Curves of Small Genus on Certain K3 Surfaces

BY SIR PETER SWINNERTON-DYER

e-mail: hpfs100@dpmms.cam.ac.uk

(Received 04 February 2014; revised 06 January 2014)

Recent workers [1, 3] have proved density theorems about the rational points on K3 surfaces of the form

$$V: X_0^4 + cX_1^4 = X_2^4 + cX_3^4$$

for certain non-zero values of c. Their arguments depend on the presence of at least two pencils of curves of genus 1 on V. Unfortunately the values of c for which the argument works are constrained by the need to exhibit explicitly a rational point on V which satisfies certain extra conditions; these in particular require it to lie outside the four obvious rational lines on V. It is therefore natural to ask whether there are other curves of genus 0 or 1 defined over \mathbf{Q} on V. In the case c = 1 there are known to be infinitely many such curves (see [2]), and for general rational c the quadratic form Q on the Néron–Severi group whose value is the self-intersection number takes the values 0 and -2 infinitely often. Naively one might expect the case c = 1 to be typical; but this is not so. The main object of this paper is to prove the following result.

THEOREM 1. If c is not in $\pm \mathbf{Q}^{*2}$ the only absolutely irreducible nonsingular curves of genus 0 on V defined over \mathbf{Q} are the four obvious straight lines. The only such curves of genus 1 have degree 3, 4 or 6.

Once this has been proved, it is straightforward to deduce the corresponding result for curves of higher genus.

THEOREM 2. Suppose that c is not in $\pm \mathbf{Q}^{*2}$. For any fixed g there are only finitely many classes in the Néron-Severi group of V which contain absolutely irreducible nonsingular curves of genus g defined over \mathbf{Q} .

The proof constructs a bound for the degree of such a class in terms of g. I believe that this finiteness property is essentially a number-theoretic phenomenon, and that nothing analogous happens over **C**.

The first step in proving these theorems is to find the Néron–Severi group NS(**Q**) of *V*. It is well known that NS(**C**) \otimes **Q** for *V* is spanned by the classes of the 48 lines — as is most simply deduced from the fact that the corresponding quadratic form *Q* has rank 20. (In fact these classes span NS(**C**), but this is harder to prove.) It follows that NS(**Q**) \otimes **Q** is spanned by the classes of the following divisors, where \sum denotes the sum of the conjugates over **Q**.

 $\begin{array}{ll} \Lambda_0 \text{ is } \{X_0 = X_2, X_1 = X_3\}, & \Lambda_1 \text{ is } \{X_0 = -X_2, X_1 = X_3\}, \\ \Lambda_2 \text{ is } \{X_0 = X_2, X_1 = -X_3\}, & \Lambda_3 \text{ is } \{X_0 = -X_2, X_1 = -X_3\}; \\ \Gamma_6 \text{ is } \sum \{X_0 = X_2, X_1 = iX_3\}, & \Gamma_7 \text{ is } \sum \{X_0 = -X_2, X_1 = iX_3\}, \\ \Gamma_8 \text{ is } \sum \{X_0 = iX_2, X_1 = X_3\}, & \Gamma_9 \text{ is } \sum \{X_0 = iX_2, X_1 = -X_3\}, \\ \Gamma_{10} \text{ is } \sum \{X_0 = iX_2, X_1 = iX_3\}, & \Gamma_{11} \text{ is } \sum \{X_0 = iX_2, X_1 = -iX_3\}; \end{array}$

 $\Gamma_0 \text{ is } \sum \{X_0 = rX_1, X_2 = rX_3\}, \quad \Gamma_1 \text{ is } \sum \{X_0 = rX_1, X_2 = -rX_3\}, \\ \Gamma_4 \text{ is } \sum \{X_0 = rX_1, X_2 = irX_3\} \text{ where } r^4 = -c; \\ \Gamma_2 \text{ is } \sum \{X_0 = sX_3, X_2 = sX_1\}, \quad \Gamma_3 \text{ is } \sum \{X_0 = sX_3, X_2 = -sX_1\}, \\ \Gamma_5 \text{ is } \sum \{X_0 = sX_3, X_2 = isX_1\} \text{ where } s^4 = c.$

We use small greek letters for the corresponding divisor classes, and we denote by π the class of a plane section.

