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Laws in finite strictly

simple loops

Sheila Oates Macdonald

It is shown that a finite loop with no proper nontrivial

subloops has a finite basis for its laws.

1. Introduction

As was mentioned in the survey paper [5] the question of whether a
finite loop has a finite basis for its laws appears to be a test case for
the conjecture that a finite algebra belonging to a variety all of whose
algebras have modular congruence lattices has a finite basis for its laws.
So far the only result known is that of Evans [4] which shows that a finite
commutative Moufang loop has a finite basis for its laws. The main result

of this paper is:

THEOREM. A finite loop which has no proper nontrivial subloops has a
finite basis for its laws.

{Such a loop will be called a strictly simple loop.)

2. Definitions and preliminary results

Critical algebra and Cross variety of algebras are defined as in [5].

If ¥V is a variety, then !(n) denotes the variety defined by the laws of

Y involving at most n variables.

If ¥V = var(A) where A 1is a finite algebra then a result of

Birkhotf [1] shows that Y\

{n)

n such that ¥V has the other two attributes of a Cross variety, namely

is finitely based. Thus if we can find an
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locally-finiteness and only finitely many (non-isomorphic) critical
algebras we will have that YV , as a subvariety of a Cross variety, is

itself Cross.

We now consider the special case in which A4 is a finite strictly
simple loop. Such a loop is necessarily monogenic. Since the result is
well known for cyclic groups of prime order we can assume A has a trivial
centre. Definitions and properties of loops used here may be found in

Bruck [2].

3. The variety V

LEMMA 3.1. A finitely generated loop in
direct product of a finite number of copies of

YV is isomorphic to a
A

Proof. Let B ©be such a loop; then B is a homomorphic image of a
subloop of a direct product of a finite number of copies of A4 (Birkhoff
[7]). Thus it is sufficient to prove that subloops and homomorphic images

of finite direct products of copies of A again have the same form.
First we consider subloops. Let

< X
BSA X ... x4,

where Ai =~ A , and proceed by induction on r ; the result is clearly
true if r = 1 since A has no proper nontrivial subloops. The
projection of B on each factor is either "4 or 1 and the intersection
of B with each factor is either A4 or 1 . If the intersection with
any factor is 1 then B 1is isomorphic to its projection on the remaining
factors and so has the stated form and if the intersection of B with all

factors is A then B = A, X ... X Ar

1

Now suppose B = G/N where G = Al X ,..0X% Ar and N 2 G . To show

B has the required form it is sufficient to show that N is the direct

product of some of the Ai , since B will then be isomorphic to the

direct product of the remaining factors. This will follow if we can show
that N has nontrivial intersection with any factor on which it has
nontrivial projection. So suppose ¥ 24 X D and that N contains a pair

(a, d) with a # 1 . Since every inner mapping of 4 yields an inner
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mapping of A X D we have that (a8, d) is in N for all 6 in I(4) .
Since A has no centre and aq # 1 there exists a 6 such that
ad = a' # a and then (a, d)\(a', d) = (a\a', 1) is in N , so that

N n A contains the nontrivial element a\a'

DEFINITION 3.2. Let H ©be a subloop of a loop G , then the
centraliser of H in G , Cb(H) is defined by
Colt) = {x | zh = hx, z(nhy) = (at, ) e,

(hyz)h, = 1y (2h,), (Byhy)z = by (), VA, By, Ry, € B} .

2
Note that in general Cb(H) is not a subloop. However, if H = G
then it reduces to the centre of G .

LEMMA 3.3. The centraliser of any subloop of a finite loop G in VN
is a normal subloop of G .
Proof. Let H=G=A, x ... XA , A.=A . Then H has
1 r i
projection 1 or A on every Ai . Clearly CG(H) will contain the

direct product of those factors on which H has projection 1 . On the

other hand the projection of any element of CG(H) on a factor on which H

has projection A must lie in the centre of A4 , and so must be 1 . It

follows that CG(H) is the direct product of those factors on which

H has projectici 1 , and so is certainly a normal subloop of G .

LEMMA 3.4. V satisfies an antiassociative law =z * plx) = 1 where

p(x) s a commutator-associator word.

