. Assume that λ satisfies 0 < v(λ) � 1/(p − 1). Let X be a scheme over V . Define
CD(λ)(X) to be the category of global classifying data over X. The objects consist of triples (L,E,Ψ)
where:

(1) L is an invertible OX-module;
(2) E is an extension of L by OX ;
(3) Ψ: E → E is a OX -linear map such that

(a) defining E0 := Ker(Ψ), we have E0 = OX ;
(b) the map E/E0 → E/E0 induced by Ψ is multiplication by λ on L;
(c) the OX -module E/Ψ(E) is invertible.

A morphism Ξ: (L,E,Ψ) → (L′, E′,Ψ′) is given by isomorphisms ΞL : L → L′ and ΞE : E → E′ as
OX-modules such that the following two diagrams are commutative.

0 �� OX
Id

��

�� E ��

ΞE

��

L

ΞL

��

�� 0

0 �� OX �� E′ �� L′ �� 0

E
Ψ ��

ΞE

��

E

ΞE

��
E′ Ψ′

�� E′

The following theorem is proven in [AG] and gives a description of G(λ)-torsors in terms of global
classifying data.

Theorem 5.6 [AG, § 2]. The category of G(λ)-torsors for the fppf topology over X is quasi-equivalent
to the category CD(λ)(X).

Remark 5.7. Given global classifying data one can always find a covering {Ui}i of X by open affine
subschemes and ei ∈ Γ(Ui, E) such that E|Ui = OUi ⊕ OUiei and Ψ(ei) = 1 + λei. Then, the
associated G(λ)-torsor Y (λ) → X is locally defined by

Y
(λ)
|Ui

∼= Spec(OUi [ei])

with coaction Y
(λ)
|Ui

×V G(λ) → Y
(λ)
|Ui

given by ei �→ ei ⊗ 1 + Ψ(ei) ⊗ T . Furthermore, for every

i, j ∈ I one can write ei = (1 + λuij )ej + uij as sections of E|Ui∩Uj . The gluing of Y
(λ)
|Ui

and Y
(λ)
|Uj

on Uij := Ui∩Uj is then given by ei = (1+λuij )ej +uij . One checks that Y (λ) is indeed a G(λ)-torsor;
see [AG] for details.

Definition 5.8. Define CDλ(X) to be the category of classifying data over X. The objects consist
of the quadruples (L,E,Ψ, {(Ui, ei, αi)}i∈I) where:

(i) (L,E,Ψ) are global classifying data;
(ii) {Ui}i is a covering of X by open affine subschemes such that:
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(a) for every i ∈ I we have αi ∈ Γ(Ui,OX) and ei ∈ Γ(Ui, E) such that E|Ui = OUi ⊕ OUiei

and Ψ(ei) = 1 + λei;
(b) for every i, j ∈ I, writing ei = vij ej + uij , we have

vij = 1 + λui,j and vp
ijαj − αi = −Pλ(uij ).

A morphism Ξ: (L,E,Ψ, {(Ui, ei, αi)}i∈I) → (L′, E′,Ψ′, {(U ′
j , e

′
j , α

′
j)}j∈J ) is a morphism Ξ: (L,

E,Ψ) → (L′, E′,Ψ′) in the sense of Definition 5.5 such that there exists a common refinement {Vh}h

of {Ui}i and {U ′
j}j such that, if Vh ⊂ Ui ∩ U ′

j and writing ΞE(ei) = vhe′j + uh over Vh, we have

vh = 1 + λuh and vp
hα′

j − αi = −Pλ(uh).

One of the key results of [AG] is the following theorem characterizing Gλ-torsors in terms of
classifying data.

Theorem 5.9 [AG, Theorems 2.2 and 3.4]. Assume that 0 < v(λ) � 1/(p − 1). The category of
Gλ-torsors Y → X for the fppf topology is quasi-equivalent to the category CDλ(X) of classifying
data over X.

Remark 5.10. (a) Given classifying data C as in the theorem, let Y (λ) → X be the G(λ)-torsor
associated to the global classifying data (L,E,Ψ) as in Remark 5.7. Then, the Gλ-torsor Y →
X corresponding to C can be realized as the closed subscheme Y ⊂ Y (λ) locally defined by
Spec(OUi [ei]/(Pλ(ei) − αi)) endowed with the unique action of Gλ compatible with the one of G(λ)

on Y (λ).
(b) One can show that Kummer and Artin–Schreier theories are instances of Theorem 5.9;

see [AG].

Remark 5.11. Let X be a formal V -scheme. With minor changes, one can show that similar descrip-
tions of formal torsors over X in terms of formal classifying data exist. The key observation is that
giving a formal torsor over X is equivalent to giving compatible torsors over Xn := X ⊗V Vn for n
varying in N. We leave the details to the reader.

5.12 Torsors and subgroups
Let S be a V -scheme. Assume that X → S is a locally projective abelian scheme (which is the case
of interest for us in this paper). Denote by PicX the Picard presheaf, by PicX/S the relative Picard
sheaf and by X∨ = Pic0

X/S the dual abelian scheme.
Let Y → X be a Gλ-torsor. Let T be a scheme over S and consider a T -valued point of the Cartier

dual Gλ
∨ of Gλ, i.e. a homomorphism f : Gλ ⊗V T → Gm,T . Then, the push-forward of Y ×S T →

X ×S T via f defines a Gm,T -torsor over X ×S T and, hence, an element of PicX(T ). This defines
a homomorphism H1(X,Gλ) → HomS(Gλ

∨,PicX) and, hence, a homomorphism τ : H1(X,Gλ)/
H1(S,Gλ) −→ HomS(Gλ

∨,PicX/S). Then, τ clearly factors via HomS(Gλ
∨,X∨). Furthermore, the

homomorphism
τ : H1(X,Gλ)/H1(S,Gλ) −−→ HomS(Gλ

∨,X∨)
is an isomorphism; cf. [Mil80, Proposition III.4.16].

For later purposes we make the following remark. Let r be a rational number in v(m).

Proposition 5.13. If R is a p-adically complete and separated V -algebra, the reduction map
H1(R,Gλ) → H1(Rr,Gλ) is surjective.

Proof. In [AG, § 4] an infinitesimal deformation theory for Gλ-torsors is developed. The obstruction
space to lift Gλ-torsors infinitesimally is a subgroup of an extension of H2(Spec(R ⊗V k),G(λ)) ∼=
H2(Spec(R ⊗V k),O) = {0} by H1(Spec(R ⊗V k),G(λp)) ∼= H1(Spec(R ⊗V k),O) = {0}, where O is
the structure sheaf. The proposition follows.
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6. Gλ-torsors and the Bloch–Kato filtration

In this section we assume that R is a p-adically complete, separated, noetherian and normal flat
V -algebra. We also fix an algebraically closed field Ω containing R. We denote by S the scheme
Spec(R). Let π : X → S be a projective abelian scheme over S.

Definition 6.1. Define W := {W} as the set of all finite extensions of R, which are normal integral
domains, are contained in Ω and RK ⊂ WK is étale. Let R := lim→ W .

We observe that the direct limit lim→ WK is also the limit of all finite, étale and irreducible
extensions of RK contained in Ω. Indeed, by [Eis95, Proposition 13.14] if RK ⊂ T is a finite and
étale extension, the normalization of R in T is finite as an R-module. We now introduce a filtration,
called the Gλ-filtration, on H1

et(XK ⊗R R,µp).

Lemma 6.2. The group H1(R,Gλ) is trivial.

Proof. Let f : Y → Spec(R) be a Gλ-torsor. Since f is finite, Y is obtained by a pull-back from
a Gλ-torsor f ′ : Y ′ → Spec(W ) such that W ⊂ R is a normal and integral domain, it is finite as
an R-module and étale over RK . Since H1(RK ,Gλ) = 0, we may further assume that f ′ admits a
section σ over WK . The schematic closure σ of σ is finite over W . Since W is normal, it is a section
of f ′. Hence, f admits a section as well.

Lemma 6.3. For every W ∈ W the map

H1
fppf(X ⊗R W,µp)/H1

fppf(W,µp) −−→ H1
fppf(XK ⊗R W,µp)/H1

fppf(WK , µp)

is an isomorphism. In particular, the map H1
fppf(X ⊗R R,µp) → H1

fppf(XK ⊗R R,µp) is an isomor-
phism.

Proof. By § 5.12 the first statement amounts to proving that Hom(Z/pZ,X∨ ⊗R W ) →
Hom(Z/pZ,X∨

K ⊗R W ) is an isomorphism. This is equivalent to proving that the application
Hom(Z/pZ,X∨[p] ⊗R W ) → Hom(Z/pZ,X∨[p]K ⊗R W ) is an isomorphism. Since X∨[p] is finite
over Spec(W ) and W is normal, this follows from the valuative criterion of properness and [EGAIV,
20.4.12].

Lemma 6.4. Let λ ∈ V satisfying 0 � v(λ) � 1/(p − 1). Let W ∈ W be such that λ ∈ W .
The map H1

fppf(X ⊗R W,Gλ)/H1
fppf(W,Gλ) → H1

fppf(X ⊗R W,µp)/H1
fppf(WK , µp), defined using the

homomorphism ηλ of § 5.3, is injective. In particular, the homomorphism

θλ : H1
fppf(X ⊗R R,Gλ) −−→ H1

fppf(XK ⊗R R,µp)

is injective.

Proof. Using § 5.12 the claim amounts to proving that the map Hom(Gλ
∨,X∨ ⊗R W ) →

Hom(µ∨
p ,X∨

K ⊗R W ) defined by composing with ηλ is injective. The base-change of ηλ : Gλ →
µp via ⊗V K is an isomorphism. The claim is then equivalent to proving that any homomor-
phism Gλ

∨ → X∨ ⊗R W which is trivial over K is itself trivial. Since Gλ
∨ is a flat group scheme

over W and W → W ⊗V K is injective, this is clear.

Definition 6.5. For every λ in V with 0 � v(λ) � 1/(p − 1), define H1
fppf(XK ⊗R R,µp)[λ] as the

subgroup θλ(H1
fppf(X ⊗R R,Gλ)) of H1

fppf(XK ⊗R R,µp).

Proposition 6.6. Let λ and ν be elements of V with 0 � v(ν) � v(λ) � 1/(p − 1). Then,

H1
fppf(XK ⊗R R,µp)[λ] ⊂ H1

fppf(XK ⊗R R,µp)[ν].

In particular:
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(1) H1(X ⊗ R,µp)[λ] depends on v(λ) and not on λ;
(2) H1(X ⊗ R,µp)[λ] is invariant under Gal(RK/RK);
(3) {H1(X ⊗ R,µp)[λ] | 0 � v(λ) � 1/(p − 1)} is a decreasing filtration of H1

fppf(XK ⊗R R,µp).

Proof. The first statement follows using the homomorphism ηλ,ν of § 5.3 and the fact that ην ◦ηλ,ν =
ηλ. This implies claim (1) and claim (3). If σ ∈ Gal(RK/RK), then σ acts on H1

fppf(XK ⊗R R,µp)
by a pull-back and the image of H1(X ⊗R,µp)[λ] is H1(X ⊗R,µp)[σ(λ)]. Claim (2) then follows from
claim (1).

6.7 Relation with the Bloch–Kato filtration
In this section we further assume that R is a dvr. We consider the following descending filtration
on H1(XK⊗RR,µp) introduced and studied in the ordinary case in [BK86, § 1] and in more generality
in [AM04]. Consider the following diagram.

Xk ⊗R R

��

i �� X ⊗R R

��

XK ⊗R R
j��

��
Spec(k ⊗V R) �� Spec(R) Spec(K ⊗V R)��

Let M1
1 be the étale sheaf on Xk ⊗R R given by

M1
1 := i∗R1j∗(µp).

The exact sequence
0 −−→ µp −−→ Gm

p−−→ Gm −−→ 0
on XK ⊗R R and the fact that X ⊗R W is locally factorial (for every finite and normal extension
R ⊂ W , étale over RK as in Definition 6.1) give an exact sequence

i∗j∗(O∗
XK⊗RR

)
p−−→ i∗j∗(O∗

XK⊗RR
) h−−→ M1

1 −−→ 0. (6.7.1)

For every λ ∈ V we denote by UλM1
1 the subsheaf locally generated by local sections of

i∗j∗(O∗
XK⊗RR

) congruent to 1 modulo λp (note that UλM1
1 corresponds to the sheaf Uv(λp)M1

1

in [BK86]; our choice of notation is more suitable for Theorem 6.8). Consider the natural map

u : H1
et(XK ⊗R R,µp) −−→ H0

et(Xk ⊗R R,M1
1)

obtained from the Leray spectral sequence and the properness of X → S. Define

UλH1
et(XK ⊗R R,µp) := u−1(H0

et(Xk ⊗R R,UλM1
1)).

