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Theta Lifts of Tempered Representations for
Dual Pairs (Sp2n,O(V ))

Goran Muić

Abstract. This paper is the continuation of our previous work on the explicit determination of the

structure of theta lifts for dual pairs (Sp2n,O(V )) over a non-archimedean field F of characteristic dif-

ferent than 2, where n is the split rank of Sp2n and the dimension of the space V (over F) is even. We

determine the structure of theta lifts of tempered representations in terms of theta lifts of representa-

tions in discrete series.

Introduction

This paper is the continuation of our previous work [11, 13–15] on the explicit de-

termination of the structure of theta lifts for dual pairs (Sp2n,O(V )) over a non-

archimedean field F of characteristic different than 2, where n is the split rank of Sp2n

and the dimension of the space V (over F) is even. In this paper we determine the

structure of theta lifts of tempered representations in terms of theta lifts of represen-

tations in discrete series. Our approach follows that of [11,13,14] and is based on the
Jacquet module technique of Bernstein–Zelevinsky and Tadić combined with Kudla’s

filtration of Jacquet modules of Weil representations. A different approach based on
L-functions can be found in [15] for generic representations in discrete series. Now

we describe our results more precisely.

Let F be a nonarchimedean field of characteristic different than 2. We look at usual

towers of even-orthogonal or symplectic groups Gn = G(Vn), n ≥ n0. (See Sec-
tion 1 for the precise definition.) They are groups of isometries of F-spaces (Vn, ( · )),

where 2n = dim Vn and the form ( · ) is non-degenerate. Furthermore, it is skew-

symmetric if the tower is symplectic and symmetric otherwise, and is built up from
an anisotropic space Vn0

, n0 = 0, 1, 2, adding n − n0-hyperbolic planes. We fix one

more tower of groups G ′
m = G(V ′

m), m ≥ m0, that is of the form described, but that

also satisfies the following: G ′
m, m ≥ m0, are even-orthogonal groups if and only if

Gn, n ≥ n0 are symplectic groups. Let χG be the character associated with the tower

Gn, n ≥ n0 (see Section 1). It is trivial if the tower consists of symplectic groups and
it is usual quadratic character of Vn0

if the tower consists of even-orthogonal groups.

This is a convention that we follow in our papers [11, 14]. It helps to avoid the case

by case analysis of [13].

The pair (see Definition 1.1) (Gn,G
′
m) is a dual pair in the symplectic group

G(Vn ⊗ V ′
m) [6, 10]. We write ωn,m = ωψn,m, for the smooth oscillator representa-

tion associated with that pair and a fixed non-trivial additive character ψ of F.
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Theta Lifts of Tempered Representations for Dual Pairs 1307

For σ ∈ Irr Gn, we write Θ(σ,m), for a smooth representation of G ′
m, defined as a

maximal σ-isotypic quotient of ωn,m [10]

σ ⊗ Θ(σ,m) ≃ ωn,m/
⋂
f

ker( f ), f ∈ HomGn
(ωn,m|Gn

, σ).

Θ(σ,m) is a smooth representation of G ′
m. More precisely, it is a zero or an admissible

representation of finite length by [10, Théorème principal, p. 69]. (See [14, Corollary
3.1] for a different proof.) Let us write m(σ) for the smallest m ≥ m0 such that

Θ(σ,m) 6= 0. It is called the first occurrence index of σ in the tower G ′
m, m ≥ m0.

We make the following definition (see Definition 3.6):

Definition HW Let σ ∈ Irr Gn. We say that σ satisfies property HW if the following

holds:

HW1 Every non-zero lift Θ(σ,m) has the unique maximal proper subrepresentation;

we denote the corresponding quotient by σ(m).

HW2 If Θ(σ,m − 1) 6= 0, then σ(m) →֒ | · |n−m+ηG ′χG ⋊ σ(m − 1). (Here and
further | · |n−m+ηG ′χG ⋊ σ(m − 1) is a representation induced from a maximal

parabolic subgroup in G ′
m having the Levi GL(1, F) × G ′

m−1.)

If the residue characteristic is different from 2, then σ satisfies the Howe duality

conjecture, that is, HW1 holds (see [18]). (We do not use [18] in the present paper.)

If σ is a supercuspidal representation, then it satisfies HW2 by a well-known result of
Waldspurger [10, Théorème principal]). This explains the name of the property HW.

Now we explain the results on the lifts of representations in discrete series that we

use in the present paper (see Section 4). First recall that in [11, Theorems 4.1, 4.2,
4.3] we prove that every representation of Gn, which is in discrete series satisfies HW

and all its lifts and first occurrences (for various towers) can be explicitly computed
in the classification of irreducible representations due to Mœglin, Tadić, Goldberg

and Langlands [4, 8, 9]. On the other hand, we prove very general results on the

structure of theta lifts of representations of Gn in discrete series [14]. Those proofs
are based on a few simple properties of discrete series and on the validity of HW1

for representations in discrete series. (See Theorem 4.2 here for the results that we

use from [14].) We remark that full HW for representations in discrete series follows
from the validity of HW1 for representations in discrete series and results of [14].

This is verified in Theorem 4.2 of the present paper.
The first result that we use from [11] is that a representation σ ∈ Irr Gn in discrete

series satisfies HW1 (see Theorem 4.1). Using this, the results of [14] (see Theo-

rem 4.2), combined with that result (see Theorem 4.1), are enough to determine the
structure of theta lifts of all tempered representations. Unfortunately, they are not

enough to determine the first occurrence indices of tempered representations in all

cases. We need one more result that follows from [11, Theorems 4.2, 4.3] directly. In
the present form (see Theorem 6.6), it is just a reformulation of a deep result on the

transfer of Jordan blocks of representations in discrete series (cf. [8]) under the theta
correspondence obtained in [11, Theorems 4.2, 4.3].

