Curves of Small Genus on Certain K3 Surfaces

By SIR PETER SWINNERTON-DYER
e-mail: hpfs100@dpmms.cam.ac.uk
(Received 04 February 2014; revised 06 January 2014)

Recent workers $[\mathbf{1}, \mathbf{3}]$ have proved density theorems about the rational points on K3 surfaces of the form

$$
V: X_{0}^{4}+c X_{1}^{4}=X_{2}^{4}+c X_{3}^{4}
$$

for certain non-zero values of c. Their arguments depend on the presence of at least two pencils of curves of genus 1 on V. Unfortunately the values of c for which the argument works are constrained by the need to exhibit explicitly a rational point on V which satisfies certain extra conditions; these in particular require it to lie outside the four obvious rational lines on V. It is therefore natural to ask whether there are other curves of genus 0 or 1 defined over \mathbf{Q} on V. In the case $c=1$ there are known to be infinitely many such curves (see [2]), and for general rational c the quadratic form Q on the Néron-Severi group whose value is the self-intersection number takes the values 0 and -2 infinitely often. Naively one might expect the case $c=1$ to be typical; but this is not so. The main object of this paper is to prove the following result.

THEOREM 1. If c is not in $\pm \mathbf{Q}^{* 2}$ the only absolutely irreducible nonsingular curves of genus 0 on V defined over \mathbf{Q} are the four obvious straight lines. The only such curves of genus 1 have degree 3,4 or 6 .

Once this has been proved, it is straightforward to deduce the corresponding result for curves of higher genus.

THEOREM 2. Suppose that c is not in $\pm \mathbf{Q}^{* 2}$. For any fixed g there are only finitely many classes in the Néron-Severi group of V which contain absolutely irreducible nonsingular curves of genus g defined over \mathbf{Q}.

The proof constructs a bound for the degree of such a class in terms of g. I believe that this finiteness property is essentially a number-theoretic phenomenon, and that nothing analogous happens over \mathbf{C}.

The first step in proving these theorems is to find the Néron-Severi group $\operatorname{NS}(\mathbf{Q})$ of V. It is well known that $\mathrm{NS}(\mathbf{C}) \otimes \mathbf{Q}$ for V is spanned by the classes of the 48 lines - as is most simply deduced from the fact that the corresponding quadratic form Q has rank 20. (In fact these classes span $\operatorname{NS}(\mathbf{C})$, but this is harder to prove.) It follows that $\mathrm{NS}(\mathbf{Q}) \otimes \mathbf{Q}$ is spanned by the classes of the following divisors, where \sum denotes the sum of the conjugates over \mathbf{Q}.
Λ_{0} is $\left\{X_{0}=X_{2}, X_{1}=X_{3}\right\}, \quad \Lambda_{1}$ is $\left\{X_{0}=-X_{2}, X_{1}=X_{3}\right\}$,
Λ_{2} is $\left\{X_{0}=X_{2}, X_{1}=-X_{3}\right\}, \quad \Lambda_{3}$ is $\left\{X_{0}=-X_{2}, X_{1}=-X_{3}\right\}$;
Γ_{6} is $\sum\left\{X_{0}=X_{2}, X_{1}=i X_{3}\right\}, \quad \Gamma_{7}$ is $\sum\left\{X_{0}=-X_{2}, X_{1}=i X_{3}\right\}$,
Γ_{8} is $\sum\left\{X_{0}=i X_{2}, X_{1}=X_{3}\right\}, \quad \Gamma_{9}$ is $\sum\left\{X_{0}=i X_{2}, X_{1}=-X_{3}\right\}$,
Γ_{10} is $\sum\left\{X_{0}=i X_{2}, X_{1}=i X_{3}\right\}, \quad \Gamma_{11}$ is $\sum\left\{X_{0}=i X_{2}, X_{1}=-i X_{3}\right\} ;$
Γ_{0} is $\sum\left\{X_{0}=r X_{1}, X_{2}=r X_{3}\right\}, \quad \Gamma_{1}$ is $\sum\left\{X_{0}=r X_{1}, X_{2}=-r X_{3}\right\}$,
Γ_{4} is $\sum\left\{X_{0}=r X_{1}, X_{2}=i r X_{3}\right\}$ where $r^{4}=-c$;
Γ_{2} is $\sum\left\{X_{0}=s X_{3}, X_{2}=s X_{1}\right\}, \quad \Gamma_{3}$ is $\sum\left\{X_{0}=s X_{3}, X_{2}=-s X_{1}\right\}$,
Γ_{5} is $\sum\left\{X_{0}=s X_{3}, X_{2}=i s X_{1}\right\}$ where $s^{4}=c$.
We use small greek letters for the corresponding divisor classes, and we denote by π the class of a plane section.

