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DYNAMICS FOR VORTEX CURVES OF
THE GINZBURG-LANDAU EQUATIONS

Liv ZUBAN

We study the asymptotic behaviour of solutions to the evolutionary Ginzburg- Landau
equations in three dimensions. We show that the motion of the Ginzburg-Landau
vortex curves is the flow by curvature.

1. INTRODUCTION

Let Q =Q x [0,], 2 C R? be a bounded smooth domain, g: £ = 90 x [0,!] —» S*
a C'®-map such that deg(g,0Q,) =d > 0 for all 0 < z < I. Here Q, = 2 x {z}. Let
a: @ — R be a smooth function (say C3(Q)) with positive lower bound.

We consider the following problem:

ou_ 1, L)
(1.1) % = a(@) div(a(z)Vu) + Ezue(l lue|?) in Q x Ry,
(1.2) ue(z,0) = ul(z), z€Q,
(1.3) u(z,t) =g(z), z€%,t20,

Oue _
(1.4) 5 = 0 forz=0,l1

where u, : @ x Ry — R?. The system (1.1)-(1.4) can be viewed as a simplified evolu-
tionary Ginzburg-Landau equation in the theory superconductivity of inhomonogence.
The aim of this article is to understand the dynamics of vortices, or zeros, of solutions
u of (1.1)- (1.4). Its importance to the theory of superconductivity and applications are
addressed in many earlier papers [4, 9, 10, 11, 14].
Let ['g be a collection of d embedded C?-curves in @ with 8Ty C 2x{0,!}. Moreover,
we assume ['g intersects Q2x {0, {} orthé)gonally along 8T'y. Note that the last assumption is

compatiable with the assumption %%ﬁ = 0 for z = 0,!. (That is the natural compatibilty
condition for problem (1.1)-(1.4). Similarly, we also assume that u? = g on L.)
For the initial data u?, we make the following assumptions:
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(H1) /pz(:lc)[IVuﬂ2 + (Jud? - 1)/(262)](11 < K foral 0 < € € 1
Q
Here p(z) = dist(z, T'y);

(H2) u? converges as € = 07 in the C’-norm away from I’y to a map u° with its

image in S!;
(H3) Let Iy, ¢ =1, ---,k, be connected components of I'p, and let § > 0 be
chosen so that the sets ['}(6), i = 1, --,k, are pairwise disjoint. Here

Ti(8) = {z € Q : dist(z,T}) < 6}.
Let T > 0, and {I';}, 0 < t < T, be a family of embedded C? -curves inside Q with
boundaries {9I';} contained in 2 x {0, I}, assume I'; intersects with 2 x {0, {} orthogonally
along Oy, which are obtained from Ty by the following equations in R3:

dm(pt’ t_l =;I (z(p, t),t) - W—vag(z(P’t))’

I(p7 0) =P € FO:

(1.5)

where 7 is the projection onto the normal space of Iy, and the curvature vector I_i of ['y
is characterised by the property
div' pdH! = —/ H -$dH*, V¢ € (¢, ¢2,3) € C'(R, R®),

Fg Ft

here div' ¢ = dt¢; is the tangential divergence of ¢ [12]. In the case a = 1, equation
(1.5) denotes the flow by mean curvature with codimension 2 in R®.

THEOREM 1.1. Assume thata € C3(Q) and ap = mina > 0. Under assumptions
Q

(H1)-(H3) and for each t, 0 < t < T, one has (by taking subsequences if necessary) that
ue(z,t) = u.(z,t) weakly in H. (Q \ T;). Here u.(z,t) satisfies:

1
(1.6) S, — " div(aVu,) = |Vu.|*u, in Q\T..

Now we briefly describe some mathematical advances concerning this problem. In
two space dimensions, a = 1, the dynamical law for vortices was formally derived in
{8, 14]. The first rigorous mathematical proof of this dynamical law, which is of the form
érjix(t) = —Vuw(z(t)), was given by Lin in [4, 5]. See also [6, Lecture 3]. In [4, 5], one
allows vortices of degree +1 and assumes that they have the same sign. For vortices of
degree *1 (possibly of different signs), the same type of dynamical law has recently been
shown [3]. We refer to {7] for vortex dynamics under the Neumann boundary conditions
for pinning conditions. In three space dimensions, a = 1, a similar dynamical law was
also established in 7] for nearly parallel filaments. The short-time dynamical law for
codimension 2 interfaces in higher dimensions was shown in [7]. In two space dimensions,
a # 1, the dynamical law was established in (7].

The rest of the paper is organised as follows. In Section 2, we collect some basic
facts on the curve flow. In Section 3, we prove the weak convergence.
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2. MEAN CURVATURE FLOW WITH CODIMENSION 2
Given a set E C R, we set

ne(z) = = (dist(z, E))”.

N )

The following results on the square distance function have been proved in [6]. Let v be
a smooth embedded curve in R3; then 7, is smooth in a suitable tubular neighbourhood
Q of v. —AVn, coincides, on <y, with the curvature vector ;1 of v.

LEMMA 2.1. [2, Lemma 3.7) Let (I'\):cpo,r) be a smooth flow. Then there exists
o > 0 such that the function

n(z,2) = %dist"’(:c,l“t)

is smooth in {(z,t) € R®x[0,T):n< a}. Moreover, the displacement of the flow is
given by
dz(p, t)
dt

In particular, (T'y):efo,) is a smooth curvature flow defined by (1.5) if and only if

= -Vn(z(p,t),t), Vt€[0,T), pe Do

Vn, = AVn — V2n——, on T

Short time existence for curvature flow of smooth initial space curves is a consequence
of a general theorem proved in [1, 13].