LEMMA 1. The classes λ_0 , λ_1 , λ_2 , λ_3 , π , γ_0 form a base for NS(**Q**).

Proof. For any class δ the self-intersection number $(\delta \cdot \delta) = 2p_a(\delta) - 2$ is even; moreover, by Riemann–Roch a class with $p_a(\delta) \ge 0$ and $d = \deg(\delta) > 0$ is effective. For certain divisor classes δ we shall use the notation

$$\delta = a_0\lambda_0 + a_1\lambda_1 + a_2\lambda_2 + a_3\lambda_3 + a_4\pi + a_5\gamma_0. \tag{1}$$

The γ_i with i > 0 all have this form. The corresponding values of the a_j , which can be deduced consecutively, are as follows; in each line the function in the last column can be used to derive the corresponding formula:

	a_0	a_1	a_2	a_3	a_4	a_5		
γ_6	-1	0	-1	0	1	0	using	$X_0 - X_2$
γ_7	0	-1	0	-1	1	0	using	$X_0 + X_2$
γ_8	-1	-1	0	0	1	0	using	$X_1 - X_3$
Y 9	0	0	-1	-1	1	0	using	$X_1 + X_3$
γ_{10}	-1	0	0	-1	2	-1	using	$X_0 X_3 - X_1 X_2$
γ_{11}	2	1	1	2	-2	1	using	$X_0^2 + X_2^2$
γ_3	1	-1	-1	1	0	1	using	$X_0 X_1 + X_2 X_3$
γ_1	-2	-2	-2	-2	4	-1	using	$X_0 X_3 + X_1 X_2$
γ_2	-3	-1	-1	-3	4	-1	using	$X_0X_1 - X_2X_3$
γ_4	2	2	2	2	0	0	using	$X_0^4 + cX_1^4$
γ_5	2	2	2	2	0	0	using	$X_0^4 - cX_3^4$

This table shows that NS(**Q**) \otimes **Q** is generated by the λ_i , π and γ_0 . The intersection-number matrix of these six classes is as follows:

	λ_0	λ_1	λ_2	λ_3	π	γ_0
λ_0	-2	1	1	0	1	4
λ1	1	-2	0	1	1	0
λ_2	1	0	-2	1	1	0
λ3	0	1	1	-2	1	4
π	1	1	1	1	4	4
γ_0	4	0	0	4	4	-8

which has determinant -256. Hence if the theorem is false there must be a divisor class (not necessarily primitive) in NS(**Q**) which has the form (1) with the a_i all half-integers but not all integers. If a_4 is not an integer, consideration of the $(\delta \cdot \lambda_i)$ shows that just one of a_0 and a_3 , and just one of a_1 and a_2 , is an integer; and then $(\delta \cdot \delta)$ is not an integer. Again, if a_4 is an integer then for the same reason both or neither of a_0 and a_3 , and both or neither of a_1 and a_2 , are integers; and if one pair are integers and the other pair are not, then $(\delta \cdot \delta)$ is an odd integer. But $(\delta \cdot \delta)$ must be an even integer. So there are only three cases to consider: the a_i which are not integers must be

(i) a_0, a_1, a_2, a_3 or (ii) a_5 or

(iii) a_0, a_1, a_2, a_3, a_5 .

If case (i) happened then $\delta = (\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3)/2$ would represent a curve of degree 2 and genus 1; but no such curve can exist. Again, the only quadric which contains $\Lambda_0 + \Lambda_3 + \Gamma_{10}$ is $X_0X_3 - X_1X_2 = 0$, and $\gamma_0 = 2\pi - \lambda_0 - \lambda_3 - \gamma_{10}$. Hence Γ_0 is the only effective divisor in γ_0 . But if case (ii) happened then $\delta = \gamma_0/2$ would be effective; so case (ii) cannot happen. A similar argument using $\gamma_3 = 2\pi - \lambda_1 - \lambda_2 - \gamma_{10}$ shows that (iii) is impossible; for the only quadric which contains $\lambda_1 + \lambda_2 + \gamma_{10}$ is $X_0X_1 + X_2X_3 = 0$.