Section 5 is devoted to the formulation of the main results of the present paper

(see Theorems 5.1 and 5.2). They describe the structure and the first occurrence
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indices of the lifts Θ(σ,m) of tempered representations σ ∈ Irr Gn in the tower G ′
m,

m ≥ m0. Section 6 contains the proofs of the main results.

Our results depend on the work of Goldberg [4]. He stated his results in the

characteristic zero, but this assumption is not necessary. In fact, all fundamental

results of Harish-Chandra used there follow from [19] as it was explained to me by
V. Heiermann.

1 Preliminaries

Let F be a nonarchimedean field of characteristic different than two. Let | · | be the

(normalized as usual) absolute value of F. Let Z, R, and C be the ring of rational
integers, the field of real numbers, and the field of complex numbers, respectively.

Let G be an l-group [2]. Then by a representation of G we mean a pair (π,V ),
where V is a complex vector space and π is a homomorphism G → GL(V ). We write

V∞ for the subspace of V consisting of all vectors in V having open stabilizer in G.

Since G is an l-group, V∞ is π(G)-invariant; we denote the resulting representation
by (π∞,V∞). The representation (π,V ) is smooth if V = V∞. We write A(G)

for the category of all smooth complex representations of G. If (π,V ) is a smooth
representation, then we denote by (π̃, Ṽ ) its smooth contragredient representation.

Let P = MN be a closed subgroup of G, given as a semi-direct product of closed
subgroups M and N, M normalizes N. Assume that N is a union of its open compact

subgroups and G/P is compact. Then we have normalized induction and localization

functors IndG
P : A(M) → A(G) and RP : A(G) → A(M). They are related by the

Frobenius reciprocity:

HomG(π, IndG
P (π ′)) ≃ HomM(RP(π), π ′),

HomG(IndG
P (π ′), π) ≃ HomM(π ′, R̃P(π̃))

(where π is an admissible representation).

Assume that G and G ′ are l-groups. Let V be a smooth representation of G × G ′.

If ρ ∈ Irr G is an admissible representation, then we write Θ(ρ,V ) ∈ A(G ′) for
the ρ-isotypic quotient of V (see [10, Ch. II, Lemme III.4]). More precisely, set

V ′ =
⋂

f ker ( f ), f ∈ HomG(V, ρ); then V/V ′ ≃ ρ⊗ Θ(ρ,V ).

Next we shall describe the groups that we consider. We look at the usual towers

of even-orthogonal or symplectic groups Gn = G(Vn) that are groups of isometries
of F-spaces (Vn, ( · )), n ≥ n0, where the form ( · ) is non-degenerate and is skew-

symmetric if the tower is symplectic and symmetric otherwise.

The tower (Vn, ( · )), n ≥ n0, can be described explicitly as follows. We fix an

anisotropic F-space (Vn0
, ( · )) of dimension 2n0 = 0, 2, 4. (This defines n0.) In

the case of orthogonal groups Gn, we let χG = χVn0
be the quadratic character of F×

associated with the quadratic space Vn0
. (See [5, (2.5), p. 240] or [6, Proposition 4.3].)

If Vn0
is trivial or 4-dimensional space, then χG is the trivial character. In the case of

symplectic groups Gn, we let χG be the trivial character.

Next, for any n ∈ Z≥n0
, let Vn be the orthogonal direct sum of Vn0

with r := n−n0
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hyperbolic planes. We see 2n = dim Vn. We fix a Witt decomposition

(1.1) Vn = V (1) ⊕Vn0
⊕V (2),

where V (i) = Fv(i)
1 ⊕· · ·⊕Fv(i)

r , i = 1, 2, satisfying (v(i)
k , v

(i)
l ) = 0 and (v(1)

k , v(2)
l ) = δkl.

The decomposition (1.1) gives us the set of standard parabolic subgroups in Gn.

We will describe maximal parabolic subgroups. For j, 1 ≤ j ≤ r, let V
(i,n)
j =

Fv(i)
r− j+1 ⊕ · · · ⊕ Fv(i)

r , i = 1, 2. Then we have the Witt decomposition

Vn = V
(1,n)
j ⊕Vn− j ⊕V

(2,n)
j .

Let P j be the parabolic subgroup of Gn which stabilizes V
(1,n)
j . There is a Levi de-

composition P j = M jN j , where M j ≃ GL(V (1,n)
j ) × Gn− j . (Beware of the difference

between this choice of a Levi factor and that of [5, p. 233]. There GL(V
(2,n)
j ) is con-

sidered instead of GL(V
(1,n)
j ).) Fix the isomorphism GL( j, F) ≃ GL(V

(1,n)
j ) using the

above fixed basis of V
(1,r)
j .

We end the discussion of classical groups by introducing more notation.

Definition 1.1 We fix the tower of groups G ′
m = G(V ′

m), m ≥ m0, that is of the
form described above but satisfying the following: G ′

m, m ≥ m0, are even-orthogonal

groups if and only if Gn, n ≥ n0, are symplectic groups. Throughout the paper we

will write χG ′ = χV ′

m0
, χG = χVn0

and

ηG =

{
0 if Gn is a symplectic group,

1 if Gn is an even-orthogonal group.

Similarly, we define ηG ′ .

Now we turn to the representation theory of classical groups. If π⊗ σ is a smooth

representation of M j ≃ GL(V
(1,n)
j ) × Gn− j , then we write π ⋊ σ := IndGn

P j
(π ⊗ σ),

following Tadić.

Finally, in this paper, δ([| det |−l1ρ, | det |l2ρ]) denotes the unique irreducible sub-

representation of the induced representation [20]:

| det |l2ρ× | det |l2−1ρ× · · · × | det |−l1ρ,

where ρ ∈ Irr GL(mρ, F) is a unitary supercuspidal representation and l1, l2 ∈ R,

l1 + l2 ∈ Z≥0.