Lemma 1. The classes $\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \pi, \gamma_{0}$ form a base for $\operatorname{NS}(\mathbf{Q})$.
Proof. For any class δ the self-intersection number $(\delta \cdot \delta)=2 p_{a}(\delta)-2$ is even; moreover, by Riemann-Roch a class with $p_{a}(\delta) \geqslant 0$ and $d=\operatorname{deg}(\delta)>0$ is effective. For certain divisor classes δ we shall use the notation

$$
\begin{equation*}
\delta=a_{0} \lambda_{0}+a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}+a_{4} \pi+a_{5} \gamma_{0} \tag{1}
\end{equation*}
$$

The γ_{i} with $i>0$ all have this form. The corresponding values of the a_{j}, which can be deduced consecutively, are as follows; in each line the function in the last column can be used to derive the corresponding formula:

	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}		
γ_{6}	-1	0	-1	0	1	0	using	$X_{0}-X_{2}$
γ_{7}	0	-1	0	-1	1	0	using	$X_{0}+X_{2}$
γ_{8}	-1	-1	0	0	1	0	using	$X_{1}-X_{3}$
γ_{9}	0	0	-1	-1	1	0	using	$X_{1}+X_{3}$
γ_{10}	-1	0	0	-1	2	-1	using	$X_{0} X_{3}-X_{1} X_{2}$
γ_{11}	2	1	1	2	-2	1	using	$X_{0}^{2}+X_{2}^{2}$
γ_{3}	1	-1	-1	1	0	1	using	$X_{0} X_{1}+X_{2} X_{3}$
γ_{1}	-2	-2	-2	-2	4	-1	using	$X_{0} X_{3}+X_{1} X_{2}$
γ_{2}	-3	-1	-1	-3	4	-1	using	$X_{0} X_{1}-X_{2} X_{3}$
γ_{4}	2	2	2	2	0	0	using	$X_{0}^{4}+c X_{1}^{4}$
γ_{5}	2	2	2	2	0	0	using	$X_{0}^{4}-c X_{3}^{4}$

This table shows that $\mathrm{NS}(\mathbf{Q}) \otimes \mathbf{Q}$ is generated by the λ_{i}, π and γ_{0}. The intersection-number matrix of these six classes is as follows:

	λ_{0}	λ_{1}	λ_{2}	λ_{3}	π	γ_{0}
λ_{0}	-2	1	1	0	1	4
λ_{1}	1	-2	0	1	1	0
λ_{2}	1	0	-2	1	1	0
λ_{3}	0	1	1	-2	1	4
π	1	1	1	1	4	4
γ_{0}	4	0	0	4	4	-8

which has determinant -256 . Hence if the theorem is false there must be a divisor class (not necessarily primitive) in $\operatorname{NS}(\mathbf{Q})$ which has the form (1) with the a_{i} all half-integers but not all integers. If a_{4} is not an integer, consideration of the ($\delta \cdot \lambda_{i}$) shows that just one of a_{0} and a_{3}, and just one of a_{1} and a_{2}, is an integer; and then $(\delta \cdot \delta)$ is not an integer. Again, if a_{4} is an integer then for the same reason both or neither of a_{0} and a_{3}, and both or neither of a_{1} and a_{2}, are integers; and if one pair are integers and the other pair are not, then $(\delta \cdot \delta)$ is an odd integer. But $(\delta \cdot \delta)$ must be an even integer. So there are only three cases to consider: the a_{i} which are not integers must be
(i) $a_{0}, a_{1}, a_{2}, a_{3}$ or
(ii) a_{5} or
(iii) $a_{0}, a_{1}, a_{2}, a_{3}, a_{5}$.

If case (i) happened then $\delta=\left(\lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}\right) / 2$ would represent a curve of degree 2 and genus 1; but no such curve can exist. Again, the only quadric which contains $\Lambda_{0}+\Lambda_{3}+\Gamma_{10}$ is $X_{0} X_{3}-X_{1} X_{2}=0$, and $\gamma_{0}=2 \pi-\lambda_{0}-\lambda_{3}-\gamma_{10}$. Hence Γ_{0} is the only effective divisor in γ_{0}. But if case (ii) happened then $\delta=\gamma_{0} / 2$ would be effective; so case (ii) cannot happen. A similar argument using $\gamma_{3}=2 \pi-\lambda_{1}-\lambda_{2}-\gamma_{10}$ shows that (iii) is impossible; for the only quadric which contains $\lambda_{1}+\lambda_{2}+\gamma_{10}$ is $X_{0} X_{1}+X_{2} X_{3}=0$.