To prove Theorem 1 we need to introduce further effective divisors. To define a typical one of them, note that the plane

$$X_0 - X_2 = r(X_1 - X_3)$$
 where $r^4 = -c$

meets V in the two lines Λ_0 and $\{X_0 = rX_1, X_2 = rX_3\}$ and the conic

.

$$2X_2^2 + 3rX_1X_2 - rX_2X_3 + 2r^2X_1^2 - r^2X_1X_3 + r^2X_3^2 = 0,$$

which is absolutely irreducible. We call the sum of this conic and its three conjugates Γ_{12} ; its class is $\gamma_{12} = -4\lambda_0 + 4\pi - \gamma_0$ and its self-intersection number is -8. Similar arguments show that the classes

$$\begin{array}{rcl} \gamma_{13} = -4\lambda_3 + 4\pi - \gamma_0, \\ \gamma_{14} = -4\lambda_1 + 4\pi - \gamma_1 & = & 2\lambda_0 - 2\lambda_1 + 2\lambda_2 + 2\lambda_3 + \gamma_0, \\ \gamma_{15} = -4\lambda_2 + 4\pi - \gamma_1 & = & 2\lambda_0 + 2\lambda_1 - 2\lambda_2 + 2\lambda_3 + \gamma_0, \\ \gamma_{16} = -4\lambda_0 + 4\pi - \gamma_2 & = & -\lambda_0 + \lambda_1 + \lambda_2 + 3\lambda_3 + \gamma_0, \\ \gamma_{17} = -4\lambda_3 + 4\pi - \gamma_2 & = & 3\lambda_0 + \lambda_1 + \lambda_2 - \lambda_3 + \gamma_0, \\ \gamma_{18} = -4\lambda_1 + 4\pi - \gamma_3 & = & -\lambda_0 - 3\lambda_1 + \lambda_2 - \lambda_3 + 4\pi - \gamma_0, \\ \gamma_{19} = -4\lambda_2 + 4\pi - \gamma_3 & = & -\lambda_0 + \lambda_1 - 3\lambda_2 - \lambda_3 + 4\pi - \gamma_0 \end{array}$$

are all effective.

Suppose that Δ , whose class δ is given by (1), is an absolutely irreducible curve on V defined over **Q**. Let \mathbf{R}^6 be the space whose coordinates are the a_i and let x denote distance on \mathbf{R}^6 . Provided that Δ is not one of the lines Λ_i we must have $(\delta \cdot \theta) \ge 0$ where θ is any one of the λ_i or γ_i . In what follows we shall ignore the conditions coming from γ_4 and γ_5 . Let $\mathcal{P} \subset \mathbf{R}^6$ be the closed set defined by the remaining conditions and let $\mathcal{P}_0 = \mathcal{P} \cap \{d = 1\}$. Since

$$2d = \delta \cdot (\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 + \gamma_6 + \gamma_7) = \delta \cdot (\lambda_0 + \lambda_3 + \gamma_0 + \gamma_{10}),$$

the only point of $\mathcal{P} \cap \{d \leq 0\}$ is the origin; hence \mathcal{P} is a cone with vertex at the origin, and \mathcal{P}_0 is a cross-section of it. The same relations show that \mathcal{P}_0 is bounded, so that it is a polytope. Since

is convex on \mathcal{P}_0 , it attains its minimum only at vertices of \mathcal{P}_0 . To find these, we can afford to proceed in a very vulgar way.