It follows from [BK86, Corollary 1.4.1] that for v(λ) > 1/(p − 1) one has UλH1
et(XK ⊗R R,µp) = 0.

We now prove that this filtration, called the Bloch–Kato filtration, can be reinterpreted in terms of
Gλ-torsors on X⊗RR. As a corollary one deduces that the Gλ-filtration is Galois invariant providing
an alternative proof of Proposition 6.6.

Theorem 6.8. The filtrations {H1
et(XK ⊗R R,µp)[λ]}λ and {UλH1

et(XK ⊗R R,µp)}λ, with λ ∈ V
satisfying 0 � v(λ) � 1/(p − 1), coincide.

Proof. We start by giving an explicit description of the map u. Let Y → X ⊗R R, a µp-torsor.
Since X → S is smooth, X is locally factorial and, hence, R1j∗(O∗

X⊗RR
) = 0. Thus, there exists a

finite and normal extension R ⊂ W and a covering {Ui}i of X ⊗R W by affine open subschemes
such that Y is defined over X ⊗R W and Y |Ui⊗V K is defined by the equation zp

i − γi with γi ∈
Γ(Ui ⊗V K,O∗

Ui⊗V K). The elements γi define a global section γ of j∗(O∗
XK⊗RR

)/j∗((O∗
XK⊗RR

)p).

Then, via the identification H0
et(Xk ⊗R R,M1

1 ) = H0
et(X ⊗R R, j∗(O∗

XK⊗RR
)/j∗((O∗

XK⊗RR
)p)) the
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element u([Y ]) coincides with γ. It lies in UλH1
et(XK ⊗R R,µp) if and only if each γi, up to pth

powers, lies in Γ(Ui, 1 + λpOUi).
Assume that Y arises as the restriction to XK ⊗R W of the push-forward via ηλ of a Gλ-torsor

Q → X ⊗R W . Suppose also that Q is defined on each Ui by an equation Pλ(ei)−αi as explained in
Remark 5.10. Then, Y is defined on Ui ⊗V K by the equation zp

i − (1 + λpαi). Hence, u([Y ]) lies
in UλH1

et(XK ⊗R R,µp).
Conversely, assume that γi = 1 + λpαi with αi ∈ Γ(Ui,OUi) for every i. Define a Gλ-torsor

Q → X⊗RW as follows. Let Q|Ui be the Gλ-torsor associated to the classifying data with trivial line
bundle, trivial extension and datum (Ui, ei, αi) as in Remark 5.10. Then, OQ|Ui

is a OUi-subalgebra
of OY |Ui

via the map ei �→ 1 + λzi and the inclusion is compatible with the action of Gλ (the
action on Y being given via ηλ : Gλ → µp). Thus, the Q|Ui glue to a Gλ-torsor and the restriction
to XK ⊗R W of its push-forward via ηλ is Y as required.

7. Hensel’s lemma for torsors

In this section we prove an analogue of Hensel’s lemma for torsors under group schemes of type Gλ.
We fix a p-adically complete and separated, noetherian, flat V -algebra R. Let S := Spec(R) and fix
a projective abelian scheme X → S.

We recall the statement of the classical Hensel’s lemma. Assume that R is complete and separated
with respect to an ideal m. Let f(X) be a polynomial with coefficients in R. Let a ∈ R be such
that f(a) ≡ 0 modulo f ′(a)2m. Hensel’s lemma asserts that there exists a zero b of f congruent to a
modulo f ′(a)m. Furthermore, if f ′(a) is not a zero divisor, b is unique with this property; see, for
instance, [Eis95, Theorem 7.3].

The Grothendieck algebraization theorem implies that the group H1(X,Gλ) coincides with the
inverse limit limn H1(Xn,Gλ). In particular, given two non-isomorphic Gλ-torsors over X there
exists an r, a priori depending on X and the two torsors, such that the base-change of the two
torsors to Xr are non-isomorphic. This can be interpreted as the analogue of uniqueness of solutions
in the classical Hensel’s lemma. Proposition 7.1 gives an effective upper bound on r which depends
on λ, but not on X. The main tool is the theory of [AG] briefly recalled in § 3. This result is one of
the main ingredients in the proof of the existence of the canonical subgroup.

Proposition 7.1. Suppose that V contains a (p − 1)th root of p. Let λ ∈ V be such that v(λ) �
1/(p − 1). Assume that r is a rational number such that p/(p − 1) − pv(λ) < r � 1. The map
ι∗r : H1(X,Gλ) → H1(Xr,Gλ) is injective.

Proof. Let X be the formal R-scheme associated to X. By the Grothendieck algebraization theorem
the map H1(X,Gλ) → H1(X,Gλ), obtained by associating to a torsor its formal completion, is an
isomorphism. Indeed, the surjectivity follows remarking that Gλ is finite over V and, thus, every
formal Gλ-torsor over X is finite and, thus, algebraizable by [EGAIII, 5.4.4]. The injectivity follows
from the fact that, given a torsor f : Y → X, a section at the level of the associated formal schemes
arises from a section of f by [EGAIII, 5.4.1]. Thus, we can replace X by its formal completion.

Let Y → X be a Gλ-torsor such that Yr is trivial. Let (L,E,Ψ, {(Ui, ei, αi)}i∈I) be the associated
(formal) classifying data. We assume that {Ui}i is a covering by formal affine open subschemes of X.
The triviality of Yr allows us to assume that E and L are trivial modulo pr and, for every i ∈ I,
that αi ≡ 0 modulo pr. Fix i ∈ I. Consider the polynomial Qi(T ) := (1 + λT )pαi + Pλ(T ) in
the variable T and with coefficients in Γ(Ui,OX). It is a polynomial of degree p. Let a := a(λ) be
as in § 5.4. It is equal to p/λp−1 times a unit of V . By hypothesis, since p admits a p − 1-root,
a admits a p − 1-root a1/(p−1). The linear term of Pλ(T ) is a times a unit of Γ(Ui,OX) which is
congruent to 1 modulo m. For every 2 � h � p− 1 the coefficient of T h in Pλ(T ) is divisible by aλ.
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The constant term of Pλ(T ) is zero. Let Si(T ) := Qi(a1/(p−1)T )a−p/(p−1). Since r > v(ap/(p−1)),
the polynomial Si(T ) has coefficients in Γ(Ui,OX), has derivative congruent to 1 modulo m and
has 0 as a root modulo m. By Hensel’s lemma [Eis95, Theorem 7.3] we deduce that Si(T ) admits a
unique zero ti congruent to 0 modulo m. Thus, ui := a1/(p−1)ti is a root of Qi(T ). The element e′i :=
(1 + λui)ei + ui satisfies Ψ(e′i) = 1 + λe′i and in the symmetric algebra of E|Ui

over OUi
we have

Pλ(e′i) = Pλ((1 + λui)ei + ui)

= (1 + λui)p
(

(1 + λei)p − 1
λp

)
+

(1 + λui)p − 1
λp

= (1 + λui)pαi + Pλ(ui) = Qi(ui) = 0.

Over Uij we compute

(1 + λui)p(1 + λuij )pαj = (1 + λui)pαi − (1 + λui)pPλ(uij )
= −Pλ(ui) − (1 + λui)pPλ(uij )
= −Pλ(ui + uij + λuiuij ).

Thus, ui + uij + λuiuij satisfies the equation (1 + λT )pαj + Pλ(T ) = 0. The triviality of Yr allows
to assume uij ≡ 0 modulo pr. Thus, ui + uij + λuiuij ≡ 0 modulo a1/(p−1)m. Put u′

j := ui + uij +
λuiuij and t′j := a−1/(p−1)u′

j. Then, t′j is an element of Γ(Uij ,OX), congruent to 0 modulo m and
satisfies Sj(t′j) = 0. Hence, by the uniqueness of solutions in Hensel’s lemma, t′j = tj and uj = u′

j =
ui + uij + λuiuij in Γ(Uij ,OX). We compute

e′i = (1 + λui)ei + ui

= (1 + λui)(1 + λuij )ej + (1 + λui)uij + ui

=
(1 + λui)(1 + λuij )

(1 + λuj)
e′j + (1 + λui)uij + ui − (1 + λui)(1 + λuij )uj

(1 + λuj)

=
(1 + λui)(1 + λuij )

(1 + λuj)
e′j + (1 + λui)uij + ui − uj

=
(1 + λui)(1 + λuij )

(1 + λuj)
e′j .

Thus, e′i := 0 for every i defines a section of Y → X. This implies that Y → X is the trivial formal
Gλ-torsor as claimed.

The classical Hensel’s lemma provides sufficient conditions for the existence of zeroes of poly-
nomial equations once given approximate solutions. The following proposition can be seen as an
analogue of this in our context.

Proposition 7.2. Let r be a rational number satisfying 2(1 − (p − 1)v(λ)) < r � 1. Let r′ :=
r − 1 + (p − 1)v(λ). In the commutative diagram

H1(X,Gλ)
ι∗
r′

�������������

ι∗r �� H1(Xr,Gλ)

ι∗
r,r′

��
H1(Xr′ ,Gλ)

the image of ι∗r′ coincides with the image of ι∗r,r′ .

Proof. As in Proposition 7.1 we may replace X with its associated formal R-scheme X. Let Yr → Xr

be a Gλ-torsor and let (L,E,Ψ, {(U i, ei, αi)}i∈I) be its associated classifying data. We may (and
we do) assume that {U i}i is a covering by open affine subschemes of Xr. For every i ∈ I, let Ui
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be the formal open affine subscheme of X defined by U i and let αi ∈ Γ(Ui,OX) be a lifting of αi.
Consider the polynomial Qij (T ) = (1 + λT )pαj − αi + Pλ(T ) with coefficients in Γ(Ui ∩ Uj ,OX).
Then Qij (T ) is a polynomial with coefficients in Γ(Ui ∩ Uj,OX) of degree p. Let a := a(λ) be as
in § 5.4; it is an element of V of valuation 1 − (p − 1)v(λ). The derivative of Qij (T ) has constant
coefficient equal to a times a unit and it has the coefficients of terms of higher degree congruent to 0
modulo am. Let uij ∈ Γ(U i ∩ U j,OXr ) be as in Definition 5.8. Let γij ∈ Γ(Ui ∩ Uj,OX) be a lifting
of uij . Then Q′

ij (γij ) = a times a unit. Since Qij (γij ) is congruent to zero modulo pr, we conclude
from Hensel’s lemma [Eis95, Theorem 7.3] that Qij (T ) admits a root uij ∈ Γ(Ui ∩ Uj,OX) which
is congruent to γij , and thus to uij , modulo pr′ = pra−1. Since X is V -flat, a is not a zero divisor
in Γ(Ui ∩ Uj,OX). Hence, uij is unique with these properties. For i, j and k in I we have

(1 + λuki)p(1 + λuij )pαj = (1 + λuki)p(αi − Pλ(uij ))
= αk − Pλ(uki) − (1 + λuki)pPλ(uij )
= αk − Pλ(uki + uij + λukiuij ).

Since there exists a unique zero of Qij (T ) congruent to uij modulo pr′ , as guaranteed by Hensel’s
lemma, we conclude that ukj = uki +uij +λukiuij . Over Ui define L as OUi

ei and E as OUi
⊕OUi

ei.
Over Ui ∩ Uj impose the gluing condition ei := (1 + λuij )ej + uij . Since ukj = uki + uij + λukiuij ,
we have

ek = (1 + λuki)ei + uki

= (1 + λuki)(1 + λuij )ej + (1 + λuki)uij + uki

= (1 + λukj)ej + ukj.

In particular, we obtain an invertible sheaf L over X and an extension E of L by OX. Furthermore,
there is a unique morphism of OX-modules Ψ: E → E defined over each Ui by Ψ(ei) = 1 + λei.
One verifies that (L,E,Ψ) is a global classifying datum, in the sense of Definition 5.5, and hence
defines a formal G(λ)-torsor Y(λ) → X. Proceeding as in Remark 5.10 we get a formal Gλ-torsor
Y → X. Its algebraization Y → X defines a Gλ-torsor. By construction, it lifts Yr′ → Xr′ as
claimed.

Corollary 7.3. Fix λ ∈ V such that

p

(p − 1)(2p − 1)
< v(λ) � 1

p − 1
.

Then, the natural morphism

ι∗(p−1)v(λ) : H1(X,Gλ) −−→ Im(ι∗1,(p−1)v(λ) : H1(X1,Gλ) → H1(X(p−1)v(λ),Gλ))

is an isomorphism.