2 Tempered Representations and Their Jacquet Modules

In this section we will collect some results on tempered representations. Also, we
prove a fundamental, but very technical, result on tempered representations which

we shall need later in the paper (see Theorem 2.7).
We start by recalling the following two results of Harish-Chandra in the connected

case [19]. Mackey theory can be used to extend these results to the non-connected

case that we need [7, 9].
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Lemma 2.1 Let σ ∈ Irr Gn (n ≥ n0) be a tempered representation. Then there

exist representations δ1, . . . , δl, σd in discrete series such that σ →֒ δ1 × · · · × δl ⋊ σd.

If δ ′1, . . . , δ
′
l ′ , σ

′
d is also a sequence of representations in discrete series such that σ →֒

δ ′1 × · · · × δ ′l ′ ⋊ σ ′
d , then l = l ′, σd ≃ σ ′

d and the sequence δ ′1, . . . , δ
′
l is obtained

from the sequence δ1, . . . , δk by permuting terms and replacing some of them with their

contragredients. We call the multiset {δ1, . . . , δl, δ̃1, . . . , δ̃l, σd} the tempered support

of σ.

Lemma 2.2 Assume that δ ∈ Irr GL(mδ, F) and σd ∈ Irr Gnd
are in discrete series. If

δ ⋊ σd reduces, then δ̃ ≃ δ.

Also, we need the following result of Goldberg. Mackey theory can be used to

extend it to the non-connected case [7, 9].

Lemma 2.3 Assume that δ1, . . . , δl, σd is a sequence of representations in discrete

series. Then the induced representation δ1 × · · · × δl ⋊ σd is a direct sum of mutually

non-equivalent tempered representations. It has a length 2L where L is the number of

mutually non-equivalent δi such that δi ⋊ σd reduces.

We need the following result [12, Corollary 1.1].

Lemma 2.4 Let δ ∈ Irr GL(mδ, F) be a discrete series and let σ ∈ Irr Gn (n ≥ n0) be

a tempered representation. Then we have the following.

(i) If δ appears in the tempered support of σ or δ ⋊ σd is irreducible, then δ ⋊ σ is

irreducible. (See the notation introduced in Lemma 2.1.)

(ii) If δ does not appear in the tempered support of σ and δ ⋊ σd is reducible, then

δ ⋊ σ is a direct sum of two mutually non-equivalent tempered representations.

Lemma 2.5 Assume that σ ∈ Irr Gn (n ≥ n0) is a tempered representation, k ∈
(1/2)Z≥0, and ρ ∈ Irr GL(mρ, F) is an irreducible unitary supercuspidal representa-

tion. Let l ∈ Z>0. If there exists an irreducible representation σ1 such that

σ →֒ | det |kρ× | det |k−1ρ× · · · × | det |−kρ

× | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · ·

· · · × | det |kρ× | det |k−1ρ× · · · × | det |−kρ⋊ σ1

(where | det |kρ × | det |k−1ρ × · · · × | det |−kρ appears l-times), then σ1 is tempered

and

σ →֒ δ([| det |−kρ, | det |kρ]) × · · · × δ([| det |−kρ, | det |kρ]) ⋊ σ1 (l-factors).

Proof If l = 1, this is [12, Lemma 1.3]. In general, the first part of the proof of

[12, Lemma 1.3] shows the following claim: if σ →֒ | det |kρ × | det |k−1ρ × · · · ×
| det |−kρ ⋊ σ2, for some smooth not necessarily irreducible representation σ2, then
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σ →֒ δ([| det |−kρ, | det |kρ]) ⋊ σ2. We apply this to

σ2 = | det |kρ× | det |k−1ρ× · · · × | det |−kρ

× | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · ·

· · · × | det |kρ× | det |k−1ρ× · · · × | det |−kρ⋊ σ1

(where | det |kρ× | det |k−1ρ× · · · × | det |−kρ appears (l − 1)-times). We obtain

σ →֒ δ([| det |−kρ, | det |kρ]) × | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · ·

· · · × | det |kρ× | det |k−1ρ× · · · × | det |−kρ⋊ σ1,

where | det |kρ× | det |k−1ρ× · · · × | det |−kρ appears (l − 1)-times. Since

δ([| det |−kρ, | det |kρ]) × | det |iρ ≃ | det |iρ× δ([| det |−kρ, | det |kρ])

for −k ≤ i ≤ k, k − i ∈ Z (see [20]), we conclude

σ →֒ | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · ·

· · · × | det |kρ× | det |k−1ρ× · · · × | det |−kρ× δ([| det |−kρ, | det |kρ]) × σ1.

Now we repeat the same argument for

σ2 = | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · · × | det |kρ× | det |k−1ρ× · · ·

· · · × | det |−kρ× δ([| det |−kρ, | det |kρ]) × σ1

(where | det |kρ×| det |k−1ρ×· · ·× | det |−kρ appears (l− 2)-times), etc. In this way,

we obtain the embedding

σ →֒ δ([| det |−kρ, | det |kρ]) × · · · × δ([| det |−kρ, | det |kρ]) ⋊ σ1.

It remains to prove that σ1 is tempered. Having established the embedding, we pro-

ceed as in the second part of the proof of [12, Lemma 1.3]. Appropriately modi-
fying the notation, the only difference is that the second equivariant morphism in

[12, (1-2)] is not just a “commutation” of a segment with [| det |−kρ, | det |kρ], but
with [| det |−kρ, | det |kρ] repeated l-times. The argument is essentially the same. We

leave it to the reader to make necessary modifications.

The following definition will be used later in the computation of the lifts of tem-

pered representations.

