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Recent workers [1, 3] have proved density theorems about the rational points on K3 sur-
faces of the form

V : X 4
0 + cX 4

1 = X 4
2 + cX 4

3

for certain non-zero values of c. Their arguments depend on the presence of at least two
pencils of curves of genus 1 on V . Unfortunately the values of c for which the argument
works are constrained by the need to exhibit explicitly a rational point on V which satisfies
certain extra conditions; these in particular require it to lie outside the four obvious rational
lines on V . It is therefore natural to ask whether there are other curves of genus 0 or 1
defined over Q on V . In the case c = 1 there are known to be infinitely many such curves
(see [2]), and for general rational c the quadratic form Q on the Néron–Severi group whose
value is the self-intersection number takes the values 0 and -2 infinitely often. Naively one
might expect the case c = 1 to be typical; but this is not so. The main object of this paper is
to prove the following result.

THEOREM 1. If c is not in ±Q∗2 the only absolutely irreducible nonsingular curves of
genus 0 on V defined over Q are the four obvious straight lines. The only such curves of
genus 1 have degree 3, 4 or 6.

Once this has been proved, it is straightforward to deduce the corresponding result for curves
of higher genus.

THEOREM 2. Suppose that c is not in ±Q∗2. For any fixed g there are only finitely many
classes in the Néron-Severi group of V which contain absolutely irreducible nonsingular
curves of genus g defined over Q.

The proof constructs a bound for the degree of such a class in terms of g. I believe that this fi-
niteness property is essentially a number-theoretic phenomenon, and that nothing analogous
happens over C.

The first step in proving these theorems is to find the Néron–Severi group NS(Q) of V . It
is well known that NS(C) ⊗ Q for V is spanned by the classes of the 48 lines — as is most
simply deduced from the fact that the corresponding quadratic form Q has rank 20. (In fact
these classes span NS(C), but this is harder to prove.) It follows that NS(Q) ⊗ Q is spanned
by the classes of the following divisors, where

∑
denotes the sum of the conjugates over Q.

�0 is {X0 = X2, X1 = X3}, �1 is {X0 = −X2, X1 = X3},
�2 is {X0 = X2, X1 = −X3}, �3 is {X0 = −X2, X1 = −X3};
�6 is

∑{X0 = X2, X1 = i X3}, �7 is
∑{X0 = −X2, X1 = i X3},

�8 is
∑{X0 = i X2, X1 = X3}, �9 is

∑{X0 = i X2, X1 = −X3},
�10 is

∑{X0 = i X2, X1 = i X3}, �11 is
∑{X0 = i X2, X1 = −i X3};
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�0 is
∑{X0 = r X1, X2 = r X3}, �1 is

∑{X0 = r X1, X2 = −r X3},
�4 is

∑{X0 = r X1, X2 = ir X3} where r 4 = −c;
�2 is

∑{X0 = s X3, X2 = s X1}, �3 is
∑{X0 = s X3, X2 = −s X1},

�5 is
∑{X0 = s X3, X2 = is X1} where s4 = c.

We use small greek letters for the corresponding divisor classes, and we denote by π the
class of a plane section.

LEMMA 1. The classes λ0, λ1, λ2, λ3, π, γ0 form a base for NS(Q).

Proof. For any class δ the self-intersection number (δ ·δ) = 2pa(δ)−2 is even; moreover, by
Riemann–Roch a class with pa(δ) � 0 and d = deg(δ) > 0 is effective. For certain divisor
classes δ we shall use the notation

δ = a0λ0 + a1λ1 + a2λ2 + a3λ3 + a4π + a5γ0. (1)