Proof. Since
p

(p − 1)(2p − 1)
< v(λ),

the injectivity follows from Proposition 7.1 with r = (p − 1)v(λ). Note that 2(1 − (p − 1)v(λ)) <
2 − 2(p/(2p − 1)) < 1. Hence, the surjectivity follows from Proposition 7.2 with r = 1.

Remark 7.4. If p > 2, then
1
p

� v(λ) � 1
p − 1

implies that
p

(p − 1)(2p − 1)
< v(λ) � 1

p − 1
.
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8. Torsors modulo p

Let R be a p-adically complete and separated, noetherian, flat V -algebra and let X → Spec(R)
be a projective abelian scheme. We can interpret, under suitable hypothesis on λ, the elements
of H1(X,Gλ) as torsors à la Artin–Schreier on the reduction of X modulo pr with r depending only
on λ. Remark that a crucial point is that r � 1.

Suppose that v(λ) � 1/(p − 1). Let r ∈ Q be such that max{1/p, (p − 1)v(λ)} � r � 1. Denote
by F the Frobenius homomorphism on X1 and let a(λ) be as in § 5.4. Then, F−a(λ) : H1(X1,OX1) →
H1(X1,OX1) factors via H1(X1,OX1) → H1(Xr,OXr). By abuse of notation we call F − a(λ) :
H1(Xr,OXr ) → H1(X1,OX1) the induced map. The main result of this section is the following.

Theorem 8.1. Assume that
p

(p − 1)(2p − 1)
< v(λ) � 1

p − 1
.

Let r := (p − 1)v(λ). Then,

H1(X,Gλ)/H1(R,Gλ) ∼−→ Ker(H1(Xr,OXr)
F−a(λ)−−→ H1(X1,OX1)).

The proof of the theorem is based on two main ingredients. One is our version of Hensel’s lemma
for torsors, Corollary 7.3. The other is the analysis of the kernel of F − a(λ). This is based on the
crucial Lemma 8.2 and also Lemma 8.3.

Lemma 8.2. Let λ be an element of V satisfying v(λ) � 1/(p − 1) and λp−1 ≡ 0 mod pr with

r � 1. Let ρλ
r : G(λ)

r → Ga,r be the map defined by W �→ ∑p−1
i=1 (−λ)i−1(T i/i). Then, ρλ

r defines an
isomorphism of group schemes. Furthermore, the following diagram commutes.

G(λ)
r

ρλ
r

��

φλ �� G(λp)
r


λp
r

��
Ga,r

F−a(λ)�� Ga,r

In particular, ρλ
r identifies G(a(λ),c(λ)) with Gλ over Spec(Vr); see Definition 5.1 and § 5.4 for notation.

Proof. Let log(1 + W ) :=
∑∞

i=1(−1)i+1(W i/i) ∈ K[[W ]]; it defines an isomorphism between the
formal groups Ĝm,K and Ĝa,K ; in particular we have a formal identity of power series log((1 +
W ) ⊗ (1 + W )) = log(1 + W ) ⊗ 1 + 1 ⊗ log(1 + W ). From this we deduce

p−1∑
i=1

(−λ)i−1 (T ⊗ 1 + 1 ⊗ T + λT ⊗ T )i

i
=

(p−1∑
i=1

(−λ)i−1 T i

i

)
⊗ 1 + 1 ⊗

(p−1∑
i=1

(−λ)i−1 T i

i

)

in the ring V [T ]⊗V V [T ] up to terms in λp−1(T ⊗ 1, 1 ⊗ T )p and, thus, the equality above holds in
Vr[T ] ⊗Vr Vr[T ] since λp−1 ≡ 0 in Vr. This implies that ρλ

r is compatible with the two comultipli-
cations. Since

∑p−1
i=1 (−λ)i−1(T i/i) is equal to T times a unit in Vr[T ] congruent to 1 modulo λ, we

deduce that ρλ
r sends the ideal (W ) to the ideal (T ) and induces an isomorphism of tangent spaces

at the origin. We conclude that ρλ
r is a homomorphism of Vr-group schemes and it is étale. Since ρλ

r

is an isomorphism modulo λ and Vr[T ] is λ-adically complete and separated, ρλ
r is surjective at

the level of underlying algebras and, hence, it is a closed immersion. We conclude that ρλ
r is an

isomorphism.
Regarding the commutativity of the diagram in Lemma 8.2, we argue as follows. Since λp−1 = 0

in Vr, the homomorphism ρλp

r is W �→ T . Thus, we may identify G(λp)
r with Ga,r via ρλp

r . We have
to prove that Pλ(T ) = φλ(W ) = ρλ

r (F(W ) − a(λ)(W )). Since p ≡ 0 in Vr, we have a(λ) ≡ −p/λp−1
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in Vr and ρλ
r (F(W )) = T p. Thus, the commutativity of the diagram is equivalent to the equality

Pλ(T ) ≡ T p − a(λ)ρλ
r (T ) modulo p. It suffices, then, to show that

p−1∑
i=1

1
p

(
p
i

)
λi−1T i ≡

p−1∑
i=1

(−λ)i−1 T i

i
mod(p). (8.2.1)

It is easy to see, by induction on i, that, for 1 � i � p − 1, one has

1
p

(
p
i

)
≡ (−1)i−1

i
mod(p),

and from this we conclude.

Lemma 8.3. Let λ ∈ V be such that

1
p(p − 1)

� v(λ) � 1
p − 1

and write r := (p − 1)v(λ). The following diagram is commutative.

G(λ)
1

��

φλ �� G(λp)
1


λp

1

��
G(λ)

r


λ
r �� Ga,r

F−a(λ)�� Ga,1

Proof. Let U be a scheme over V1. Let u ∈ G(λ)
1 (U) and let u be the reduction of u modulo pr.

Since a(λ) ≡ −p/λp−1 modulo p, the element ((F − a(λ))�λ
r )(u) is(p−1∑

h=1

(−λ)(h−1) u
h

h

)p

+
p

λp−1

(p−1∑
h=1

(−λ)(h−1) u
h

h

)

modulo pr. On the other hand, (�λp

1 φλ)(u) is the element
∑p−1

t=1 (−λp)t−1(Pλ(u)t/t). Since Pλ(u) =
((1 + λu)p − 1)/λp and (p/λp−1)tλp(t−1) ≡ 0 modulo p for t � 2, we have

p−1∑
t=1

(−λp)t−1 Pλ(u)t

t
≡

p−1∑
t=1

(−λp)t−1 upt

t
+ (Pλ(u) − up).

It suffices to prove that Pλ(u) − up is congruent to (p/λp−1)(
∑p−1

h=1(−λ)(h−1)(uh/h)) modulo p.
This follows from (8.2.1).

Consider the following commutative diagram with exact rows.

H0(R1,G(λp))

��

�� H1(R1,Gλ) ��

��

H1(R1,G(λ))
φλ ��

��

H1(R1,G(λp))

��
H0(X1,G(λp)) �� H1(X1,Gλ) �� H1(X1,G(λ))

φλ �� H1(X1,G(λp))

Then, H0(X1,G(λp)) = H0(R1,G(λp)) since X → Spec(R) is an abelian scheme. Furthermore,
H1(R1,G(λ)) = 0. Indeed, every G(λ)-torsor Y over Rr admits a section σk over Rk because
H1(Rk,G(λ)) ∼= H1(Rk,Ga) = {0}. Since G(λ) is a smooth group scheme, Y is smooth over Rr.
Since Rr is affine, σk can be lifted to a section of Y over Rr. In particular, the map H0(R1,G(λp)) →
H1(R1,Gλ) is surjective. Thus, the image of H0(X1,G(λp)) in H1(X1,Gλ) is the image of H1(R1,Gλ)
in H1(X1,Gλ). The composite

H1(R1,Gλ) −→ H1(X1,Gλ) −→ H1(Xr,Gλ) −→ H1(Xr,G(λ))

λ

r−→H1(Xr,OXr ),
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factors via H1(Rr,ORr ) = {0}. We then get a complex

H1(X1,Gλ)/H1(R1,Gλ)
jr �� H1(Xr,OXr)

F−a(λ)�� H1(X1,OX1).

H1(X1,Gλ)/H0(X1,G(λp))

(8.3.1)

Proposition 8.4. If H1(X1,G(λ)) → H1(Xr,G(λ)) is surjective, then (8.3.1) is an exact sequence.

Proof. Using Lemma 8.3 and taking the associated map of torsors over Y , the surjectivity of �λ
r and

the fact that �λp

1 is an isomorphism, we deduce that the map from the kernel of φλ : H1(X1,G(λ)) →
H1(X1,G(λp)) to the kernel of F − a(λ) : H1(Xr,Ga) → H1(X1,Ga) is an isomorphism. The kernel
of φλ is H1(X1,Gλ)/H0(X1,G(λp)). The proposition follows.

Lemma 8.5. For every r′ � r � v(λ) the map H1(Xr′ ,G(λ)) → H1(Xr,G(λ)) is surjective.

Proof. Since there exists n such that 2nr � r′, by induction it suffices to prove the lemma for r′ = 2r.
Let η : G(λ) → Gm = Spec(V [Z,Z−1]) be the homomorphism of V -group schemes defined at the
level of algebras by Z �→ 1 + λT ; cf. § 5.3. Consider the following exact sequence of Zariski sheaves
on X2r:

0 �� OXr

αλ �� G(λ)
X2r

��

η

��

G(λ)
Xr

η

��

�� 0

0 �� OXr

α1 �� Gm,X2r
�� Gm,Xr

�� 0

where αs is the homomorphism locally given by a �→ 1 + λ(prs−1)a for every s ∈ V with r � v(s).
Taking the associated long exact sequences of cohomology and using that H1( ,G(λ)) (respectively,
H1( ,Gm)) for the Zariski or fppf topologies are the same [AG, Corollary 2.5], we get the following
commutative diagram with exact rows.

H1(X2r,G(λ)) ��

η

��

H1(Xr,G(λ)) ��

η

��

H2(Xr,OXr )

H1(X2r,Gm) �� H1(Xr,Gm) �� H2(Xr,OXr )

The image of η in Pic(Xr/Rr) is contained in the connected component Pic0(Xr/Rr) of the iden-
tity; indeed, since v(λ) > 0, over Rk the image of η is the trivial invertible sheaf. The obstruction
to lift invertible sheaves algebraically equivalent to 0 over Xr to X2r is given by a group scheme
homomorphism ob: Pic0(Xr/Rr) → H2(Xr,OXr ). Since X is an abelian scheme over Spec(R),
then Pic0(Xr/Rr) is proper and geometrically connected. Since H2(Xr,OXr ) is affine, the obstruc-
tion map ob is trivial. In particular, the map H1(Xr,G(λ)) → H1(Xr,Gm) → H2(Xr,OXr ) is zero.
The conclusion follows.

8.6 Proof of Theorem 8.1

Consider the composite map

H1(X,Gλ)/H1(R,Gλ)

ι1
��

H1(X1,Gλ)/H1(R1,Gλ)
jr �� Ker(F − a(λ) : H1(Xr,OXr ) → H1(X1,OX1)),
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where jr is the homomorphism introduced in (8.3.1). It suffices to prove that jr◦ι1 is an isomorphism.
By Proposition 8.4 the map jr is surjective. By construction, jr factors via

H1(X1,Gλ)/H1(R1,Gλ) → H1(Xr,Gλ)/H1(Rr,Gλ) ↪→ H1(Xr,G(λ)) ∼−→ H1(Xr,OXr),

where the latter isomorphism is defined using Lemma 8.2. Since the hypotheses of Proposition 7.2
are satisfied, the map jr ◦ ι1 is surjective. One verifies that the conditions in Proposition 7.1 apply
in our case so that the reduction map ιr : H1(X,Gλ) → H1(Xr,Gλ) is injective. By Proposition 5.13
the map H1(X,Gλ)/H1(R,Gλ) → H1(Xr,Gλ)/H1(Rr,Gλ) is injective. Thus, jr ◦ ι1 is injective as
well. This proves the theorem.

Remark 8.7. If f : Y → X is a morphism of projective abelian schemes over Spec(R). One verifies
that the following diagram commutes.

H1(X1,Gλ)/H1(R1,Gλ)

f∗
��

jr �� H1(Xr,OXr )
F−a(λ)��

f∗
��

H1(X1,OX1)

f∗
��

H1(Y1,Gλ)/H1(R1,Gλ)
jr �� H1(Yr,OYr)

F−a(λ) �� H1(Y1,OY1)

8.8 Relation to the Lie algebra of Pic

Let M be an R-scheme and let XM := X ×R M . Let

τM : H1(XM ,Gλ)/H1(M,Gλ) −−→ Hom(Gλ
∨
,M ,PicXM/M )

be the map defined in § 5.12.