Definition 2.6 Let ∆ = [| det |−kρ, | det |kρ], where ρ ∈ Irr GL(mρ, F) is a uni-
tary supercupidal representation and k ∈ Z≥0. Let l ∈ Z>0. Then we define the

representation δ(∆, l) as follows:

δ(∆, l) := δ(∆) × · · · × δ(∆) (l factors).
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Clearly, the representation δ(∆, l) is a non-degenerate tempered representation of
GL(l · (2k + 1) · mρ, F) [19, 20].

Now we prove the main result of this section.

Theorem 2.7 Let ∆ = [| det |−kρ, | det |kρ], where ρ ∈ Irr GL(mρ, F) is a unitary

supercupidal representation and k ∈ Z≥0. Let l ∈ Z>0. Let σt ∈ Irr Gn (n ≥ n0)

be a tempered representation such that δ(∆) does not appear in its tempered support

(see Lemma 2.1). If δ(∆, l) ⊗ σ ′
t is a subquotient of RPl·(2k+1)·mρ

(δ(∆, l) ⋊ σt ), for some

irreducible representation σ ′
t , then σ ′

t ≃ σt .

Proof We let δ(∆, 0) = 1, where 1 is the trivial representation of the trivial group

GL(0, F). We define 1 ⋊ σt = σt . Then the claim of the lemma trivially holds for

l = 0. The lemma is proved by induction on l. It remains to show that if the claim of
the lemma holds for l− 1, then it also holds for l. First, δ(∆, l) ⋊σt is a direct sum of

(at most two) irreducible representations. Therefore, if δ(∆, l) ⊗ σ ′
t is a subquotient

of RPl·(2k+1)·mρ
(δ(∆, l) ⋊ σt ), then there exists an irreducible subrepresentation

σ →֒ δ(∆, l) ⋊ σt ,

such that δ(∆, l)⊗σ ′
t is a subquotient of RPl·(2k+1)·mρ

(σ). Since δ(∆, l)⋊σt is completely

reducible, there exists an irreducible subrepresentation σ1 →֒ δ(∆, l − 1) ⋊ σt , such
that σ →֒ δ(∆)⋊σ1. Therefore, δ(∆, l)⊗σ ′

t is a subquotient of RPl·(2k+1)·mρ
(δ(∆)⋊σ1).

The analysis of this fact requires extensive computation of Jacquet modules. We start

recalling Tadić’s theory of Jacquet modules. Let R(Gn) be the Grothendieck group of
admissible representations of Gn of finite length. Let

R(G) =
⊕

n≥n0

R(Gn).

We will write ≥ or ≤ for the natural order on R(G). In greater detail, π1 ≤ π2,
π1, π2 ∈ R(G), if and only if π2 − π1 is a linear combination of the irreducible repre-

sentations with positive coefficients. Similarly, we define

R(GL) =
⊕
n≥0

R(GL(n, F)).

Let r1 = n1 − n0. Then for every standard maximal parabolic subgroup P j of Gn1
,

1 ≤ j ≤ r1, we can identify RP j
(σ1) with its semisimplification in R(GL( j, F)) ⊗

R(Gn1− j). Thus, we can consider

µ∗(σ1) := 1 ⊗ σ1 +

r1∑

j=1

RP j
(σ1) ∈ R(GL) ⊗ R(G).

The first term in that expression should be σ1, but in order to avoid exceptional cases
in the analysis below, we write it as 1 ⊗ σ1, let 1 × π := π and π × 1 := π for

every smooth representation π of some GL(mπ, F), and set 1 × 1 = 1. Finally, we let

δ(∅) = 1.

https://doi.org/10.4153/CJM-2008-056-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-056-6


Theta Lifts of Tempered Representations for Dual Pairs 1313

Now we can decompose µ∗(σ1) =
∑

δ ′,σ1
δ ′ ⊗ σ ′ into irreducible constituents in

R(G). Now in our case, the basic result of Tadić is the following expression (see [9]

and the references therein):

(2.1) µ∗
(
δ([| det |−kρ, | det |kρ]) ⋊ σ1

)
=

∑

δ ′,σ ′

2k+1∑

i=0

i∑

j=0

δ([| det |i−kρ̃, | det |kρ̃])

× δ([| det |k+1− jρ, | det |kρ]) × δ ′ ⊗ δ([| det |k+1−iρ, | det |k− jρ]) ⋊ σ ′,

Since δ(∆, l) ⊗ σ ′
t is a subquotient of RPl·(2k+1)·mρ

(δ(∆) ⋊ σ1), we obtain

µ∗
(
δ([| det |−kρ, | det |kρ]) ⋊ σ1

)
≥ δ(∆, l) ⊗ σ ′

t .

To analyze this we employ (2.1). Thus, there are indices i, j, 0 ≤ j ≤ i ≤ 2k + 1, and
an irreducible constituent of δ ′ ⊗ σ ′ ≤ µ∗(σ1), such that

(2.2) δ([| det |i−kρ̃, | det |kρ̃]) × δ([| det |k+1− jρ, | det |kρ]) × δ ′ ≥ δ(∆, l)

and

(2.3) δ([| det |k+1−iρ, | det |k− jρ]) ⋊ σ ′ ≥ σ ′
t

The inequality in (2.2) shows that δ ′ must be non-degenerate. Therefore it is fully

induced from the representations of the form δ(∆ ′) (see Ze). In fact, (2.2) implies

δ ′ ≃ δ([| det |−kρ̃, | det |i−k−1ρ̃]) × δ([| det |−kρ, | det |k− jρ]) × δ(∆, l ′)

≃ δ([| det |−kρ, | det |k− jρ]) × δ([| det |−kρ̃, | det |i−k−1ρ̃]) × δ(∆, l ′),

(2.4)

for some l ′ ∈ {l − 2, l − 1, l}. We claim that

(2.5) i − k − 1, k − j ∈ {−k − 1, k}.