The faces of \mathcal{P}_0 are among the 22 hyperplanes $(\delta \cdot \theta) = 0$, where θ is as above. Any vertex is the intersection of 5 or more of these hyperplanes; we therefore examine each of the 26334 sets of 5 hyperplanes. It turns out that for 1964 of these sets the hyperplane equations are

SIR PETER SWINNERTON–DYER

linearly dependent; and of the remainder only 362 determine a point which lies in \mathcal{P}_0 . There is some redundancy because some vertices lie on more than 5 faces, and we only obtain 82 distinct vertices. None of these have $(\delta \cdot \delta) < 0$; and 14 have $(\delta \cdot \delta) = 0$. After rescaling to make the a_i integers with highest common factor 1, the corresponding δ become

$$\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3, \quad -\lambda_0 - \lambda_1 - \lambda_2 - \lambda_3 + 2\pi,$$

four like $\pi - \lambda_0$ and two like each of

$$\begin{aligned} & 2\lambda_0+\gamma_0, \quad \lambda_0-\lambda_1+\lambda_2+\lambda_3+\gamma_0, \quad -\lambda_0-\lambda_1-\lambda_2-3\lambda_3+4\pi-\gamma_0, \\ & -2\lambda_0-2\lambda_2-2\lambda_3+4\pi-\gamma_0. \end{aligned}$$

These last eight classes are mapped to each other by the obvious symmetries of V. This completes the proof of Theorem 1.

We now turn to Theorem 2. Let A_0 be a vertex of \mathcal{P}_0 at which $(\delta \cdot \delta) = 0$, and let c > 0 be an integer such that $A = cA_0$ has integer coordinates. Let L be any line through A_0 which for small positive x measured from A_0 lies in the closed polytope \mathcal{P}_0 ; and let $\epsilon > 0$ be independent of L and such that the part of L with $0 \le x \le \epsilon$ lies in \mathcal{P}_0 . On L we have

$$f_2(L, x) = d^2(\delta \cdot \delta)/dx^2 < 0$$

by (2); so $f_1(L) = d(\delta \cdot \delta)/dx > 0$ on L at A_0 because $(\delta \cdot \delta) > 0$ for small positive x. By compactness there is a constant $C_1 > 0$ such that $f_1(L) \ge C_1$. Similarly there is a constant C_2 such that $f_2(L, x) \ge -C_2$ for $0 \le x \le \epsilon$. Hence

$$(\delta \cdot \delta) \ge C_1 x - \frac{1}{2} C_2 x^2 \ge \frac{1}{2} C_1 x \tag{3}$$

provided $0 \le x \le \epsilon_1 = \min(\epsilon, C_1/C_2)$. Of course C_1, C_2, ϵ and ϵ_1 may depend on the choice of A_0 .

Now let *B* be a point of \mathbb{R}^6 which corresponds to an absolutely irreducible curve of genus g > 0 on *V* defined over \mathbb{Q} , and let B_0 in \mathcal{P}_0 be the point on the line *OB* at which d = 1. Let *S* be the closed subset of \mathcal{P}_0 obtained by removing those points which are a distance less than ϵ_1 from A_0 for some A_0 . In *S* we have $(\delta \cdot \delta) > 0$, so by compactness there is a constant $C_3 > 0$ such that $(\delta \cdot \delta) \ge C_3$ in *S*. Hence if B_0 is in *S* then $d^2 \le (2g - 2)/C_3$. If B_0 is not in *S* then there is an A_0 such that B_0 is a distance x_0 from A_0 where $0 < x_0 < \epsilon_1$. The coordinates of A_0 have denominator at most *d* and those of B_0 have denominator at most *c*; so at least one of the coordinates of B_0 differs from the corresponding coordinate of A_0 by *y* where $(cd)^{-1} \le |y| \le x_0$. Hence $dx_0 \ge c^{-1}$; and by (3)

$$2g - 2 = (\delta \cdot \delta) \ge \frac{1}{2}C_1 x_0 d^2 \ge \frac{1}{2}C_1 dc^{-1}$$

at *B*. Hence in all cases *d* is bounded when *g* is fixed; and by (2) this gives bounds for all the a_i .

Acknowledgements. I am indebted to Ronald van Luijk for pointing out an error in an earlier draft.

REFERENCES

- [1] R. PANNEKOEK. Topological aspects of rational points on K3 surfaces (Doctoral thesis, Leiden 2013).
- [2] H.P.F. SWINNERTON–DYER. *Applications of Algebraic Geometry to Number Theory*. Proc. Sympos. Pure Math. XX (Amer. Math. Soc., 1971).
- [3] P. SWINNERTON-DYER. Density of rational points on certain surfaces. Algebra Number Theory 7 (2013), 835-851.