Assume that M := Spec(Rr) and that λp−1 ≡ 0 modulo pr, r � 1. Let Rr[ε] be the ring of dual
numbers on Rr. Let δ ∈ Lie(Gλ

∨
,Rr

) be the element defined by the map

δ : Gλ ×Rr Spec(Rr[ε]) −−→ Gm ×Rr Spec(Rr[ε])

given by the composite of the inclusion Gλ → G(λ), the map ρλ
r : G(λ)

r → Ga,r defined in Lemma 8.2
and the map Ga ×Rr Spec(Rr[ε]) → Gm ×Rr Spec(Rr[ε]) given by Z → 1 + εW .

Proposition 8.9. Let Yr → Xr be a Gλ-torsor, r as above. Let [Yr] ∈ H1(Xr,G(λ)) be the associated
class. Let �λ

r : H1(Xr,G(λ)) → H1(Xr,Ga) be the application induced by the map �r
λ in Lemma 8.2.

The homomorphism

Lie(τRr([Yr])) : Lie(Gλ
∨
,Rr

) −−→ Lie(PicXr/Rr
) = H1(Xr,OXr ),

sends δ to �λ
r ([Yr]).

Proof. Let (L,E,Ψ, {(Ui, ei, αi)}i∈I) be the classifying data associated to Yr → Xr; see Defini-
tion 5.8. Then Yr|Ui = Spec(OUi [ei]/(Pλ(ei) − αi)). The gluing morphisms are defined by ei =
(1 + λui,j)ej + uij for suitable uij ∈ Γ(Ui ∩ Uj ,OXr ). The G(λ)-torsor associated to Yr → Xr is de-
fined by the 1-cocycle (uij )i,j. The push-forward of Yr → Xr via ρλ

r is the Ga-torsor defined by the
1-cocycle (

∑p−1
s=1(−λ)s−1(us

ij /s))i,j . This cocycle represents �λ
r ([Yr]). On the other hand, τRr([Yr])(δ)

is the Gm-torsor over Xr ×Rr Spec(Rr[ε]) defined by the 1-cocycle (1 + ε(
∑p−1

s=1(−λ)s−1(us
ij /s)))i,j .

This proves the claim.

We conclude the section by showing the following.

Lemma 8.10. The element δ generates Lie(Gλ
∨
,Rr

) as an Rr-module.
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Proof. By Nakayama’s lemma, we may assume that λ ≡ 0 in Rr. Take δ′ ∈ Lie(Gλ
∨
,Rr

). View it as a
homomorphism Gλ×Rr Spec(Rr[ε]) → Gm×Rr Spec(Rr[ε]) reducing to the identity modulo ε. Then,
δ′ is of the form Z �→ 1 + εf(T ) with f(T ) a polynomial with coefficients in Rr of degree at most
p−1. Since δ′ is a group homomorphism we have f(0) = 0 and f(T⊗1+1⊗T ) = f(T )⊗1+1⊗f(T ).
An easy computation shows that f(T ) = cT with c ∈ Rr. Hence, δ′ = cδ.

9. Hasse–Witt equations

Let R be a p-adically complete and separated, noetherian, normal flat V -algebra. Let M be a free
R-module of rank g. For every r ∈ v(m) denote Mr := M/prM . Let F: M1 → M1 be a Frobenius
linear homomorphism, i.e. F(c1m1 + c2m2) = cp

1F(m1) + cp
2F(m2) for every m1, m2 ∈ M and c1,

c2 ∈ R1. We denote by det(F)R1 the ideal defined by the determinant of a matrix of F; note that,
although the determinant depends on the choice of the matrix representing F, the ideal it generates
does not.

Let a ∈ V with v(a) = w satisfying 0 � w � (p − 1)/p. Consider the induced map

F − a : M1−w −−→ M1

(observe that this makes sense due to the assumption on w). Then we have the following.

Proposition 9.1. If w < 1
2 and pw ∈ det(F)R1, then:

(i) Ker(F − a) is a Fp-vector space of dimension � g;

(ii) there exists a finite, normal extension R ⊂ R′, étale over RK := R ⊗V K, such that the
dimension of the kernel KerR′(F − a) of F − a : M1−w ⊗R R′ → M1 ⊗R R′ is exactly g;

(iii) for every morphism of normal, p-adically complete and separated V -algebras R′ → R′′, the
map KerR′(F − a) → KerR′′(F − a) is an isomorphism.

Remark 9.2. In the case we are interested in, one has a = a(λ) ≡ p/λp−1 modulo p. If λ satisfies

p

(p − 1)(2p − 1)
< v(λ) � 1

p − 1
,

then 0 � v(a(λ)) = 1−(p−1)v(λ) < (p−1)/(2p−1) < 1
2 . Thus, the condition on w in Proposition 9.1

is automatically satisfied.

Remark 9.3. The statement of Proposition 9.1 and the strategy of the proof is similar to (and
inspired by) [AM04, § 5].

Proof. Fix a basis B of M . Let U1 ∈ Mg×g(R1) be a matrix of F with respect to B. Let U be
a lift of U1 in Mg×g(R). Remark that there exists c ∈ R and u ∈ R∗ such that det(U)c = pwu.
In particular, U is invertible in RK . Indeed, by assumption, there exists c ∈ R such that pw ≡
det(U)c modulo p. Thus, there exists s ∈ R satisfying det(U)c = pw − ps = pw(1− sp1−w) and u :=
1 − sp1−w is a unit in R since the latter is p-adically complete and separated.

The choice of B allows us to identify M with Rg. We view an element m of M as a column
vector X. If X = t(x1, . . . , xg), then denote Xp := t(xp

1, . . . , x
p
g). Define

ZR(a) := {X ∈ Rg | UXp − aX = 0} and Z(a, r) := {X ∈ Rg
r | UXp − aX = 0}

for r � 0. For 0 � r′ � r′′ denote by redr′′,r′ the reduction map Z(a, r′′) → Rg
r′ . Define redr′′ as

the map ZR(a) → Rg
r′′ . Remark that Z(a, 1) is a Fp-vector space and that Ker(F − a) is identified

with red1,1−w(Z(a, 1)). Thus, the proposition follows from the following.
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Lemma 9.4. The following hold:

(i) ZR(a) has cardinality less than or equal to pg;

(ii) there exists a finite, normal extension R ⊂ R′, étale over RK := R ⊗V K, such that the
set ZR′(a) has cardinality exactly pg;

(iii) for every normal extension R′ ⊂ R′′ the map ZR′(a) → ZR′′(a) is a bijection.

Lemma 9.5. The map red1−w induces a bijection ZR(a) ∼−→ red1,1−w(Z(a, 1)).

Proof of Lemma 9.4. We start by proving that aU−1 is a matrix with coefficients in R. Let V ∈
Mg×g(R) such that VU = UV = det(U)1g . Then, aU−1 = (a/det(U))V . By the above there
exists c ∈ R and u ∈ R∗ such that det(U)c = pwu. However, v(a) = w, thus a/det(U) = ac/pwu ∈
R.

Let W be the closed subscheme of Ag
R defined by the equations Xp − aU−1X = 0. It is finite

and flat over R of rank pg. In particular, it is an affine scheme p-adically complete and separated.
Due to the normality of R we conclude from the valuative criterion of properness and [EGAIV,
20.4.12], that ZR(a) = W (R) = W (RK). To conclude the proof of the lemma it is enough to show
that W is unramified over RK . We compute the determinant of the Jacobian matrix of the equations
defining W :

det


p




Xp−1
1 · · · 0
...

. . .
...

0 · · · Xp−1
p


 − aU−1


 = det(aU−1) det


p

a
U




Xp−1
1 · · · 0
...

. . .
...

0 · · · Xp−1
p


 − 1g


 .

Note that det(aU−1) is in R and it is invertible in RK . The second factor on the right-hand side is
an invertible element in the ring of functions BW of W . Indeed, it is congruent to 1 modulo mBW

and BW is m-adically complete and separated.

Proof of Lemma 9.5. The method is an adaptation of the usual proof of Hensel’s lemma. A straight-
forward application of Hensel’s lemma, as found in the (standard) literature, would give us bounds
depending on g (the rank of M). We thus prefer to give some details.

The lemma is equivalent to proving that given x ∈ Rg, whose reduction modulo p lies in Z(a, 1),
there exists a sequence {y

n
∈ Z(a, (n + 1)(1 − w))}n with:

(a) y
1
≡ x modulo p/a;

(b) y
n
≡ y

n−1
modulo pn/an+1 for every n � 2;

(c) the sequence {y
n

mod (pn+1/an+2)}n is independent of the choice of {y
n
} satisfying parts (a)

and (b).

Indeed, since w < 1
2 we have pn/an+1 → 0 for n → ∞. Hence, by parts (a) and (b) the limit y :=

limn y
n

is an element of ZR(a) lifting x modulo p/a. By part (c) it is also the unique element
of ZR(a) with these properties. We proceed by induction on n.

Let Rg := R〈X1, . . . ,Xg〉 be the p-adic completion of the ring of polynomials in the vari-
ables X1, . . . ,Xg and coefficients in R. Define the matrix ∆ in Mg×g(Rg) as

∆ :=
p

a
U




Xp−1
1 · · · 0
...

. . .
...

0 · · · Xp−1
p


 − 1g.

Since v(p) > v(a), the matrix ∆ is in Glg×g(Rg). The Jacobian matrix J of UXp − aX is a∆.
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Write Uxp − ax = pt. Let y
1

= x + (p/a)Z with Z := ∆(x)−1t. Then, modulo p2/a2, one has

Uyp
1
− ay

1
= (Uxp − ax) + J(x)

p

a
Z = p(t − ∆(x)Z) = 0.

One easily verifies that this uniquely determines the class of Z modulo p/a2.
Assume y

n
has been constructed with the properties above. Let ỹ

n
be a lift of y

n
in Rg

(n+2)(1−w).
Hence, we have Uỹp

n
− aỹ

n
= (p/a)n+1t for a suitable t. Let Z := ∆(ỹ

n
)−1t. Define y

n+1
:=

ỹ
n

+ (pn+1/an+2)Z. Then, modulo (p/a)n+2 we have

Uyp
n+1

− ay
n+1

= (Uỹp
n
− aỹ

n
) + J(ỹ

n
)
1
a

(
p

a

)n+1

Z =
(

p

a

)n+1

(t − ∆(x)Z) = 0.

The class of Z modulo p/a is uniquely determined by this equation. The lemma follows.

Remark 9.6. Let g : M → M ′ be a morphism of R-modules. Assume that M1 and M ′
1 are endowed

with Frobenius linear homomorphisms F and F′ such that g ◦ F = F′ ◦ g. Fix a as above, then g
induces a Fp-linear map Ker(F − a) → Ker(F′ − a).

Assume now that R is a p-adically complete dvr with valuation vR and a flat V -algebra. Let M be
as in Proposition 9.1. Let {x1, . . . , xs} be Fp-linearly independent elements of Ker(F−a). We prove
that they are ‘almost’ R-linearly independent.

Lemma 9.7. Suppose that there exists r1, . . . , rs in R such that r1x1 + · · ·+ rsxs = 0 in M1−w, then
vR(ri) > 0.

Proof. By hypothesis w = v(a) and M is a free R-module. Thus, multiplication by a induces
an injection M1−w → M1. Since xi ∈ Ker(F − a) for i = 1, . . . , s, we get 0 = F(

∑
i rixi) =∑

i r
p
i F(xi) = a · (

∑
i r

p
i xi). Hence,

∑
i rp

i xi = 0 in M1−w. We conclude that for every natural
number t we have

∑
i r

pt

i xi = 0.
Suppose that there exists a relation r1x1 + · · ·+ rsxs = 0 with vR(rj) = 0 for some j. Eventually

replacing the ri with their ptth powers for t large enough, we may assume that, for every i, ri is
either a unit or it is 0. We deduce that there exists a subset J of {1, . . . , s} and units rj ∈ R∗

for j ∈ J such that
∑

j∈J rjxj = 0. Take J of minimal cardinality with these properties. Eventually,
renumbering the xi and reducing s we may assume that J = {1, . . . , s}. We may also suppose
that r1 = 1. Then, x1 = −∑

i
=1 rixi = −∑
i
=1 rp

i xi. Hence,
∑

i
=1(r
p
i − ri)xi = 0. The minimality of

the cardinality of J implies that rp
i − ri is not a unit in R. Thus, the class of ri in the residue field

of R lies in Fp. Hence, ri ≡ ai for some ai ∈ Z modulo the maximal ideal of R. Taking suitable pth
powers, we get

∑
i a

pt

i xi = 0, contradicting the Fp-independence of {x1, . . . , xs}.