If for example i − k − 1 6∈ {−k − 1, k}, then (2.4) and δ ′ ⊗ σ ′ ≤ µ∗(σ) implies that

(2.6) σ1 →֒ | det |−kρ̃× | det |−k+1ρ̃× · · · × | det |i−k−1ρ̃⋊ σ ′
1,

for some irreducible representation σ ′
1. Since we have the following:

(−k)mρ + (−k + 1)mρ + · · · + (i − k − 1)mρ < 0,

(2.6) violates the temperedness criterion for σ1. Now we consider several cases ac-

cording to (2.5):

• i − k − 1 = −k − 1. Hence i = 0. Then 0 ≤ j ≤ i implies j = 0. Now (2.4)

implies δ ′ ≃ δ(∆, l−1). Since δ ′⊗σ ′ ≤ µ∗(σ), the inductive assumption implies

σ ′ ≃ σt . Now (2.3) implies σ ′
t ≃ σt , completing the proof of the theorem.
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Thus, according to (2.5), we may assume i − k − 1 = k or i = 2k + 1. It remains
to consider the next two cases.

• k − j = −k − 1. Hence j = 2k + 1. This case can be analyzed in the same way as
the previous one.

• k − j = k. Hence j = 0. Since i = 2k + 1, (2.4) implies δ ′ ≃ δ(∆, l). Since

δ ′ ⊗ σ ′ ≤ µ∗(σ), we obtain

σ1 →֒ | det |kρ× | det |k−1ρ× · · · × | det |−kρ

× | det |kρ× | det |k−1ρ× · · · × | det |−kρ× · · ·

· · · × | det |kρ× | det |k−1ρ× · · · × | det |−kρ⋊ σ ′
1

(where | det |kρ×| det |k−1ρ×· · ·×| det |−kρ appears l-times), for some irreducible

representation σ ′
1. Applying Lemma 2.5, this contradicts the fact that the pair

(δ(∆), δ̃(∆)) occurs exactly l − 1-times in the tempered support of σt (see (2.1)).

This is a contradiction.

3 Some Preliminary Results on Theta Correspondence

In this section we review some results about Howe correspondence and fix the nota-

tion in the paper.

The pair (see Definition 1.1) (Gn,G
′
m) is a dual pair in the symplectic group

G(Vn ⊗ V ′
m) (see [6, 10]). We write ωn,m = ωψn,m for the smooth oscillator repre-

sentation associated with that pair and a fixed non-trivial additive character ψ of F.

For every σ ∈ Irr Gn, we write Θ(σ,m) for a smooth representation of G ′
m, defined

as a maximal σ-isotypic quotient of ωn,m (see [10, Ch. II, Lemme III.4])

σ ⊗ Θ(σ,m) ≃ ωn,m/
⋂
f

ker( f ), f ∈ HomGn
(ωn,m|Gn

, σ).

The basic result about the Howe correspondence is the following theorem [10,

Théorème principal and Remarque, p. 67].

Theorem 3.1 Let σ ∈ Irr Gn (n ≥ n0). Then the following hold:

(i) There exists a non-negative integer m such that Θ(σ,m) 6= 0. We denote

the smallest m such that Θ(σ,m) 6= 0 by m(σ). Further, for m ≥ m(σ), we have

Θ(σ,m) 6= 0. We call m(σ) the first occurrence index of σ in the tower G ′
m, m ≥ m0.

(i) Assume that σ is a supercuspidal representation. Then Θ(σ,m(σ)) is a supercus-

pidal irreducible representation, and for m ≥ m(σ), Θ(σ,m) is an irreducible subrep-

resentation of

χG| · |
n−m+1−ηG × · · · × χG| · |

n−m(σ)−ηG ⋊ Θ(σ,m(σ)).

The Jacquet module RP ′

m−m(σ)
(Θ(σ,m)) is isomorphic to

χG| det |n−
m+m(σ)−1

2
−ηG ⊗ Θ(σ,m(σ)).
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The next theorem that we need gives Kudla’s filtration of Jacquet modules of the
oscillator representation [5].

Theorem 3.2 Let Pk (1 ≤ k ≤ n − n0) be the standard maximal parabolic subgroup

of Gn (n ≥ n0). Then RPk
(ωn,m) has a filtration of smooth GL(k, F)×Gn−k×G ′

m-repre-

sentations 0 = Jk+1 ⊂ Jk ⊂ · · · ⊂ J0 = RPk
(ωn,m), where J j/ J j+1 ≃ Jk j , 0 ≤ j ≤ k,

and

Jk0 = χG ′ | det |m−n+ k−1
2

+ηG ⊗ ωn−k,m (quotient)

Jk j = Ind
GL(k,F)×Gn−k×G ′

m

Pk j× Gn−k×P ′

j
(Ψk j ⊗ Σ j ⊗ ωn−k,m− j), 0 < j < k, j ≤ m − m0

Jkk = Ind
GL(k,F)×Gn−k×G ′

m

GL(k,F)×Gn−k×P ′

k
(Σk ⊗ ωn−k,m−k), k ≤ m − m0

Jk j = 0, 1 ≤ j ≤ k, j > m − m0.

Here Pk j is the standard parabolic subgroup of GL(k, F) which corresponds to the parti-

tion (k− j, j), Ψk j = χG ′ | det |m−n+
k− j−1

2
+ηG is a character of GL(k− j, F), and Σ j is the

twist of the standard representation of GL( j, F) × GL( j, F) on smooth locally constant

compactly supported complex valued functions C∞
c (GL( j, F)):

Σ j(g1, g2) f (h) = | det g1|
(−1)ηG (ηG·n+ηG ′ ·m−ηG·k)−

j+1
2

× | det g2|
(−1)

η
G ′ (ηG·n+ηG ′ ·m−ηG·k)+

j+1
2 χG(det g2)χG ′(det g2) f (g−1

1 hg2).