LEMMA 2.2. Assume that vy is a embedded C%-curve in Q with 8yy € Qx {0,1}.
Assume Ty intersects x {0, 1} orthogonally along O-y. Then there exist a positive number
to > 0 and a family of embedded C?-curves inside @ with 8T, C  x {0,1} such that the
following system of equalities holds on ~,:

ov Va
S (L0) = AV, (t,p) + Vin—=(p) = 0, t€[0,%], p €,

and v, intersects with 2 x {0,1} orthogonally along ;.

3. THE PROOF OF THEOREM 1.1

LEMMA 3.1. (Uniformly estimate)

(3.1) / /4.2\1* o [Iuet|2 + (1(:1:)(|Vus|2 (1 = |uel?) )]dzdt £ C(6,T,0),

where ¢ > 0 is such that the sets T'i(40), i = 1,2, - ,k, are pairwise disjoint for all
0<T,0<d8<o0. HereTi(do) = {z € Q: dist (z,T}) < 40}.
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PROOF: Let ¢, : Ry — R, be a smooth monotone function such that

r? if r<o
(32) 80(r) = { g eaa >0
Define
(3.3) p(z,t) = dist(z,T,).

Assume that
(3.4) min{l:r —-yl: z€Tl,, ye Z,

Using integration by parts, one gets

0<t<1‘}>4a.

69 g ) 3% e@n)e@[Ivul + (1 - W)

= [ 3(5#)- <x>[|w|2+—(1—lu'2)2]

/d), Vu Vu¢+21 (1 - |ul?)- (—2uu,)]

= IT+1II
We shall set ¢, = ¢, u. =u.

(3.6) = /qu[—V(aVu) - @(1 — )] g

—/qulu,]?—/Qan)Vu-u,.

—/Vqﬁ-a-Vu-ul
Q

(4]

Now we calculate the expression aV¢Vu - u,. We shall use the summation convention,

and simplify notation.

aVeVu-u, = VqSVu[dlv(aVu) 61 (11— ul?) ]

(3.7) = (au;);uidi + Eiﬁa(l = |ul?)u- uigs

1
= (au,-uj)jqﬁi - auju,-qu,- - [:{630,(1 -

1 1
= (auiu;);pi — §(|Ujv|2),~¢i - [Eia(l

Hence

1
(3.8) /aV¢Vu-u¢=/ —a¢,~ju,‘uj+—A¢'a|Vu
Q Q

+A¢ - —a(l - |u

1
= —/aqﬁ,-ju,-u,--i-/AqS- 50.
Q Q

[ e ke
Q a

2
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- [ul)?] &+

I+ %Va V- |Vul?
1
|) 42(1"|“|2) -Va- V¢
2 1a12)2
1Vl +?(1 [ul?)’]

1
[qu|2 +oa(1- |u|2)2].
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So, we have
(3.9) / éia |Vu|2+—(1 - uf?)?]
_ Va 1 2 1 2\2
_/Q[¢, ¢~ = Velza[|Vul + s (1 - fuf?)’]
+/a¢,-ju,-u,~—/¢|ut|2.
Q Q
Next we observe that on the set {:c €Q: plz,t) < a}, (¢ij) < I in the sense that

(3.10) ¢ii€i&; < I€° for all €€ R®.

Also, on Ty, we have ¢, = 0, A¢ = 0. Since I'; is obtained from I'y by curvature flow
(1.5), by Lemma 2.1, we have

(3.11) V(g — Ap — % V¢) =0 on T,.
Thus
(3.12) ¢ — A — E V¢ < -2+ Cy - p(z,t)

Combining (3.9) and (3.12) with the fact that (¢;;) < I, we have

(3.13) % []Vu|2 ! (1 - |u | C/ ¢= a IVuI2 + —(1 - Iulz)z].

Now we use Gronwall’s inequality and the assumption (H1) to obtain

(3.14) sup /d:, (z,1)) [|V’u|2 ! ( —lulz)z]dx<C(a,T,K).

0T

The last inequality implies that
(3.15) / ca[lvuf + —1—(1 - [uP?)?]dz < C(6,0,T. K),
a\ri(s) 2

forall0<t<TandO0<e<<].
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Next, for 0 € t; <t <ty < T, we let n(z) be a smooth cutoff function supported in

Q\ U Ty then
(3.16) dt/ 7% () %a[qulz + —2(1 - uf?) ]

= / n2a[Vu V’U.g - —‘(1 il |u| )’u Ug]
Q
/ V(aVu) + 12 (1- |u|2)u]ut - 2/ anVn - Vu - u,
Q
= —/ n*(z)|u? - 2/ anVnVu - u,
Q Q

1
-5 [ @l +C [ [onPvar,
Q Q

From (3.15) and (3.16), we obtain that

H

N

lleell iy (@070 Upgrerre) S €

The proof of Lemma 3.1 is completed. 0

Hence, by taking a subseqence if necessary, we have

Ue — U weakly in  Hj, (@ x [0, T\ U F,).
0T

It is easy to verify that w. satisfies

Ou,
ot

1 )
= ~div(aVu) +w[Vul in H,OC(QX[O,T]\ U Ft).

0T

The proof of Theorem 1.1 is completed.
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