10. Extensions of subgroup schemes generically defined

Let S be a flat V -scheme and let G → S be a group scheme over S. Let HK ⊂ GK be a closed
subgroup scheme, flat over SK . In this section we investigate the problem of extending HK to a
closed subgroup scheme of G. As the following example shows, this is not always possible even if S
is integral.

Example 10.1. Let p be a prime number. Let A := Zp[[X,Y ]]/(XY − p). Let N → Spec(A) be the
group scheme, finite and flat of order p over Spec(A) defined by the elements a := X and c := Y
of A via the Oort–Tate classification [OT70]; in particular, N = Spec(A[T ]/(T p − XT )). Let R :=
Zp[[X1,X2, Y1, Y2]]/(X1Y1 − p,X2Y2 − p) and let pi : Spec(R) → Spec(A) with i = 1, 2 be the
morphism X �→ Xi and Y �→ Yi. Let P := Spec(B) with

B := Spec(R[Z,Z−1]/(Zp−1X1 − X2)).
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We denote by Ni the base-change of N , respectively, via pi. The base-change of N1 and N2 to P are
isomorphic via the isomorphism α given by 1⊗T �→ ZT ⊗ 1. Over Spec(RK) the scheme P is given
by the equation Zp−1 −X2X

−1
1 ; by Kummer theory it is then a torsor under µp−1. In particular, it

is finite and étale of rank p − 1. Let S := Spec(C) with

C := R[W ]/(W p−1 − Xp−1
2 Xp−2

1 ).

It is a scheme finite and flat over Spec(R). Let u : P → S be the morphism of R-schemes given by
W �→ ZX1. Via the map u, we have B = C[Z,Z−1]/(ZX1 − W ). In particular, note that u is an
isomorphism over Spec(RK) and it is surjective on points.

Let G be the base-change of N1 ×R N2 via S → Spec(R) and let HK ⊂ GK be the closed
subgroup scheme defined as the graph of αK : N1,K → N2,K over SK = PK . The isomorphism α is
defined over P and its graph gives a closed subscheme HP ⊂ G ×S P . Since P is a flat Zp-scheme,
PK is schematically dense in P . Assume that HK can be extended to a closed subgroup scheme H
of G, flat over S. Then HP = H ×S P as closed subgroup schemes of G ×S P . Since the map u is
surjective, it follows that the morphism fi : H → Ni is an isomorphism for i = 1, 2. By [OT70] the
isomorphism f2 ◦ f−1

1 is defined by 1 ⊗ T �→ cT ⊗ 1 for a unique c ∈ C∗ satisfying cp−1X1 − X2.
We then get a map S → P given by Z → c. The composite with u is the identity over SK and, hence,
it is the identity. Since P is an affine chart of the blow-up of S at the ideal (W,X1) intersecting the
exceptional divisor, u does not admit any section.

The main result of this section states that if S is noetherian, one can find a K-admissible blow-
up S′ of S such that the schematic closure of the subgroup HK of GK in GS′ := G ×S S′ is a
subgroup scheme of GS′ flat over S′. In particular, if G is an abelian scheme over S and HK is finite
and flat, the schematic closure of HK in GS′ will also be finite and flat. When S is the spectrum of
a dvr, this is a classical result due to Raynaud [Ray74b].

10.2 Admissible blow-ups
For the convenience of the reader, we recall the following definitions and properties from [RG71,
§ 5.1]. Assume that S is a noetherian scheme and let f : S′ → S be a K-admissible blow-up with
center C; see Definition 2.1. If Z is an S-scheme, flat over V , we denote by ZS′ the fiber product Z×S

S′. Let A be the open subscheme of S given by S\C. If Y ⊂ Z is a closed subscheme, we define the
strict transform Ỹ of Y in ZS′ as the schematic closure of YA := Y ×S A in ZS′ . Here and in what
follows we identify f−1(A) with A via f and consequently we view YA as a locally closed subscheme
of ZS′ . Note that, since C is of finite presentation and S is noetherian, A → S is quasi-compact so
that YA → ZS′ is quasi-compact as well, and the schematic closure exists by [EGAI, I.9.5.2]. Then:

(i) if Z is flat over S, we have ZS′ = Z̃, i.e. ZS′ is the strict transform of Z;
(ii) if YA is flat over A, then YK is schematically dense in YA; the latter is schematically dense in Ỹ

by construction, hence, YK is schematically dense in Ỹ ; in particular, the strict transform of
Y in ZS′ coincides with the schematic closure of YK in ZS′ ;

(iii) if Y is flat over S, then YS′ is the strict transform of Y in ZS′ ;
(iv) let f : S′ → S and g : S′′ → S′ be K-admissible blow-ups, then f ◦g : S′′ → S is a K-admissible

blow-up; cf. [RG71, Lemma 5.1.4].

The following proposition is the key to the solution of the problem.

Proposition 10.3. Assume that S is a noetherian scheme, flat over V and let Z be a scheme
projective over S. Suppose that YK ⊂ ZK is a closed subscheme flat over SK and let Y be the
schematic closure of YK in Z. Then, there exists a scheme SY and a projective morphism SY → S
such that:
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(a) SY is flat over V , the induced map SY
K → SK is an isomorphism and the schematic closure of

YK in Z ×S SY is flat over SY ;

(b) SY is minimal among the S-schemes satisfying condition (a).

Furthermore:

(i) let S′ be a K-admissible blow-up of S, then S′ → S factors via SY → S if and only if the
schematic closure of YK in ZS′ is flat over S′; in this case, such schematic closure coincides
with the pull-back of the schematic closure of YK in Z ×S SY via S′ → SY ;

(ii) there exists a K-admissible blow-up S′ → S and a morphism of S-schemes S′ → SY ;

(iii) if T → S is a flat morphism of noetherian schemes, T Y is T ×S SY .

In the statement above, condition (b) means that for every other S-scheme S′ satisfying con-
dition (a), there exists a unique S-morphism S′ → SY so that the schematic closure of YK

in Z ′ := Z ×S S′ is the base-change of the schematic closure of YK in Z ×S SY .

Proof. We follow closely [RG71, § 5.2].
(a) The subscheme YK of ZK defines a SK-point s in the Hilbert scheme Hilb(Z/S) of Z over S.

The latter is the disjoint union of projective schemes over S. Define SY as the schematic closure
of s in Hilb(Z/S). Since SK is schematically dense in SY , the latter is flat over V . By the universal
property of the Hilbert scheme, one has a closed subscheme of ZSY := Z ×S SY , flat over SY and
coinciding with YK over SK .

(b) Let S′ be an S-scheme so that condition (a) holds. Then, SK is schematically dense in S′

since the latter is flat over V . By assumption, the schematic closure of YK in ZS′ is flat over S′ and,
in particular, defines an S′ valued point of Hilb(Z/S). By construction it factors via SY and the
claim follows.

(i) The implication ⇐= follows from condition (b).
We prove the implication =⇒ and the last claim. Suppose that S′ → S factors via SY . Denote

by Ỹ the schematic closure of YK in ZSY . Since S′ and SY are flat V -schemes and since S′
K =

SK = SY
K , then S′ → SY is the admissible blow-up with center equal to the inverse image of the

center of the blow-up S′ → S via the morphism SY → S. In particular, the base-change ỸS′ of Ỹ
via S′ → SY is the strict transform of Ỹ in ZS′ by condition (iii) of § 10.2 and it is flat over S′.
In particular, ỸS′ ⊗V K = YK and YK is schematically dense in ỸS′ by condition (ii) of § 10.2.

(ii) By [RG71, Theorem 5.2.2] there exists a K-admissible blow-up f : S′ → S such that the
strict transform ÕY of the coherent OZ -module OY is S′-flat. Recall from [RG71, Definition 5.1.1]
that ÕY is the OZ′

S
-module defined as the quotient of OYS′ by the submodule of sections supported

on f−1(C), where C is the center of the blow-up f . In particular, ÕY is a quotient of OZ′
S

and, by
the S′-flatness, it is the structure sheaf of the schematic closure of YK in ZS′ . By property (c) the
morphism S′ → S factors via SY .

(iii) This follows from the fact that the formation of the Hilbert scheme commutes with base-
change and the fact that taking schematic closures commutes with flat base-change.

Lemma 10.4. Let W and Z be S-schemes. Let Y ⊂ Z and X ⊂ W be closed subschemes. Assume
that XK is schematically dense in X. Then, any morphism u : W → Z as S-schemes, inducing
a morphism vK : XK → YK such that XK

vK−→YK ⊂ ZK is XK ⊂ WK
uK−→ZK , induces a unique

morphism v : X → Y such that the following diagram commutes.

X

v

��

� � �� W

u

��
Y

� � �� Z
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Proof. Consider i : XK → X and j : YK → Y . Let I be the ideal sheaf defining Y in Z and J be
the ideal sheaf defining X in W . We then have the following commutative diagram.

OZ

u∗
��

�� OY
j∗ �� j∗(OYK

)

v∗K
��

u∗(OW ) �� u∗(OX) i∗ �� u∗ ◦ i∗(OXK
)

Since XK is schematically dense in X, the map i∗ is injective. Since i∗(u∗(I)) = 0, we conclude
that u∗(I) ⊂ u∗(J ). Thus, there exists a unique morphism v∗ : OY → u∗(OX) compatible with u∗

and v∗K , as claimed.

Corollary 10.5. Let Z be a group scheme over S. Let Y ⊂ Z be a closed subscheme flat over S.
If YK ⊂ ZK is a closed subgroup scheme, then Y ⊂ Z is a closed subgroup scheme.

Proof. Denote by f the morphism f : Y → S and by j the morphism j : YK → Y . Since i : SK → S
is quasi-compact, i∗(OSK

) is quasi-coherent by [EGAI, I.9.4.1]. Since Y ×S Y is flat over S, the
natural map (f × f)∗(i∗(OSK

)) → (j × j)∗(OYK
⊗OSK

OYK
) is an isomorphism. Applying (f × f)∗

to the injective map OS → i∗(OSK
) and using the flatness of Y ×S Y over S, we conclude that

YK ×SK
YK is schematically dense in Y ×S Y . Furthermore, Y ×S Y is a closed subscheme of Z×S Z

and is flat over S. It then follows from Lemma 10.4 that the multiplication map m : Z ×S Z → Z
restricted to Y ×S Y factors via Y ⊂ Z. Analogously, the inverse map ι : Z → Z sends Y to Y .
Hence, the map

m ◦ (id × ι) : Z ×S Z −−→ Z, (x, y) �→ x − y

restricted to Y ×S Y factors via Y ⊂ Z. Thus, Y is a closed subgroup scheme of Z as claimed.

We summarize the results obtained so far in the following theorem.

Theorem 10.6. Let Z → S be a projective abelian scheme over S. Let YK ⊂ ZK be a closed
subgroup scheme, flat over SK . Then, there exists an S-scheme SY and a projective morphism
SY → S such that the induced map SY

K → SK is an isomorphism and the schematic closure of YK

in Z ×S SY , denoted by Y , is a subgroup scheme of Z ×S SY , flat over SY . Furthermore, we have
the following.

(i) (Admissibility) There exists a K-admissible blow-up S′ → S and a morphism of S-schemes
S′ → SY .

(ii) (Minimality) A morphism S′ → S, such that S′ is flat over V and the morphism induces an
isomorphism of generic fibers S′

K → SK , factors via SY → S if and only if the schematic
closure Y ′ of YK in Z ′ := Z ×S S′ is flat over S′. In particular, Y ′ is a closed subgroup scheme
of Z ′ and it coincides with Y ×SY S′.

(iii) (Base-change) If T → S is a flat morphism of noetherian schemes, T Y is T ×S SY .

(iv) (Functoriality) Let W → S and Z → S be projective abelian schemes. Let UK ⊂ WK and YK ⊂
ZK be closed subgroup schemes, flat over SK . Let S′ → S be an admissible blow-up such that
the schematic closure U ′ of UK in W ′ = W ×S S′ (respectively, Y ′ of YK in Z ′ = Z ×S S′) is a
subgroup scheme, flat over S′. Then, every homomorphism W → Z of group schemes, inducing
a homomorphism UK → YK , induces a homomorphism U ′ → Y ′ as well.

Remark 10.7. One can relax the hypotheses of Theorem 10.6. Let S be a quasi-compact and quasi-
separated scheme and let U ↪→ S be an open, schematically dense, quasi-compact subscheme of S.
Let Z → S be a group scheme, of finite presentation as an S-scheme. Let YU ⊂ ZU be a closed
subgroup scheme of ZU := Z ×S U , flat over U . Using [RG71, Theorem 5.2.2], one can then deduce
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that there exists a U -admissible blow-up S′ → S such that the strict transform of Y in Z ′ := Z×S S′

is a closed subgroup scheme of Z ′, flat over S′. Observe, however, that the existence of an S-
scheme SY with the properties of Proposition 10.3 is not guaranteed in this more general setting.