The γi with i > 0 all have this form. The corresponding values of the a j , which can be
deduced consecutively, are as follows; in each line the function in the last column can be
used to derive the corresponding formula:

a0 a1 a2 a3 a4 a5

γ6 −1 0 −1 0 1 0 using X0 − X2

γ7 0 −1 0 −1 1 0 using X0 + X2

γ8 −1 −1 0 0 1 0 using X1 − X3

γ9 0 0 −1 −1 1 0 using X1 + X3

γ10 −1 0 0 −1 2 −1 using X0 X3 − X1 X2

γ11 2 1 1 2 −2 1 using X 2
0 + X 2

2

γ3 1 −1 −1 1 0 1 using X0 X1 + X2 X3

γ1 −2 −2 −2 −2 4 −1 using X0 X3 + X1 X2

γ2 −3 −1 −1 −3 4 −1 using X0 X1 − X2 X3

γ4 2 2 2 2 0 0 using X 4
0 + cX 4

1

γ5 2 2 2 2 0 0 using X 4
0 − cX 4

3

This table shows that NS(Q) ⊗ Q is generated by the λi , π and γ0. The intersection-number
matrix of these six classes is as follows:

λ0 λ1 λ2 λ3 π γ0

λ0 −2 1 1 0 1 4
λ1 1 −2 0 1 1 0
λ2 1 0 −2 1 1 0
λ3 0 1 1 −2 1 4
π 1 1 1 1 4 4
γ0 4 0 0 4 4 −8

which has determinant -256. Hence if the theorem is false there must be a divisor class (not
necessarily primitive) in NS(Q) which has the form (1) with the ai all half-integers but not
all integers. If a4 is not an integer, consideration of the (δ · λi ) shows that just one of a0 and
a3, and just one of a1 and a2, is an integer; and then (δ · δ) is not an integer. Again, if a4 is an
integer then for the same reason both or neither of a0 and a3, and both or neither of a1 and
a2, are integers; and if one pair are integers and the other pair are not, then (δ · δ) is an odd
integer. But (δ · δ) must be an even integer. So there are only three cases to consider: the ai

which are not integers must be
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(i) a0, a1, a2, a3 or
(ii) a5 or
(iii) a0, a1, a2, a3, a5.

If case (i) happened then δ = (λ0 +λ1 +λ2 +λ3)/2 would represent a curve of degree 2 and
genus 1; but no such curve can exist. Again, the only quadric which contains �0 +�3 +�10

is X0 X3 − X1 X2 = 0, and γ0 = 2π −λ0 −λ3 − γ10. Hence �0 is the only effective divisor in
γ0. But if case (ii) happened then δ = γ0/2 would be effective; so case (ii) cannot happen. A
similar argument using γ3 = 2π − λ1 − λ2 − γ10 shows that (iii) is impossible; for the only
quadric which contains λ1 + λ2 + γ10 is X0 X1 + X2 X3 = 0.

To prove Theorem 1 we need to introduce further effective divisors. To define a typical
one of them, note that the plane

X0 − X2 = r(X1 − X3) where r 4 = −c

meets V in the two lines �0 and {X0 = r X1, X2 = r X3} and the conic

2X 2
2 + 3r X1 X2 − r X2 X3 + 2r 2 X 2

1 − r 2 X1 X3 + r 2 X 2
3 = 0,

which is absolutely irreducible. We call the sum of this conic and its three conjugates �12;
its class is γ12 = −4λ0 + 4π − γ0 and its self-intersection number is −8. Similar arguments
show that the classes

γ13 = −4λ3 + 4π − γ0,

γ14 = −4λ1 + 4π − γ1 = 2λ0 − 2λ1 + 2λ2 + 2λ3 + γ0,

γ15 = −4λ2 + 4π − γ1 = 2λ0 + 2λ1 − 2λ2 + 2λ3 + γ0,

γ16 = −4λ0 + 4π − γ2 = −λ0 + λ1 + λ2 + 3λ3 + γ0,

γ17 = −4λ3 + 4π − γ2 = 3λ0 + λ1 + λ2 − λ3 + γ0,

γ18 = −4λ1 + 4π − γ3 = −λ0 − 3λ1 + λ2 − λ3 + 4π − γ0,

γ19 = −4λ2 + 4π − γ3 = −λ0 + λ1 − 3λ2 − λ3 + 4π − γ0

are all effective.
Suppose that �, whose class δ is given by (1), is an absolutely irreducible curve on V

defined over Q. Let R6 be the space whose coordinates are the ai and let x denote distance
on R6. Provided that � is not one of the lines �i we must have (δ · θ) � 0 where θ is any
one of the λi or γ j . In what follows we shall ignore the conditions coming from γ4 and γ5.
Let P ⊂ R6 be the closed set defined by the remaining conditions and let P0 = P�{d = 1}.
Since