(Here the first GL( j, F) (resp., the second) is a part of the Levi factor of Pk j (resp., Levi

factor of P ′
j).) Finally, the representation Ψk j ⊗ Σ j ⊗ ωn−k,m− j of GL(k − j, F) ×

GL( j, F)×GL( j, F)×Gn−k ×G ′
m− j is extended to a representation of Pk j ×Gn−k ×P ′

j

trivial over the corresponding unipotent radicals.

In order to simplify formulation of many statements and to write formulae in a

uniform way, we let Gn0
= Gn0− j and G ′

m0
= G ′

m0− j for j ≥ 0. Next, for n ≥ n0

and m ≥ m0, we let P j = M j = GL( j, F) × Gn− j and N j = {1}, for j > n − n0,
P ′

j = M ′
j = G ′

m− j and N ′
j = {1}, for j > m − m0. Finally, we let ωn,m = 0 if n < n0

or m < m0.

Let σ ∈ Irr Gn (n ≥ n0). Then it is clear that Θ(σ,m) = 0 if m < m0, since
Θ(σ,m) is a σ-isotypic component of ωn,m = 0. In particular, if Θ(σ,m) 6= 0, then

m ≥ m0.
Although, P ′

j , j > m − m0, is not a subgroup of G ′
m (m ≥ m0) we let

Ind
GL(k,F)×Gn−k×G ′

m

Pk j×Gn−k×P ′

j
(Ψk j ⊗ Σ j ⊗ ωn−k,m− j) = 0

Ind
GL(k,F)×Gn−k×G ′

m

GL(k,F)×Gn−k×P ′

k
(Σk ⊗ ωn−k,m−k) = 0.

Now the formula for Jk j is the same in all cases 0 < j ≤ k. This was used implicitly

in [11] and it simplifies the exposition. The same convention is used in [14].
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Now we recall some results from [11]. They follow from Theorem 3.2 using some
considerations based on [3, 19].

Let us introduce some more notation. For σ ∈ Irr Gn (n > n0) and a character µ
of GL(1, F), we shall write RP1

(σ)(µ) for the maximal µ-isotypic quotient of RP1
(σ).

Lemma 3.3 ([11, Lemma 5.1]) Let σ ∈ Irr Gn (n ≥ n0). Assume that

RP1
(σ)(χG ′ | · |n−m+ηG ′ ) = 0.

Then we have the following:

(i) Θ(σ,m − 1) 6= 0 if and only if RP ′

1
(Θ(σ,m))(χG| · |

n−m+ηG ′ ) 6= 0.

(ii) Let σ(m) be an irreducible quotient of Θ(σ,m) such that

RP ′

1
(σ(m))(χG| · |

n−m+ηG ′ ) 6= 0.

Then there exists an irreducible quotient σ(m − 1) of Θ(σ,m − 1) such that

σ(m) →֒ χG| · |
n−m+ηG ′ ⋊ σ(m − 1).

The assumption of Lemma 3.3 holds if σ is in discrete series (resp., tempered)

representation and n + ηG ′ − m ≤ 0 (resp., n + ηG ′ − m < 0) applying the criterion

for square-integrability (resp., temperedness). (See [17, p. 170] for the statement of
criteria in the case of symplectic groups. In the case of full-even orthogonal groups

we refer to [9, §16] for the criterion for square-integrability. The criterion for tem-

peredness can be obtained similarly from [19, Proposition III.1.1].)

The following theorem refines ([M1], Corollary 5.1).

Theorem 3.4 Assume that σ ∈ Irr Gn (n ≥ n0) is a tempered representation. More-

over, assume the following.

(i) There exists mt ≥ n + ηG ′ such that Θ(σ,mt) has the unique maximal proper

subrepresentation; we denote the corresponding irreducible quotient by σ(mt). As-

sume that σ(mt ) is tempered.

(ii) For every m > mt and every irreducible quotient σ(m) of Θ(σ,m), we have

RP ′

1
(σ(m))(| |n−m+ηG ′χG) 6= 0.

Then for every m > mt , Θ(σ,m) has the unique maximal proper subrepresentation;

we denote the corresponding irreducible quotient by σ(m). In addition, σ(m) is the

unique irreducible (Langlands) subrepresentation of

χG| |
n−m+ηG ′ × · · · × χG| |

n−mt−1+ηG ′ ⋊ σ(mt ).

Proof The fact that Θ(σ,m), m ≥ mt , has a unique irreducible quotient, say σ(m),
and its realization as a Langlands subrepresentation follow easily by induction from

Lemma 3.3. It remains to prove that Θ(σ,m) has the unique maximal proper sub-

representation. We prove this by induction on m ≥ mt . If m = mt , this is our

https://doi.org/10.4153/CJM-2008-056-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-056-6


Theta Lifts of Tempered Representations for Dual Pairs 1317

assumption (i). In general, we need to prove that the space HomG ′

m
(Θ(σ,m), σ(m))

is one dimensional. Since we have the following canonical isomorphisms

HomG ′

m
(Θ(σ,m), σ(m)) ≃ HomGn×G ′

m
(σ ⊗ Θ(σ,m), σ ⊗ σ(m))

≃ HomGn×G ′

m
(ωn,m, σ ⊗ σ(m)),

we need to show that the last space is one dimensional. If not, then using Lemma

3.3(ii), the space

HomGn×G ′

m
(ωn,m, σ ⊗ | · |n−m+ηG ′χG ⋊ σ(m − 1))

is at least two dimensional. By Frobenius reciprocity, the same holds for

HomGn×GL(1,F)×G ′

m−1
(RP ′

1
(ωn,m), σ ⊗ | · |n−m+ηG ′χG ⊗ σ(m − 1)).