11. Proof of the main theorems: first reductions

In this section we show that the existence of the canonical subgroup and of a formal model for
special (w, g)-situations (as in Definition 11.1) implies its existence and the existence of a formal
model in the general case. The main point of this reduction is the fact that, due to property (ii) of
Theorem 3.5, we can work with strict neighborhoods of the ordinary locus in suitable moduli spaces
of abelian varieties; the restriction of the universal family to the normalization of sufficiently small
open formal subschemes of these are special (w, g)-situations.

Definition 11.1. We define a special (w, g)-situation to be X → S where:

(a) S is Spec(R) with R a normal admissible V -algebra;
(b) X → S is a projective g-dimensional abelian scheme;
(c) H1(X1,OX1) is a free R1-module;
(d) the determinant of Frobenius F on H1(X1,OX1) satisfies pw ∈ det(F)R1.

Denote by X (respectively, S) the formal completion of X (respectively, S). We then have the
following.

Theorem 11.2. Suppose that there is a way of associating to every special (w, g)-situation X → S,
with 0 � w < (p−1)/(2p−1), a rigid analytic subgroup scheme Han

X of Xan finite and flat of rank pg

over San, satisfying (the analogue of) properties (i)–(iii) of Theorem 3.5 and the (the analogue of
the) functoriality of Proposition 3.7. Then, Theorem 3.5 and Proposition 3.7 hold true.

Moreover, if Theorem 3.10 and Proposition 3.12 hold for special (w, g)-situations X → S,
with 0 � w < (p − 1)/(2p − 1), then Theorem 3.10 and Proposition 3.12 hold true.

Proof. We first construct a canonical subgroup in the rigid and in the formal settings for universal
families of abelian varieties. We then deduce the general case.

Let 0 � w < (p − 1)/(2p − 1) and assume that pw ∈ V . Let n and d be positive inte-
gers such that n � 3, (n, d) = 1 and (p, n) = 1. Denote by Ag,d,n the moduli space of abelian
varieties of dimension g over V with full level n structure and a polarization of degree d2, and
by Xuniv → Ag,d,n the universal abelian scheme. Consider a covering {Ui}i of Ag,d,n by affine open
subschemes, say Ui := Spec(Ri), with the property that each Ui dominates Spec(V ) and the Ri-
module H1(Ui,OXuniv) is free. For each i fix a lifting αi ∈ Ri of the principal ideal defined by the
determinant of Frobenius on H1(Ui,OXuniv) ⊗V V1. Let Ri(w) := Ri[Y ]/(Y αi − pw) and Ai be
the normalization of Ri(w). Since Ri(w) is of finite type over V , it is excellent by [EGAIV, 7.8.3].
Consequently, Ai is finite as an Ri(w)-module and it is itself excellent. Thus, its p-adic comple-
tion Âi is normal by [EGAIV, 7.8.3(v)]. In particular, Xuniv

i := Xuniv ×Ag,d,n
Spec(Âi) → Spec(Âi)

is a special (w, g)-situation. By hypothesis we can define a rigid analytic subgroup Han
i of (Xuniv

i )an, a
minimal morphism of formal schemes T

Xuniv
i

i → Ti := Spf(Âi) relative to Xuniv
i → Ti and a finite and

flat closed subgroup scheme H form
Xuniv

i
of Xuniv

i ×Ti
T
Xuniv

i
i extending Han

i . Furthermore, H form
Xuniv

i
also sat-

isfies Proposition 3.12. Write Ui∩Uj as Spec(Rij ). Let Aij be the normalization of Rij [Y ]/(Y αi−pw)
and let Âij be its completion. It is easy to see that Âij is canonically isomorphic to Âji. Analo-
gously, Xuniv

ij := Xuniv ×Ag,d,n
Spec(Âij ) → Spec(Âij ) is a special (w, g)-situation. Hence, denot-

ing Tij := Spm(Âji), there exists a rigid analytic subgroup Han
ij of (Xuniv

ij )an, a minimal morphism of
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formal schemes up T
Xuniv

ij

ij → Tij relative to Xuniv
ij → Tij and a finite and flat closed subgroup scheme

H form
Xuniv

ij
of Xuniv

ij ×Tij
T
Xuniv

ij

ij extending Han
ij . Since Han depends only on the isomorphism classes and

commutes with base-change for special (w, g)-situations (properties (i) and (ii) of Theorem 3.5), the
restriction of Han

i to Tan
ij is Han

ij . Using Theorem 3.10, which we are assuming to be valid for special

(w, g)-situations, we also deduce that T
Xuniv

ij

ij is an open formal subscheme of T
Xuniv

i
i and that H form

Xuniv
ij

coincides with the pull-back of H form
Xuniv

i
to T

Xuniv
ij

ij .

Let Ag,d,n be the formal scheme associated to Ag,d,n. Denote by Xuniv(w) the universal formal
abelian scheme over Ag,d,n(w). By construction, the covering {Tan

i }i of Ag,d,n(w)an coincides with the
covering {Spm(R̂i(w)⊗V K)}i, which is admissible since it is associated to a covering by open formal
subschemes of Ag,d,n(w). Thus, the groups {Han

i }i glue and define a rigid analytic subgroup Han
Xuniv(w)

of (Xuniv(w))an. By construction it satisfies property (iii) of Theorem 3.5; in particular, it is preserved
by the automorphisms of Ag,d,n, for example those of the level structure. Analogously, {Ti}i and

{TXuniv
i

i }i also glue and define formal schemes T and TX
univ

over Ag,d,n(w), and we have a morphism
TX

univ → T as formal schemes over Ag,d,n(w). At the level of associated rigid analytic spaces, we
obtain isomorphisms

(TX
univ

)an ∼−→ Tan ∼−→ Ag,d,n(w)an.

We also obtain a formal closed subgroup scheme H form
Xuniv(w)

of the base-change of Xuniv(w) to TX
univ

,

finite and flat over TX
univ

, extending Han
Xuniv(w)

. It follows that Definition 3.8(b) and (c) and Propo-
sition 3.12 hold true in this case.

The strategy to construct the canonical subgroup in general is to work first under some restrictive
hypotheses and eventually show how to remove them. Assume that we are given a formal (w, g)-
situation X → S such that X admits a polarization of degree d2 and full level n structure with n a
positive integer n � 3 prime to pd, i.e., Xan[n] ∼= (Z/nZ)g. Suppose, furthermore, that pw ∈ V . Then,
X → S is obtained as the pull-back of Xuniv(w) via a morphism f : S → Ag,d,n(w). We define Han

X

as the pull-back of Han
Xuniv via fan.

We now prove that Han
X is independent of the choices of the polarization and level structure.

Indeed, assume that there exists d′ and n′ � 3 with (n′, pd′) = 1 and a morphism f ′ : S → Ag,d′,n′(w)
such that X is the pull-back of the universal formal abelian scheme X′univ via f ′. It suffices to prove
that the pull-back H of Han

Xuniv via fan and the pull-back H ′ of Han
X′univ via f ′an coincide. Since Xan[p]

is étale over San and the two groups H and H ′ are contained in Xan[p], it is enough to show that
they coincide over the rigid points of San. Any such point extends to a morphism h : Spm(V ′) → S
for some finite extension V ⊂ V ′ of discrete valuation rings. The pull-back Xh → Spm(V ′) of X → S
via h is a special (w, g)-situation and the pull-backs of H and H ′ via han coincide with Han

Xh
due to

the definition of Han
Ag,d,n(w) (respectively, Han

Ag,d′,n′ (w)) and the hypothesis that the formation of Han

commutes with base change-for special (w, g)-situations.

Eventually, assume that X → S is a (w, g)-situation. Take a finite extension V ⊂ W of dvrs,
a covering by open formal subschemes {Ui}i of S ⊗V W and a finite and étale extension Zi → Ui

for every i such that pw ∈ W , the pull-back of X to Ui admits a polarization of degree d2
i and the

pull-back of X to Zi is endowed with a full level ni structure for some ni and di with (ni, pdi) = 1.
By the above, we may construct Han

X×SZi
independently of any choice. The extension Zan

i → Uan
i is

finite and étale as rigid analytic spaces over W ⊗V K and the morphism (S ⊗V W )an → San is finite
and étale as rigid analytic spaces over K. Remark that Han

X×SZi
is a closed rigid analytic subspace

of X[p] ×S Zan
i . Then, the usual étale descent for coherent modules suffices to descend Han

X×SZi
to

a unique closed rigid analytic subgroup Han
X of X[p]. By construction it satisfies property (iii)
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of Theorem 3.5. Reducing once more to the case of S equal to the formal spectrum of a complete
discrete valuation ring and using the assumption of the theorem, one shows that Han

X depends
only on the isomorphism class of X → S, that its formation commutes with base-change and is
functorial in X. This concludes the proof of the existence of the canonical subgroup and shows its
main properties. We are left to discuss its formal models.

We assume first that S = Spf(R), with R an admissible V -algebra, and that X → S is projective.
Let S := Spec(R) and let X → S be the abelian scheme whose associated formal scheme is X → S.
Since X[p]an is finite over San and Han

X is a closed analytic subgroup scheme, there exists a unique
closed subgroup scheme HXK

of XK [p], finite and étale over SK , whose associated rigid analytic
subgroup scheme of X[p]an is Han

X . By Theorem 10.6 there exists a projective morphism SX → S
and a closed subgroup scheme HX ⊂ X ×S SX such that (HX)K = HXK

. We let SX (respectively,
H form
X ) be the p-adic formal scheme associated to SX (respectively, HX). Due to Theorem 10.6, the

requirements (a) and (b) of Definition 3.8 are satisfied. We prove that requirement (c) also holds.
Let T → S be an admissible blow-up such that X[p]×S T admits a closed subgroup scheme H finite
and flat over T whose rigid analytic fiber is Han

X ×San Tan. Then, T → S is obtained as the p-adic
completion of an admissible blow-up T → S. Let HT ⊂ X[p] ×S T be the schematic closure of
HXK

×S T . Passing to an affine covering of T and using that the schematic closure commutes with
flat base-change (such as taking p-adic completion), one sees that H is the p-adic completion of HT .
Since R is p-adically complete by construction, its maximal ideals contain p so that the closed points
of S and S are identified with the closed points of Sk. Since T is proper over S and T is proper over
S, we deduce that the closed points of T and T are the closed points of the special fiber Tk and
are identified. For any such point x, the p-adic completion of the local ring of T at x and of T at x
coincide. Since H is flat over T, we conclude that HT is flat passing to the p-adic completion of the
local ring of T at every closed point and, hence, that HT is flat over T . Thus, by Corollary 10.5, it
is a closed subgroup scheme of X[p] ×S T . Then, T → S factors uniquely via SX → S and T → S
factors via SX. We conclude that SX → S satisfies the requirement of Theorem 3.10, apart from the
uniqueness. Any minimal morphism is, by definition, locally projective and, hence, there is a Zariski
covering of S by affine formal subschemes over which it is algebraizable by Grothendieck’s existence
theorem. Applying Theorem 10.6 we then deduce that it must coincide with SX → S proving also
the uniqueness.

In general, consider a covering {Ui}i of S by open formal affine subschemes such that X×SUi → Ui

is projective. One then obtains UXi → Ui satisfying Theorem 3.10 for every i. By Theorem 3.10, the
formal scheme UXi ×S Uj coincides with UXj ×S Ui for every i and j so that one can glue the formal
schemes UXi → Ui to a formal scheme SX → S. By construction it satisfies Definition 3.8(b) and (c).
We claim that Definition 3.8(a) holds as well. This is true for each UXi , i.e. there exists an admissible
blow-up U′

i of Ui and a map U′
i → UXi as Ui-schemes. By [BL93, Lemma 2.6], for every i there exists

an admissible blow-up S ′
i → S extending U′

i → Ui and there exists an admissible blow-up S ′ → S
factoring through each S ′

i. The natural maps S ′ ×S Ui → U′
i → UXi glue by the universal property

of TX (Definition 3.8(c)). We then get a morphism S ′ → SX of S-schemes as required. This shows
that Definition 3.8(a) holds as well. Since the uniqueness claimed in Theorem 3.10 holds if it holds
locally on S, this completes the proof of Theorem 3.10.