Proof. This follows immediately from Theorem L.l in Evans [3] since

YV contains no nontrivial groups.

4. The variety l(")
(n)

Let 7 = 6 and consider V
t

LEMMA 4.1, l(n) contains no nontrivial groups.
(n)

Proof. Since n =1, v satisfies the antiassociative law of

Lemma 3.4 and so contains only the trivial group.
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LEMMA 4.2. A finitely-generated loop in l(n)

finite number of loops isomorphic to A .

i8 generated by a

Proof. Let G = (xl, cens xp) ; then (xi) €Y (since n =1 ) end
so (xi) is a direct product of a finite number of loops isomorphic to

A . The totality of all such loops is clearly finite and generates G .
LEMMA 4.3. Let G € l(") omd H=G, then C,(H) =G .

Proof. Let hl, h2 € R

B

e, ¢ GCG(H) and x, Yy € G . Then

1’ 72
L = (hl, h2, s Cps T, y» €Y , (since n=26 ). Now

e,, e, € CL(( hl, h2)) and, by Lemma 3.3, this is a normal subloop of

1’ "2
L , so that {e,, ¢,), ¢,8, c,0 are in c (¢hys h2)) for all inner
mappings 6 of L , in particular, for 6 = R(x)R(y)R(xy)-l s

-1 -1 .
L(z)L(y)L(y=x) and R(x)L(x) . Sln?e hl, h2; el e,
arbitrary elements of H , CG(H) and G respectively, it follows that

3 &, Yy are

CG(H) is a normal subloop of & .

LEMMA 4.4. If G=(I, J) where I =4 and J=Al><...><Ar

with A; =4, then G 18 a direct product of a finite number of loops
igomorphic to A .

Proof. We proceed by induction on r . The result is certainly true
for r =1 since then (I, J) belongs to

y
result is true for r - 1 . Then J=Al><J2 and (I,Al)=](l,

and K2 are finite direct products of loops

, 80 assume r > 1 , and the

(1, J2)= K2 where Kl

isomorphic to 4 . Let X = CG(Al] » Y =C.(X) ; thenboth X and Y ere
normal subloops of G . We now show that 6 = XY . Since

Ay X oo. XA S X it is sufficient to prove that Kl =(1I, Al) = XY .

Since Kl € V we have, as in Lemma 3.3, that CK [Al) is the direct
1

product of those factors of Kl on which Al has projection 1 , and so

these factors belong to X . It remains to prove that the factors on which

https://doi.org/10.1017/5S0004972700043355 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043355

Laws in loops 353

Al has proJection A belong to Y . Let 5 X, € X and consider

H = (Kl, Ty xe) . Since H has four generators it is in Y and so
again is a direct product of loops isomorphic to 4 . If Dl’ ey DS are
the factors of Kl on which Al has projection A , then Al will have

projection A on precisely those factors of H on which some Di has
projection A . Thus x> &, as elements of CH(Al) must belong to
those factors of H on which every Di has projection 1 . It follows
that if ¢ €D, , then cx, = z,c, elay) = [cml)x2 ,

[xlc]x2 =% (c:x:2) s (xlxz)c = :z:l [xgc) so that, since Zs X, , were
arbitrary elements of X , Di =Y as required. Note that this also
implies that Al =Y.

Now X nY 1is an abelian group and so is trivial. Thus

G=XxY=KX=KY (since 4, % ... xA =X, A =Y]. Thus

K2Y/Y = K2/Y0K2 is a finite direct product of loops isomorphic to

P
n

A , and so also is Y . It follows that G has the required form.

COROLLARY 4.5. A finitely generated loop in l(n) i8 a direct
product of a finite number of loops isomorphic to A .
Proof. By Lemma 4.2, G = (Al, cees As) for some (finite) s

Induction on 8 wusing Lemma 4.4, now gives the required result.

THEOREM 4.6. l(n) is a Cross variety.
(n)

Proof. By Birkhoff's result, [1] Theorem 11, ¥ has a finite
basis for its laws, and Corollary 4.5 shows that finitely generated loops
. (n) . . . . (n)
in ¥ are finite and that A 1is the only critical loop in ¥V .

Since a subvariety of a Cross variety is Cross the theorem stated in

the introduction follows immediately.
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