It follows from Theorem 3.2 that we have the following filtration of RP ′

1
(ωn,m) as a

smooth Gn × GL(1, F) × G ′
m−1-representation:

J10 = χG| · |
−m+n+ηG ′ ⊗ ωn,m−1 (quotient)

J11 = Ind
Gn×GL(1,F)×G ′

m−1

P1×GL(1,F)×G ′

m−1)
(Σ1 ⊗ ωn−1,m−1) (subrepresentation).

Since m > mt ≥ n + ηG ′ , σ⊗ | · |n−m+ηG ′χG ⊗σ(m− 1) cannot be the quotient of J11

(otherwise, we have RP1
(σ̃)(χG ′ | · |n−m+ηG ′ ) 6= 0, and this contradicts the tempered-

ness criterion for σ̃), we see that

HomGn×GL(1,F)×G ′

m−1
( J10, σ ⊗ | · |n−m+ηG ′χG ⊗ σ(m − 1))

≃ HomGn×G ′

m−1
(ωn,m−1, σ ⊗ σ(m − 1))

≃ HomGn×G ′

m−1
(Θ(σ,m − 1), σ(m − 1))

is at least two dimensional. This contradicts the induction hypothesis.

The following theorem is [14, Corollary 3.2]. Its proof is based on the second
adjointness functor of Bernstein [1] and Theorem 3.2.

Theorem 3.5 Let δ ∈ Irr GL(mδ, F) be an essentially square-integrable representa-

tion attached to the segment ∆ = [ρ, | det |lρ] (where ρ ∈ Irr GL(mρ, F) is a su-

percuspidal representation; l ∈ Z≥0). Let σ1 ∈ Irr Gn−mδ
(n − mδ ≥ n0). Recall

(§1) that Θ(δ⊗ σ1,RPmδ
(ωn,m)) is the maximal δ⊗ σ1-isotypic quotient of RPmδ

(ωn,m).

Then Θ(δ ⊗ σ1,RPmδ
(ωn,m)) is a quotient of χGχG ′ δ̃ ⋊ Θ(σ1,m − mδ) unless ρ =

χG ′ | · |m−n+ηG ∈ Irr GL(1, F), when we have the following filtration (of possibly zero)

smooth G ′
m-representations 0 ⊂ Θ0 ⊂ Θ

(
δ ⊗ σ1,RPk

(ωn,m)
)
, where we have

δ([| · |−m+n+1−ηG−mδχG, | · |
−m+n−ηGχG]) ⋊ Θ(σ1,m − mδ) ։ Θ0

and

δ([| · |−m+n+1−ηG−mδχG, | · |
−m+n−ηG−1χG]) ⋊ Θ(σ1,m − mδ + 1)

։ Θ(δ ⊗ σ1,RPk
(ωn,m))/Θ0.
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Note that when mδ = 1, the segment [| · |−m+n+1−ηG−mδχG, | · |
−m+n−ηG−1χG] is

an empty set and we omit it from the above formula. Thus, in this case the formula

reads Θ(σ1,m − mδ + 1) ։ Θ
(
δ ⊗ σ1,RPk

(ωn,m)
)
/Θ0.

The fundamental technical result used to compute the lifts of discrete series is [11,

Lemma 5.2]. Its proof is based on the property of Jacquet modules of discrete series

(see [11, Theorem 2.3, Definition 5.1(i)]) that fails to be true for general tempered
representations. We make appropriate modifications here.

Definition 3.6 Let σ ∈ Irr Gn (n ≥ n0). We say that σ satisfies property HW if the

following holds.

(i) Every non-zero lift Θ(σ,m) has the unique maximal proper subrepresentation;

we denote the corresponding quotient by σ(m).
(ii) If Θ(σ,m − 1) 6= 0, then σ(m) →֒ | · |n−m+ηG ′χG ⋊ σ(m − 1).

Example 3.7 Using the results of [11, 14], we see that if σ ∈ Irr Gn (n ≥ n0) is in

discrete series, then it satisfies the property HW.

Now we are ready to state the main technical results for computing theta lifts of

tempered representations.

Theorem 3.8 Let σ ∈ Irr Gn (n ≥ n0) be a tempered representation. Assume the

following.

(i) σ →֒ δ(∆, l) ⋊ σ1, where ∆ = [| · |−kρ, | · |kρ] (k ∈ Z≥0, ρ ∈ Irr GL(mρ, F)

is a unitary and supercuspidal representation), l ∈ Z>0, and σ1 ∈ Irr Gn1
is a

tempered representation such that δ(∆) does not appear in its tempered support

(see Lemma 2.1).

(ii) σ1 satisfies HW.

Then if m is such that Θ(σ,m) 6= 0, and

(ρ, k) 6∈ {(χG ′,m − n − ηG ′), (χG ′, n − m − ηG)},

then we have the following.

(a) Θ(σ1,m − n + n1) 6= 0.

(b) Θ(σ,m) has the unique maximal proper subrepresentation, and its irreducible quo-

tient σ(m) satisfies σ(m) →֒ χGχG ′δ(∆, l) ⋊ σ1(m − n + n1).

Proof This proof is similar to the proof of [11, Lemma 5.2]. We leave to the reader

to formulate and prove an appropriate reformulation of [11, Remark 5.2] and then to

prove Theorem 3.8 following the steps of the proof of [11, Lemma 5.2], where instead
of assumptions (i) and (ii) of [11, Definition 5.1] one should use the following two:

• Theorem 2.7 instead of (i).
• dimC HomGn

(σ, δ(∆, l) ⋊ σ1) = 1 instead of (ii). This follows from the theory of

R-groups (see Lemma 2.3).