We now prove that Proposition 3.12 holds. Let S ′ → S be an admissible blow-up over which a
formal model H form

X of Han
X exists. Using the notation introduced above, we know that there exists

a Zariski covering {Zi}i of S and admissible blow-ups {Z′
i}i such that for every i a formal model Hi

of Han
X ×an

S Zan
i exists and satisfies Proposition 3.12. For every i, let S ′′

i be a blow-up dominating
both Z′

i and S ′ ×S Zi. Then, Proposition 3.12 holds for Hi ×Z′i S ′′
i since it holds for Hi. This group

scheme coincides with H form
X ×S S ′′

i by Lemma 3.9. Note that �iS ′′
i → S ′ is surjective on points since

it is an admissible blow-up of a fppf covering of S ′. Hence, H form
X ×S′ (S ′ ⊗V k)red is annihilated
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by Frobenius for every geometric point of (S ′ ⊗V k)red and, thus, it is annihilated by Frobenius.
Since H form

X has rank pg, we conclude that Proposition 3.12 holds for H form
X as claimed.

12. Proof of the main theorems for special (w,g)-situations

In this section we prove the theorems and propositions of § 3 for special (w, g)-situations.
We start with Theorem 3.5. Let X → S be a special (w, g)-situation with 0 � w < (p−1)/(2p−1).

In particular, S = Spec(R) with R a normal, admissible V -algebra. Let R be the direct limit of
a maximal chain of finite and normal R-algebras, which are integral domains and are étale over
RK . Let V be the integral closure of V in R. It is the ring of integers of an algebraic closure of K.
Fix λ ∈ V so that v(λ) = (1 − w)/(p − 1). The assumption on w implies that

p

(p − 1)(2p − 1)
< v(λ) � 1

p − 1
.

Proposition 12.1. We have the following.

(1) Let λ be as above. Then, H1(X ⊗ R,Gλ) ∼= Fg
p.

(2) Let 0 � w < w′ < (p − 1)/(2p − 1) and let λ, µ ∈ V be such that v(λ) = (1 − w)/(p − 1)
and v(µ) = (1 − w′)/(p − 1). The map H1(X ⊗ R,Gλ) → H1(X ⊗ R,Gµ), induced by the
homomorphism ηλ,ν : Gλ → Gµ of § 5.3, is an isomorphism.

Proof. (1) By Theorem 8.1, Proposition 9.1 and Remark 9.2 there exists a finite, normal R-algebra
W étale over RK such that H1(X ⊗ W,Gλ)/H1(W,Gλ) is a Fp-vector space of dimension g.
Furthermore, for every extension W ⊂ W ′ which is finite, normal and étale over WK , the map
H1(X ⊗ W,Gλ)/H1(W,Gλ) → H1(X ⊗ W ′,Gλ)/H1(W ′,Gλ) is an isomorphism. The claim follows.

(2) The given map is injective due to Lemma 6.4. Then, the claim follows from claim (1).

Consider the map τR : H1(X ⊗ R,Gλ) −→ HomR(Gλ
∨,Pic0

X/R) as in § 5.12. Choose an Fp-basis
{x1, . . . , xg} of H1(X ⊗ R,Gλ) and let

Ψ: (Gλ
∨
,R

)g −−→ Pic0
X/R ⊗R R

be the map τR(x1) + · · · + τR(xg).

Lemma 12.2. The map Ψ is a closed immersion over RK .

Proof. Since Gλ
∨
,RK

∼= Z/pZ, it suffices to prove that for any non-trivial homomorphism Z/pZ →
(Gλ

∨
,RK

)g, the composite with Ψ is non-zero. For every (a1, . . . , ag) ∈ Fg
p consider the homomorphism

ξa1,...,ag : Gλ
∨ → (Gλ

∨)g defined on points by g �→ (ga1 , . . . , gag ). It suffices to prove that, for every
0 	= (a1, . . . , ag) ∈ Fg

p the map Ψ ◦ ξa1,...,ag is non-zero. By Proposition 8.9 and Lemma 8.10, the
image of the Lie algebra of Gλ

∨
,R

, via Ψ ◦ ξa1,...,ag , in Lie(Pic0
X/R ⊗R R1) = H1(X,OX ) ⊗R R1 is

identified with the R1-submodule generated by the non-zero element a1x1 + · · ·+ agxg. The lemma
follows because of the injectivity in Theorem 8.1.

Lemma 12.3. The image of Ψ ⊗ RK is Gal(RK/RK)-invariant.

Proof. Consider the following diagram:

H1(X ⊗ R,µp)
� � �� H1(X ⊗ RK , µp)

∼ �� Pic0
X/R[p](RK)

∪
H1(X ⊗ R,µp)[λ] H1(X ⊗ R,Gλ)
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see Definition 6.5. The group Gal(RK/RK) acts equivariantly on the terms in the upper part of the
diagram. By Proposition 6.6, the subgroup H1(X ⊗R,µp)[λ] ⊂ H1(X ⊗R,µp) is also Gal(RK/RK)-
invariant.

Let ηλ : Gλ → µp be the map defined in § 5.3. We view it as an element ηλ ∈ Gλ
∨(R); it generates

Gλ
∨(K). It follows by the definition of τR that, for every Gλ-torsor Y → X ⊗ R, the image of the

class [Y ] in Pic0
X/R[p](RK) obtained via the diagram above coincides with the element τR([Y ])(ηλ).

The lemma follows.
Using the lemmas above we deduce that Ψ ⊗ RK descends to a closed subgroup scheme GK ⊂

Pic0
XK/RK

. It is finite and flat of rank pg and it is annihilated by multiplication by p.

Definition 12.4. Let HXK
be the closed subgroup scheme of XK [p] given by

HXK
:= (Pic0

XK/SK
[p]/GK)∨.

We let Han
X be the rigid analytic subgroup scheme of Xan[p] associated to subgroup scheme HXK

of
XK [p].

Proposition 12.5. The rule associating to a special (w, g)-situation X → S the group scheme Han
X

given in Definition 12.4 satisfies properties (i)–(iii) of Theorem 3.5 and Proposition 3.7.

Proof. Note that Han
X is a closed subgroup scheme of Xan[p], finite and flat of rank pg over San.

(i) By construction Han
X depends only on the isomorphism class of X → S.

(ii) (Base-change) The formation of Han
X commutes with base change associated to extensions

R → R′ of normal admissible V -algebras thanks to Proposition 9.1(iii).
(Functoriality) Let X1 → S (respectively, X2 → S) be a special (w1, g)-situation (respectively,
a special (w2, g)-situation) with 0 � w1, w2 < (p−1)/(2p−1). Let h : X1 → X2 be a morphism
of abelian schemes. We deduce from Remarks 8.7 and 9.6 that Proposition 3.7 holds, i.e. han

restricts to a group scheme homomorphism from Han
X1

to Han
X2

.
(iii) (Ordinary case) If X has ordinary reduction, by the functoriality just proven one can take

w = 0. In particular, we can suppose Gλ
∼= Z/pZ. Then, the construction above coincides with

that in Proposition 3.4. Hence, Han
X = Hord

X .

12.6 Proof of Theorem 3.10
The notation is as in Definition 12.4. It follows from Theorem 10.6 that there exists a projective
morphism SX → S, inducing an isomorphism over SK , and a closed subgroup scheme

HX ↪−→ X ×S SX ,

which is finite and flat over SX of rank pg and extends HXK
. Furthermore, SX is minimal with

these properties and its formation commutes with flat extensions T → S by Theorem 10.6. We then
define SX (respectively, H form

X ) as the completion of SX (respectively, HX) along its special fiber. By
construction SX and H form

X satisfy the requirements of Theorem 3.10; cf. the proof of Theorem 11.2.

12.7 Proof of Proposition 3.12
The notation is as in § 12.6. Let G be the closed subgroup scheme of Pic0(X/S) ×S SX defined as
the Cartier dual of (X[p]×S SX)/HX . It is a finite and flat over SX of rank pg and it is annihilated
by p. Since HX ×V k = H form

X ×V k, by Cartier duality, Proposition 3.12 follows if we prove the
following.

Lemma 12.8. The group scheme G ×SX (SX ⊗V k)red coincides with the kernel of Frobenius
on Pic0

X/S ×S (SX ⊗V k)red.
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Proof. Since G is a subgroup of Pic0
X/S×S SX of rank pg, it suffices to prove that G×SX (SX⊗V k)red

is killed by Frobenius. For every generic point s of (SX ⊗V k)red, let k(s) be its residue field.
We claim that for every s the Lie algebra of G ⊗ k(s) is a k(s)-vector space of dimension at
least g. Consequently, [Mum70, p. 139] implies that the kernel of Frobenius on G ⊗ k(s) has rank
at least pg. Since G⊗k(s) has rank equal to pg, it is then killed by Frobenius. This proves the lemma
for the generic points of (SX ⊗ k)red. Since in a reduced ring A, the map from A to the product of
the localizations at all its height 0 ideals is injective, it follows that G×SX (SX⊗V k)red (respectively,
Ker(F) on Pic0

X/S ×S (SX ⊗V k)red), being flat, coincides with the schematic closure in Pic0
X/S ×S

(SX ⊗V k)red of its restriction to the generic points. The lemma follows.
We are left to prove the claim. Possibly, after replacing SX with the p-adic completion of the

normalization of OSX ,s, we may assume that S = SX = Spec(R) is the spectrum of a complete
dvr with residue field F. By construction, Ψ factors through G⊗R R. Reducing modulo R1−w, with
w = 1 − (p − 1)v(λ) and λ as in Proposition 12.1, and taking the associated map on Lie algebras,
we get R-linear maps

Lie(Gλ
∨)g ⊗R R1−w −→ Lie(G ⊗R R1−w) ⊂ Lie(Pic0

X/R ⊗R R1−w) = H1(X,OX ) ⊗R R1−w.

By § 8.8, the image I contains the R-module generated by the image of the map from H1(X⊗RR,Gλ)
to H1(X,OX ) ⊗R R1−w given in Theorem 8.1. It follows from Lemma 9.7 that I is generated as
an R-module by at least g elements. This implies that Lie(G ⊗R R1−w) and, hence, the module J
of invariant differentials of G⊗R R1−w are generated as an R-modules by at least g elements. If the
invariant differentials of G ⊗R F were generated by less than g elements, the same would apply
to J by Nakayama. We conclude that the invariant differentials of G ⊗R F form a vector space of
dimension at least g as claimed.

13. Final considerations

In this section we assume that R is a complete discrete valuation ring. We fix an abelian scheme
X → Spec(R). We first show that our construction of the canonical subgroup coincides with that
in [AM04].

13.1 Relation with [AM04]
Suppose that p � 3. Suppose that X satisfies the assumptions in [AM04, Theorem 1.1]. Take
λ ∈ R to be an element of valuation v(λ) = 1/p. Thanks to Definition 6.5 and Proposition 12.1 the
canonical subgroup HX ⊗ RK is also with the orthogonal of H1(X ⊗ R,µp)[λ] via the Weil pairing

(X ⊗ RK)[p] × H1(X ⊗ RK , µp) −−→ µp.

It follows from [AM04, Theorem 3.1.2] that HX ⊗ RK coincides with the subgroup X[p]j+, con-
structed in [AM04, Corollary 6.1.2], base-changed to RK . This implies that our canonical subgroup
and the canonical subgroup defined in [AM04] coincide in this case.

We now give an alternative description of H1(X⊗R,µp)[p
1/p] ⊂ H1(X⊗R,µp) (see Definition 6.5)

using the map d log.

13.2 The map d log
Let R be as in Definition 6.1. Define the map

d log : H1
fppf(X1 ⊗R R,µp) −−→ H0(X1 ⊗R R,ΩX1⊗RR/R)

as follows. Let Y1 → X1 ⊗R W be a µp-torsor with R ⊂ W finite and étale over RK and W normal.
There exist a covering by open affine subschemes {Ui}i of X ⊗R W and elements γi ∈ Γ(Ui,O∗

Ui
)
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such that Y1|Ui is defined by the affine algebra zp
i = γi. Furthermore, there exists a one cocycle vij

for O∗
X1⊗RW relative to the covering {Ui}i such that γi = γjv

p
ij on Ui∩Uj. Then, d log(γi) = d log(γj)

on Ui ∩ Uj and we get a section of H0(X1 ⊗R W,ΩX1⊗RW/W ) denoted by d log(Y1).

Lemma 13.3. With the notation above we have d log(Y1) = 0 if and only if the γi are pth powers in
Γ(Ui,OX1⊗RR).