To prove Theorem 1 we need to introduce further effective divisors. To define a typical one of them, note that the plane

$$
X_{0}-X_{2}=r\left(X_{1}-X_{3}\right) \quad \text { where } \quad r^{4}=-c
$$

meets V in the two lines Λ_{0} and $\left\{X_{0}=r X_{1}, X_{2}=r X_{3}\right\}$ and the conic

$$
2 X_{2}^{2}+3 r X_{1} X_{2}-r X_{2} X_{3}+2 r^{2} X_{1}^{2}-r^{2} X_{1} X_{3}+r^{2} X_{3}^{2}=0
$$

which is absolutely irreducible. We call the sum of this conic and its three conjugates Γ_{12}; its class is $\gamma_{12}=-4 \lambda_{0}+4 \pi-\gamma_{0}$ and its self-intersection number is -8 . Similar arguments show that the classes

$$
\begin{aligned}
& \gamma_{13}=-4 \lambda_{3}+4 \pi-\gamma_{0}, \\
& \gamma_{14}=-4 \lambda_{1}+4 \pi-\gamma_{1}=2 \lambda_{0}-2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+\gamma_{0}, \\
& \gamma_{15}=-4 \lambda_{2}+4 \pi-\gamma_{1}=2 \lambda_{0}+2 \lambda_{1}-2 \lambda_{2}+2 \lambda_{3}+\gamma_{0}, \\
& \gamma_{16}=-4 \lambda_{0}+4 \pi-\gamma_{2}=-\lambda_{0}+\lambda_{1}+\lambda_{2}+3 \lambda_{3}+\gamma_{0}, \\
& \gamma_{17}=-4 \lambda_{3}+4 \pi-\gamma_{2}=3 \lambda_{0}+\lambda_{1}+\lambda_{2}-\lambda_{3}+\gamma_{0}, \\
& \gamma_{18}=-4 \lambda_{1}+4 \pi-\gamma_{3}=-\lambda_{0}-3 \lambda_{1}+\lambda_{2}-\lambda_{3}+4 \pi-\gamma_{0}, \\
& \gamma_{19}=-4 \lambda_{2}+4 \pi-\gamma_{3}=-\lambda_{0}+\lambda_{1}-3 \lambda_{2}-\lambda_{3}+4 \pi-\gamma_{0}
\end{aligned}
$$

are all effective.
Suppose that Δ, whose class δ is given by (1), is an absolutely irreducible curve on V defined over \mathbf{Q}. Let \mathbf{R}^{6} be the space whose coordinates are the a_{i} and let x denote distance on \mathbf{R}^{6}. Provided that Δ is not one of the lines Λ_{i} we must have $(\delta \cdot \theta) \geqslant 0$ where θ is any one of the λ_{i} or γ_{j}. In what follows we shall ignore the conditions coming from γ_{4} and γ_{5}. Let $\mathcal{P} \subset \mathbf{R}^{6}$ be the closed set defined by the remaining conditions and let $\mathcal{P}_{0}=\mathcal{P} \cap\{d=1\}$. Since

$$
2 d=\delta \cdot\left(\lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}+\gamma_{6}+\gamma_{7}\right)=\delta \cdot\left(\lambda_{0}+\lambda_{3}+\gamma_{0}+\gamma_{10}\right)
$$

the only point of $\mathcal{P} \cap\{d \leqslant 0\}$ is the origin; hence \mathcal{P} is a cone with vertex at the origin, and \mathcal{P}_{0} is a cross-section of it. The same relations show that \mathcal{P}_{0} is bounded, so that it is a polytope. Since

$$
\left.\begin{array}{rl}
(\delta \cdot \delta)= & \frac{1}{4} d^{2}-\frac{1}{4}\left(a_{0}+a_{1}+a_{2}+a_{3}-4 a_{5}\right)^{2}-4 a_{5}^{2} \tag{2}\\
& -\left(a_{0}-a_{1}-a_{2}+a_{3}-2 a_{5}\right)^{2}-\left(a_{0}-a_{3}\right)^{2}-\left(a_{1}-a_{2}\right)^{2}
\end{array}\right\}
$$

is convex on \mathcal{P}_{0}, it attains its minimum only at vertices of \mathcal{P}_{0}. To find these, we can afford to proceed in a very vulgar way.

