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DYNAMICS FOR VORTEX CURVES OF
THE GINZBURG-LANDAU EQUATIONS

Liu ZUHAN

We study the asymptotic behaviour of solutions to the evolutionary Ginzburg- Landau
equations in three dimensions. We show that the motion of the Ginzburg-Landau
vortex curves is the flow by curvature.

1. INTRODUCTION

Let Q - ft x [0, /], ft C R2, be a bounded smooth domain, g : E - dft x [0, /] -> S1

a C"'Q-map such that deg(5,dftz) = d > 0 for all 0 ^ z < I. Here ftz = ft x {z}. Let
a : Q -> R be a smooth function (say C3(Q)) with positive lower bound.

We consider the following problem:

(1-1) ^ = ^ydiv(a(x)Vu) + ^ £ ( l - k | 2 ) in Q x R+,

(1.2) ue(x,0) = u°(x), xeQ,

(1.3) ue(x,t) = g(x), x € E , t^O,

(1.4) ~WZ
L = O ioTZ = 0'1'

where uc : Q x R+ -> R2. The system (1.1)—(1.4) can be viewed as a simplified evolu-
tionary Ginzburg-Landau equation in the theory superconductivity of inhomonogence.

The aim of this article is to understand the dynamics of vortices, or zeros, of solutions
u of (1.1)- (1.4). Its importance to the theory of superconductivity and applications are
addressed in many earlier papers [4, 9, 10, 11, 14].

Let Fo be a collection of d embedded C2-curves in Q with dT0 C ft x {0, /} . Moreover,
we assume Fo intersects ftx {0,1} orthogonally along 9F0. Note that the last assumption is

du°compatiable with the assumption -**• = 0 for z = 0,1. (That is the natural compatibilty
condition for problem (1.1)—(1.4). Similarly, we also assume that v?c — g on E.)

For the initial data u°, we make the following assumptions:

Received 2nd May, 2000
This work supported by the National Nature Science Foundation of China (10071067).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 SA2.00+0.00.

187

https://doi.org/10.1017/S0004972700019262 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019262


188 Liu Zuhan [2]

(HI) f p2{x)\i\Vu°e\
2 + (\u°\2 - l ) /(2e2)]dx ^ K for all 0 < e «C 1.

Here p{x) = dist(z,F0);

(H2) u° converges as e —> 0+ in the C°-norm away from Fo to a map u° with its

image in Sl;

(H3) Let FQ, i = 1, • • • , k, be connected components of r0 , and let 5 > 0 be
chosen so that the sets FQ(I5), i = 1, • • • ,k, are pairwise disjoint. Here

Let T > 0, and { F J , 0 ^ t s% T, be a family of embedded C2 -curves inside Q with
boundaries {5Ft} contained in Q x {0,1}, assume Ft intersects with Q. x {0,1} orthogonally
along dTt, which are obtained from Fo by the following equations in R3:

x(p,o)=Per0,

where n is the projection onto the normal space of Tt, and the curvature vector H of F(

is characterised by the property

/ divr ' <t>dUl = - f H -4>dn\ V0 € {<f>ufo,fo) e C'(R3,R3),

here divr ' (f> = rff'^i is the tangential divergence of <j> [12]. In the case a = 1, equation
(1.5) denotes the flow by mean curvature with codimension 2 in R3.

THEOREM 1 . 1 . Assume that a € C3(Q) and a0 = min a > 0. Under assumptions
Q

(H1)-(H3) and for each t, 0 < t < T, one has (by taking subsequences if necessary) that
us(x, t) —>• u,(x, t) weakly in Hloc(Q \ Ft). Here ut(x, t) satisfies:

(1.6) dtu. - - d i v ( a V u , ) = |Vu,|2u, in Q\Tt.
a

Now we briefly describe some mathematical advances concerning this problem. In
two space dimensions, a — 1, the dynamical law for vortices was formally derived in
[8, 14]. The first rigorous mathematical proof of this dynamical law, which is of the form
4fx{t) = — Vw(x(t)), was given by Lin in [4, 5]. See also [6, Lecture 3]. In [4, 5], one
allows vortices of degree ±1 and assumes that they have the same sign. For vortices of
degree ±1 (possibly of different signs), the same type of dynamical law has recently been
shown [3]. We refer to [7] for vortex dynamics under the Neumann boundary conditions
for pinning conditions. In three space dimensions, a — 1, a similar dynamical law was
also established in [7] for nearly parallel filaments. The short-time dynamical law for
codimension 2 interfaces in higher dimensions was shown in [7]. In two space dimensions,
a ^ 1, the dynamical law was established in [7].

The rest of the paper is organised as follows. In Section 2, we collect some basic
facts on the curve flow. In Section 3, we prove the weak convergence.

https://doi.org/10.1017/S0004972700019262 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019262


[3] Dyanmics for vortex curves 189

2. M E A N CURVATURE FLOW WITH CODIMENSION 2

Given a set E C R3, we set

r]E(x)=1-{dist(x,E))2.

The following results on the square distance function have been proved in [6]. Let 7 be

a smooth embedded curve in R3; then 7j7 is smooth in a suitable tubular neighbourhood

fi of 7. -AV?77 coincides, on 7, with the curvature vector H of 7.