2d = δ · (λ0 + λ1 + λ2 + λ3 + γ6 + γ7) = δ · (λ0 + λ3 + γ0 + γ10),

the only point of P � {d � 0} is the origin; hence P is a cone with vertex at the origin,
and P0 is a cross-section of it. The same relations show that P0 is bounded, so that it is a
polytope. Since

(δ · δ) = 1
4 d2 − 1

4 (a0 + a1 + a2 + a3 − 4a5)
2 − 4a2

5

− (a0 − a1 − a2 + a3 − 2a5)
2 − (a0 − a3)

2 − (a1 − a2)
2

}
(2)

is convex on P0, it attains its minimum only at vertices of P0. To find these, we can afford
to proceed in a very vulgar way.

The faces of P0 are among the 22 hyperplanes (δ ·θ) = 0, where θ is as above. Any vertex
is the intersection of 5 or more of these hyperplanes; we therefore examine each of the 26334
sets of 5 hyperplanes. It turns out that for 1964 of these sets the hyperplane equations are
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linearly dependent; and of the remainder only 362 determine a point which lies in P0. There
is some redundancy because some vertices lie on more than 5 faces, and we only obtain 82
distinct vertices. None of these have (δ · δ) < 0; and 14 have (δ · δ) = 0. After rescaling to
make the ai integers with highest common factor 1, the corresponding δ become

λ0 + λ1 + λ2 + λ3, −λ0 − λ1 − λ2 − λ3 + 2π,

four like π − λ0 and two like each of

2λ0 + γ0, λ0 − λ1 + λ2 + λ3 + γ0, −λ0 − λ1 − λ2 − 3λ3 + 4π − γ0,

− 2λ0 − 2λ2 − 2λ3 + 4π − γ0.

These last eight classes are mapped to each other by the obvious symmetries of V . This
completes the proof of Theorem 1.

We now turn to Theorem 2. Let A0 be a vertex of P0 at which (δ · δ) = 0, and let c > 0 be
an integer such that A = cA0 has integer coordinates. Let L be any line through A0 which
for small positive x measured from A0 lies in the closed polytope P0; and let ε > 0 be
independent of L and such that the part of L with 0 � x � ε lies in P0. On L we have

f2(L , x) = d2(δ · δ)/dx2 < 0

by (2); so f1(L) = d(δ · δ)/dx > 0 on L at A0 because (δ · δ) > 0 for small positive x . By
compactness there is a constant C1 > 0 such that f1(L) � C1. Similarly there is a constant
C2 such that f2(L , x) � −C2 for 0 � x � ε. Hence

(δ · δ) � C1x − 1
2 C2x2 � 1

2 C1x (3)

provided 0 � x � ε1 = min(ε, C1/C2). Of course C1, C2, ε and ε1 may depend on the
choice of A0.

Now let B be a point of R6 which corresponds to an absolutely irreducible curve of genus
g > 0 on V defined over Q, and let B0 in P0 be the point on the line O B at which d = 1.
Let S be the closed subset of P0 obtained by removing those points which are a distance less
than ε1 from A0 for some A0. In S we have (δ · δ) > 0, so by compactness there is a constant
C3 > 0 such that (δ · δ) � C3 in S. Hence if B0 is in S then d2 � (2g − 2)/C3. If B0 is
not in S then there is an A0 such that B0 is a distance x0 from A0 where 0 < x0 < ε1. The
coordinates of A0 have denominator at most d and those of B0 have denominator at most c;
so at least one of the coordinates of B0 differs from the corresponding coordinate of A0 by
y where (cd)−1 � |y| � x0. Hence dx0 � c−1; and by (3)

2g − 2 = (δ · δ) � 1
2 C1x0d2 � 1

2 C1dc−1

at B. Hence in all cases d is bounded when g is fixed; and by (2) this gives bounds for all
the ai .
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