The faces of \mathcal{P}_{0} are among the 22 hyperplanes $(\delta \cdot \theta)=0$, where θ is as above. Any vertex is the intersection of 5 or more of these hyperplanes; we therefore examine each of the 26334 sets of 5 hyperplanes. It turns out that for 1964 of these sets the hyperplane equations are
linearly dependent; and of the remainder only 362 determine a point which lies in \mathcal{P}_{0}. There is some redundancy because some vertices lie on more than 5 faces, and we only obtain 82 distinct vertices. None of these have $(\delta \cdot \delta)<0$; and 14 have $(\delta \cdot \delta)=0$. After rescaling to make the a_{i} integers with highest common factor 1 , the corresponding δ become

$$
\lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}, \quad-\lambda_{0}-\lambda_{1}-\lambda_{2}-\lambda_{3}+2 \pi,
$$

four like $\pi-\lambda_{0}$ and two like each of

$$
\begin{aligned}
& 2 \lambda_{0}+\gamma_{0}, \quad \lambda_{0}-\lambda_{1}+\lambda_{2}+\lambda_{3}+\gamma_{0}, \quad-\lambda_{0}-\lambda_{1}-\lambda_{2}-3 \lambda_{3}+4 \pi-\gamma_{0} \\
& -2 \lambda_{0}-2 \lambda_{2}-2 \lambda_{3}+4 \pi-\gamma_{0} .
\end{aligned}
$$

These last eight classes are mapped to each other by the obvious symmetries of V. This completes the proof of Theorem 1.

We now turn to Theorem 2. Let A_{0} be a vertex of \mathcal{P}_{0} at which $(\delta \cdot \delta)=0$, and let $c>0$ be an integer such that $A=c A_{0}$ has integer coordinates. Let L be any line through A_{0} which for small positive x measured from A_{0} lies in the closed polytope \mathcal{P}_{0}; and let $\epsilon>0$ be independent of L and such that the part of L with $0 \leqslant x \leqslant \epsilon$ lies in \mathcal{P}_{0}. On L we have

$$
f_{2}(L, x)=d^{2}(\delta \cdot \delta) / d x^{2}<0
$$

by (2); so $f_{1}(L)=d(\delta \cdot \delta) / d x>0$ on L at A_{0} because $(\delta \cdot \delta)>0$ for small positive x. By compactness there is a constant $C_{1}>0$ such that $f_{1}(L) \geqslant C_{1}$. Similarly there is a constant C_{2} such that $f_{2}(L, x) \geqslant-C_{2}$ for $0 \leqslant x \leqslant \epsilon$. Hence

$$
\begin{equation*}
(\delta \cdot \delta) \geqslant C_{1} x-\frac{1}{2} C_{2} x^{2} \geqslant \frac{1}{2} C_{1} x \tag{3}
\end{equation*}
$$

provided $0 \leqslant x \leqslant \epsilon_{1}=\min \left(\epsilon, C_{1} / C_{2}\right)$. Of course C_{1}, C_{2}, ϵ and ϵ_{1} may depend on the choice of A_{0}.

Now let B be a point of \mathbf{R}^{6} which corresponds to an absolutely irreducible curve of genus $g>0$ on V defined over \mathbf{Q}, and let B_{0} in \mathcal{P}_{0} be the point on the line $O B$ at which $d=1$. Let \mathcal{S} be the closed subset of \mathcal{P}_{0} obtained by removing those points which are a distance less than ϵ_{1} from A_{0} for some A_{0}. In \mathcal{S} we have $(\delta \cdot \delta)>0$, so by compactness there is a constant $C_{3}>0$ such that $(\delta \cdot \delta) \geqslant C_{3}$ in \mathcal{S}. Hence if B_{0} is in \mathcal{S} then $d^{2} \leqslant(2 g-2) / C_{3}$. If B_{0} is not in \mathcal{S} then there is an A_{0} such that B_{0} is a distance x_{0} from A_{0} where $0<x_{0}<\epsilon_{1}$. The coordinates of A_{0} have denominator at most d and those of B_{0} have denominator at most c; so at least one of the coordinates of B_{0} differs from the corresponding coordinate of A_{0} by y where $(c d)^{-1} \leqslant|y| \leqslant x_{0}$. Hence $d x_{0} \geqslant c^{-1}$; and by (3)

$$
2 g-2=(\delta \cdot \delta) \geqslant \frac{1}{2} C_{1} x_{0} d^{2} \geqslant \frac{1}{2} C_{1} d c^{-1}
$$

at B. Hence in all cases d is bounded when g is fixed; and by (2) this gives bounds for all the a_{i}.

Acknowledgements. I am indebted to Ronald van Luijk for pointing out an error in an earlier draft.

REFERENCES

[1] R. PANNEKOEK. Topological aspects of rational points on K3 surfaces (Doctoral thesis, Leiden 2013).
[2] H.P.F. Swinnerton-Dyer. Applications of Algebraic Geometry to Number Theory. Proc. Sympos. Pure Math. XX (Amer. Math. Soc., 1971).
[3] P. SWINNERTON-DYER. Density of rational points on certain surfaces. Algebra Number Theory 7 (2013), 835-851.