LEMMA 2 . 1 . [2, Lemma 3.7] Let {Tt)K[o,T) De a smooth Bow. Then there exists
a > 0 such that the function

•n(x,t) := -dist2(x, T()

is smooth in {(x,t) € R3 x [0,T] : 77 ̂  a}. Moreover, the displacement of the flow is
given by

= v^(x(p,t)>t), vte[o,T),pero.
In particular, (rt)te[o,T] is a smooth curvature flow deflned by (1.5) if and only if

Vr]t = AV77 - V277—, on Tt.
a

Short time existence for curvature flow of smooth initial space curves is a consequence
of a general theorem proved in [1, 13].

LEMMA 2 . 2 . Assume that j 0 is a embedded C2-curve in Q with dj0 e Cl x {0, / } .
Assume To intersects fix {0, /} orthogonally along d^o- Then there exist a positive number
t0 > 0 and a family of embedded C2-curves inside Q with dFt C ft x {0, /} such that the
following system of equalities holds on yt:

^ i,p) + V2r^{p) =0, t e [0,t0], P 6 It,

and j t intersects with Cl x {0, /} orthogonally along d^t-

3. T H E PROOF OF T H E O R E M l . l

LEMMA 3 . 1 . (Uniformly estimate)

(3.1) fT f
where a > 0 is such that the sets T\(4a), i — 1,2, • <• ,k, are pairwise disjoint for all

0 ^ T, 0 < 6 s$ o. Here rj(4a) = {x € Q : dist (x, Tj) ^ 4a} .
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P R O O F : Let <$>a : R+ —> R+ be a smooth monotone function such that

( r2 if r^j
(3.2) Mr)=< , f (a>0).

[ 4a2 if r > 2a.

Define

(3.3) p(x,t) = dist(i,rt).

Assume that

(3.4) min{|z-2/|: x 6 r t l y G ^ , 0 ^ t ^ r } ^ 4a.

Using integration by parts, one gets

(3.5) jf jf i*.(p(x, l))a(i) [|V»P + j p ( l - l«|!

+ / 4>aa Vu • Vut + —j (l - |u|2) • (-2uut) 1
Jo L 2e JIQ

=:I + II.

We shall set <pa = 0, u£ = u.

(3.6) / / = /" 0 f - V ( a V u ) - ^ ( 1 - |u | 2 )ulu t - f S7<j> • a • Vu • ut
JQ L e J JQ

Now we calculate the expression aVc^Vu • ut. We shall use the summation convention,
and simplify notation.

1
. • ut = V^Vuldiv^aVu,) + -j

l
\ j j * * £2 \ I «

|2\2"| . 1(\ — I \2\ \ (k —(l — I | 2V d)

Hence
f /" 1 1

(3.8) / aV0Vu-u ( = / -a^y-UjUj• +-A0-a |Vu|2 + - V a - V 0 • |Vu|2
JQ JQ 2 2

1 2 1 |2\2

' 4e2 ^

= - J acinus + I A0- \a[\Vu\2 + ±^{l - \u\2)2}
iQ

+
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So, we have

- ^ • V^a[jVu|2 + 2 ^ ( 1 - \u\2)2}

+ / afajUiUj - I <j)\ut\
2.

JQ JQ

/ j
JQ JQ

Next we observe that on the set { i e Q : p(x,t) < a}, (</>y) ^ I in the sense that

(3.10) tfyfcfc ^ l^l2 for all f e i?3.

Also, on Ft, we have >̂t = 0, A<f> = 0. Since Ft is obtained from Fo by curvature flow
(1.5), by Lemma 2.1, we have

Va
(3.11) V ( & - A 0 V(A)=0 on r t .a

Thus

(3.12) < A t - A 0 - — - V 0 $ - 2 + C0-p2(x,i)
a

= —2 + Ci0.

Combining (3.9) and (3.12) with the fact that (0y) ^ / , we have

(3.13) |

Now we use Gronwall's inequality and the assumption (HI) to obtain

(3.14) sup f <j>.(p(x,t))^a\\Vu\2 + ^(l-\u\2)2]dx^C(a,T

The last inequality implies that

(3-15) / \a\\Vu\2 + -L(l - \u\2)2]dx < C(6,a,T,K),

for all 0 ̂  t ^ T and 0 < e « 1.
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Next, for 0 ^ U ^t ^t2 ^T, we let 77(2;) be a smooth cutoff function supported in
Q\ U Tt; then

(J-J-DJ j+ i ; v ~ / o - | i • - I • „!

= / ?72a[vu • Vuj - - 5 ( 1 - \u\2)u • ut]
JQ L £ J

= - / r?2 [ v ( a V u ) + - 2 ( 1 - M 2 ) u | ut-2 ar}Vr) • Vu • u t
7 Q

 L e * JQ

= - f V
2(x)\ut\

2 - 2 f
JQ JQ

$ - 1 - f V
2(x)\ut\

2

& JQ

From (3.15) and (3.16), we obtain that

/
JQ

\2+C

The proof of Lemma 3.1 is completed. D

Hence, by taking a subseqence if necessary, we have

uE^u, weakly in Hlc{Q X [0,T]\ ( J Tt).

It is easy to verify that u, satisfies

-^- - -div(aViu) +u,|Vu,|2 in H10C(Q X [0,T]\ I I Tt).

The proof of Theorem 1.1 is completed.
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