Proof. If the γi are pth powers, clearly d log(Y1) = 0. Assume that d log(γi) = 0 for every i.
This holds only if dγi = 0. Fix i. Let π be a uniformizer of W . The proposition is known for the
special fiber of X⊗RW → Spec(W ) since it is regular. Let π be a uniformizer of W . Then, there exists
a1 ∈ Γ(Ui,OX1⊗RW ) such that γi = ap

1+πb1 for some b1 in Γ(Ui,OX1⊗RW ). Analogously, πd(b1) = 0.
Thus, there exists a2 ∈ Γ(Ui,OX1⊗RW ) such that πb1 = πap

2 + π2b2 for some b2 in Γ(Ui,OX1⊗RW ).
Continuing in this fashion we get a π-adic expansion of γi of the form γi =

∑
n πnap

n. Let π1/p be
an element of R whose pth power is π. Then, γi = (

∑
n πn/pan)p is a pth power as claimed.

Proposition 13.4. Let λ ∈ R be an element of valuation v(λ) = 1
p . Then, the kernel of the map

H1(X ⊗ R,µp) −−→ H1(X1 ⊗R R,µp)
d log−−→ H0(X1 ⊗ R,ΩX1⊗RR/R)

coincides with H1(X ⊗ R,µp)[λ].

Proof. We prove first that the image of ηλ is contained in the kernel of d log. Let Y → X ⊗ W
be a Gλ-torsor. By Theorem 5.9 and Remark 5.10, if (L,E,Ψ, {(Ui, ei, αi)}i∈I) are the associated
classifying data, the torsor is locally defined by Spec(OUi [ei]/(Pλ(ei)−αi)). The associated µp-torsor
is then defined by Spec(OUi [zi]/(zi−1+λpαi)) and d log(1+λpαi) ≡ 0 modulo p by the assumption
on v(λ).

Let Y be a µp-torsor over X ⊗R W such that d log(Y ) = 0. Let Y be the associated formal
µp-torsor over X ⊗R W . Let {Ui}i be a covering of X ⊗ W by open affine formal subschemes and
let γi ∈ Γ(Ui, (OX ⊗R W )∗) be such that Y|Ui

∼= Spec(OUi
[zi]/(z

p
i − γi)). By Lemma 13.3, we may

assume that γi ≡ 1 modulo p. Since v(λp) = 1, we can write γi = 1+λpαi with αi ∈ Γ(Ui,OX⊗W ).
Let {vij } be a cocycle for O∗

X⊗W relative to the covering {Ui}i such that γi = γjv
p
ij on Ui ∩ Uj

for every i and j. Then, vij ≡ 1 modulo p1/p. Thus, we may write vij = 1 + λuij with uij ∈
Γ(Ui ∩ Uj,OX ⊗ W ). Let Y ′|Ui

be the spectrum of the subalgebra of OUi
[zi]/(z

p
i − γi) ⊗W Frac(W )

defined by OUi
[ei]/(Pλ(ei) − αi) with ei := (zi − 1)/λ. Note that Y ′ |Ui

is a Gλ-torsor over Ui.
Since ei = vij ej + uij and vp

ij αj − αi = −Pλ(uij ) on Ui ∩ Uj, the Gλ-torsors Y ′|Ui
→ Ui glue to a

global Gλ-torsor Y ′ → X⊗W . By construction, ηλ(Y ′) = Y. Since X is projective, it algebraizes to
a Gλ-torsors Y ′ → X ⊗ W such that ηλ(Y ′) = Y .

We also have another map

dLog1 : X∨
1 [p](R1) −−→ H0(X1 ⊗ R,ΩX1⊗R/R)

defined as follows. Let ρ : X1⊗R[p] → µp be a R1-point of X∨
1 [p]. Define dLog1(ρ) as the pull-back of

the canonical invariant differential dz/z on µp via ρ. Here we use that the invariant differentials
of X1[p] coincide with the invariant differentials of X1, i.e. with H0(X1,ΩX1/R1

). The following
proposition answers a question raised in [AM04, Remark 6.1].

Proposition 13.5. The following diagram is commutative.

H1(X ⊗ R,µp)
d log ��

�
��

H0(X1 ⊗ R,ΩX1⊗R/R)

X∨[p](R) �� X∨
1 [p](R1)

d Log1

��
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Proof. To simplify the notation we assume R = R and that every µp-torsor over X is rigidified at
the origin. Let f : Y1 → X1 be a (rigidified) µp-torsor. Due to the rigidification it has a unique
group scheme structure such that f is a homomorphism of group schemes (with kernel µp). The
isomorphism ϕ : Ext1(X1, µp)

∼−→ Hom(X1[p], µp) has the following explicit description. The pull-
back [p]∗(Y1) of Y1 via multiplication by p on X1 is canonically trivial since Hom(X1, µp) = 0, i.e.
[p]∗(Y1) ∼= µp × X1. We thus get an induced homomorphism h : X1 → Y1 such that f ◦ h = [p]; this
induces the required map ϕ([Y1]) : X1[p] → µp.

Let FS1 (respectively, FX1) be the absolute Frobenius on S1 (respectively, X1). Denote by X
(p)
1

the fiber product of X1 → S1 via FS1 and by W : X
(p)
1 → X1 the projection. Let V : X

(p)
1 → X1

be Verschiebung, we then get two maps V ∗ and W ∗ from H1(X1, µp) to H1(X(p)
1 , µp). Consider the

map V ∗; via the isomorphisms

H1(X1, µp)
∼−→ Hom(Z/pZ,X∨

1 ), H1(X(p)
1 , µp)

∼−→ Hom(Z/pZ, (X(p)
1 )∨)

it coincides with the homomorphism υ : Hom(Z/pZ,X∨
1 ) → Hom(Z/pZ, (X(p)

1 )∨) induced by
V ∨ : X∨

1 → (X(p)
1 )∨. Since V ∨ : X∨

1 → (X(p)
1 )∨ = (X∨

1 )(p) is the relative Frobenius and Frobenius is
the identity on Z/pZ, the map υ coincide with the map ϕ �→ F ∗

S1
(ϕ). We conclude that W ∗ = V ∗.

Suppose that the µp-torsor Y1 is given on a covering by open affine subschemes U = {Ui}i of X1

by local equations Zp
i = γi with γi ∈ Γ(Ui,O∗

Ui
). Then, (dZi/Zi)i ∈ C0(U,ΩY1/R1

) lifts the invariant
differential dz/z of µp and dLog1([Y1]) is the global differential of X1 given by the pull-back of
(dZi/Zi)i via h. Since [p] is the composite of Verschiebung V and (the relative) Frobenius F , the µp-
torsor [p]∗(Y1) is F ∗(V ∗[Y1]) = F ∗(W ∗[Y1]) = F ∗

X1
[Y1]. The latter is defined on Ui by the equation

Zp
i −γp

i and admits the trivialization Zi = γi so that the pull-back of (dZi/Zi)i via h is locally given
by (dγi/γi)i. The conclusion follows.

Proposition 13.5 is motivated by the following weak integral analogue of the Hodge–Tate de-
composition as suggested in [AM04, Remark 6.1].

13.6 Relations with the Hodge–Tate decomposition
Suppose that p � 3. Let K be an algebraic closure of K and let V be the integral closure of V
in K. Let Cp (respectively, OCp) be the p-adic completion of K (respectively, V ). Let λ ∈ V be
an element of valuation v(λ) := 1/p. The Hodge–Tate decomposition is a canonical isomorphism of
Galois modules

H1(XK , Qp) ⊗Qp Cp
∼= (H1(X,OX )⊕H0(X,Ω1

X/V )(−1)) ⊗V Cp;

see [Tat67, Remark on p. 180]. To simplify the following heuristic considerations we will ignore the
Galois action from now on. We will discuss it in a more general situation in a future paper.

In Proposition 13.4 and 13.5 we proved that we have an exact sequence of Fp-vector spaces:

0 −−→ H1(X ⊗ V ,Gλ) −−→ H1(X ⊗ K,µp)
d Log1−−→ H0(X1 ⊗ V ,Ω1

X1⊗V /V
). (13.6.1)

If Xk is ordinary, we can obtain from (13.6.1) a generalization of the Hodge–Tate decomposition to
p-torsion coefficients. Indeed, we remark the following.

(1) the kernel of dLog1 has dimension g as Fp-vector space by Proposition 12.1(1).
(2) By Proposition 12.1(2) the kernel of dLog1 with H1(X⊗V ,Z/pZ) because Z/pZ � Gp1/p−1 ; the

reduction modulo p gives H1(X ⊗ V ,Z/pZ) ∼−→ H1(X1 ⊗ V ,Z/pZ). By Artin–Schreier theory,
cf. Theorem 8.1, we have an exact sequence

0 −−→ H1(X1 ⊗ V ,Z/pZ) −−→ H1(X1,OX1) ⊗V V
F−1−−→ H1(X1,OX1) ⊗V V .

Furthermore, we have H1(X1,OX1) ⊗V V ∼= H1(X1 ⊗ V ,Z/pZ) ⊗Fp V /pV . This is deduced
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using Nakayama’s lemma since it holds modulo the maximal ideal of V by [Mum70, Corollary
on p. 143];

(3) We have that H0(X1 ⊗ V ,Ω1
X1⊗V /V

) coincides with Im(dLog1) ⊗Fp V /pV . Indeed, using the
Cartier operator and relating the Hodge to de Rham and the conjugate spectral sequences on
H1

dR(X1 ⊗ V /V ) (see [Kat73, § 2], especially Corollary 2.3.1.2) we obtain a Frobenius linear
homomorphism

C−1 : H0(X1 ⊗ V ,Ω1
X1⊗V /V

) → H0(X1 ⊗ V ,Ω1
X1⊗V /V

).

The ordinarity of X implies that it is an isomorphism, cf. [Kat72, (2.3.4.1.4)]. By [Kat72,
(2.1.2.1)] it is the identity on the image of dLog1. One concludes using [Mum70, Corollary on
p. 143] once more.

One then deduces from (13.6.1) the exact sequence

0 → H1(X,OX ) ⊗V (V /pV ) → H1(X ⊗ K,µp) ⊗Z V → H0(X,Ω1
X/V ) ⊗V (V /pV ) → 0.

This can be seen as a weak Hodge–Tate decomposition with torsion coefficients.
Condition (3) is equivalent to asking whether Xk is ordinary: if it holds, H0(Xk,Ω1

Xk/k) is
generated by logarithmic differential forms so that the Cartier operator is an isomorphism and this
is equivalent to requiring that Xk is ordinary.

Consequently, if Xk is not ordinary, one does not expect such a decomposition to exist.
Nevertheless, suppose that X → S is a (w, g)-situation with w < 1/p (and p > 3). Then, we
still have an exact sequence

0 −−→ H1(X ⊗ K,µp)[1/p] −−→ H1(X ⊗ K,µp)
d Log1−−→ H0(X1 ⊗ V ,Ω1

X1⊗V /V
).

Moreover, H1(X ⊗K,µp)[1/p] is a Fp-vector space of dimension g by Proposition 12.1. Thus, in this
case, one has an exact sequence in the flavor of the Hodge–Tate decomposition for torsion coefficients.
The authors believe that a similar phenomenon should occur for H1(X ⊗ K,µpn) (for every n � 1)
and will return to this topic in a future paper.

Acknowledgements

We warmly thank Ahmed Abbes for discussions which lead us into the realm of the canonical
subgroup, for his supporting enthusiasm and encouragement and for his suggestions. We also thank
the referee for his careful reading and his very useful comments on the manuscript.

References

AG F. Andreatta and C. Gasbarri, Torsors under some group schemes of order pn, Preprint
http://www.mat.uniroma2.it/∼gasbarri.

AM04 A. Abbes and A. Mokrane, Sous-groupes canoniques et cycles évanescents p-adiques pour les
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EGAIV A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schemas et des mor-

phismes de schemas. I, Publ. Math. Inst. Hautes Études Sci. 20 (1964); II, idem. 24 (1965); III,
idem. 28 (1966); IV, idem. 32 (1967).

Kat72 N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration),
Invent. Math. 18 (1972), 1–118.

Kat73 N. Katz, p-adic properties of modular schemes and modular forms, In Modular functions of one
variable, III, Lecture Notes in Mathematics, vol. 350, (Springer, Berlin, 1973), 69–190.

KL05 M. Kisin and K. F. Lai, Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005),
735–783.

Mil80 J. Milne, Étale cohomology (Princeton University Press, Princeton, NJ, 1980).
Mum65 D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue

Folge, vol. 34 (Springer, New York, 1965).
Mum70 D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics,

No. 5 (Oxford University Press, London, 1970).
Nev03 E. Nevens, The Hecke operator Up for overconvergent Hilbert modular forms, PhD thesis, Imperial

College, London (2003).
NO80 P. Norman and F. Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), 413–439.
OT70 F. Oort and J. Tate, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4)3 (1970), 1–21.
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