Theorem 3.9 Let σ ∈ Irr Gn (n ≥ n0) be a tempered representation. Assume the

following.
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(i) σ is given by (i) and (ii) of Theorem 3.8.

(ii) Θ(σ,m) 6= 0 and m > n + ηG ′ .

(iii) (ρ, k) 6= (χG ′ ,m − n − ηG ′).

(Conditions (ii) and (iii) imply that Θ(σ,m) has a unique irreducible quotient. We

write σ(m) for that irreducible quotient.) Then we have the following.

(a) If m 6= n + k + ηG ′ + 1 or ρ 6≃ χG ′ , then Θ(σ1,m − n + n1 − 1) 6= 0 implies

that Θ(σ,m − 1) 6= 0. Moreover, σ(m) →֒ | · |n−m+ηG ′χG ⋊ σ(m − 1). (Note that

(iii) holds for m − 1 and m − 1 ≥ n + ηG ′ implies that Θ(σ,m − 1) has a unique

maximal proper subrepresentation.)

(b) If m = n + k + ηG ′ + 1 and ρ = χG ′ , then Θ(σ1, n1 + k + ηG ′) 6= 0 implies that

one of the following hold:

(1) Θ(σ, n + k + ηG ′) 6= 0 and σ(m) →֒ | · |n−m+ηG ′χG ⋊ σ(m − 1), for some

irreducible quotient σ(m − 1) of Θ(σ,m − 1) (m − 1 = n + k + ηG ′).

(2) (exceptional case) σ(m) is a subrepresentation of

δ([χG| · |
−k−1, χG| · |

k]) × δ([χG| · |
−k, χG| · |

k], l − 1) ⋊ σ1(n1 + k + ηG ′),

and, if k > 0, then Θ(σ1, n1 + k + ηG ′ − 1) = 0. (This case must hold if

m(σ) = n + k + ηG ′ + 1.)

Proof The proof of this is similar to the proof of [11, Proposition 5.1]. We leave the
details to the reader.

4 Theta Lifts of Representations in Discrete Series

In this section we recall results from [11, 14]. We begin with the following comment.

If the residue characteristic of F is different from two, then the Howe conjecture
holds [18]. More precisely, let σ ∈ Irr Gn. Then Θ(σ,m) is zero or it has the unique

maximal proper subrepresentation; we denote the corresponding irreducible quo-

tient by σ(m). In general, the same is true if σ is in discrete series [11, Theorem 4.1],
but using the classification of Mœglin and Tadić [8, 9] that is done under certain hy-

pothesis. Thus, we will prove our results using the following theorem which is valid
under hypothesis of [8, 9].

Theorem 4.1 Let σ ∈ Irr Gn be a representation in discrete series. Then the lift

Θ(σ,m) is zero or it has the unique maximal proper subrepresentation; we denote the

corresponding irreducible quotient by σ(m).

The following theorem is proved in [14, Corollary 6.1, Theorems 6.1, 6.2].

Theorem 4.2 Assume that σ ∈ Irr Gn (n ≥ n0) is a representation in discrete series.

Let

mtemp(σ) =

{
m(σ) m(σ) > n + ηG ′ ,

n + ηG ′ m(σ) ≤ n + ηG ′ .

Then we have the following.
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(i) If m satisfies m(σ) ≤ m ≤ mtemp(σ), then Θ(σ,m) is irreducible (hence, σ(m) ≃
Θ(σ,m)). Moreover, σ(m) is a tempered representation. More precisely, σ(m) is

in discrete series if one of the following holds:

(a) m < n + ηG ′ ,

(b) m = m(σ) = n + ηG ′ ,

(c) m = m(σ) > n + ηG ′ and σ does not satisfy

σ →֒ δ([| · |n−m+ηG ′ +1χG ′ , | · |m−n−ηG ′χG ′]) ⋊ σ ′ ′,

for some representation σ ′ ′ ∈ Irr Gn ′ ′ .

If m(σ) < n + ηG ′ , then σ(n + ηG ′) →֒ χG ⋊ σ(n + ηG ′ − 1).

(ii) If m satisfies m > mtemp(σ), then σ(m) is a unique irreducible (Langlands) sub-

representation of

| · |n−m+ηG ′χG × | · |n−m+ηG ′ +1χG × · · · × | · |n−mtemp(σ)−ηGχG ⋊ σ(mtemp(σ)).

(iii) σ satisfies the property HW. (See Definition 3.6.)

Proof Statements (i) and (ii) are proved under the assumption that the residue char-

acteristic of F is different from 2 [14], but in that paper we use that assumption only
to assure that Theorem 4.1 is valid. Now we prove (iii). Theorem 4.1 implies that σ
satisfies Definition 3.6(i). It remains to prove σ satisfies Definition 3.6(ii).

If m > n + ηG ′ , the claim follows from (ii). If m = n + ηG ′ , the claim follows from

the last part of (i). Assume that m < n + ηG ′ . Now since Theorem 3.2 implies that

RP ′

1
(ωn,m) has the quotient

χG| · |
−m+n+ηG ′ ⊗ ωn,m−1,

by the Frobenius reciprocity we see that there is a non-zero equivariant map

Θ(σ,m) → χG| · |
−m+n+ηG ′ ⋊ Θ(σ,m − 1).

Now the irreducibility of Θ(σ,m − 1) and Θ(σ,m) complete the proof of (iii).

5 Theta Lifts of Tempered Representations

In this section we state the main results of this paper. Throughout the remainder of
the paper we fix a tempered representation σ ∈ Irr Gn (n ≥ n0). Let

{δ1, . . . , δl, δ̃1, . . . , δ̃l, σd}

be its tempered support (see Lemma 2.1). We define nd by σd ∈ Irr Gnd
. The first

result is the following theorem.

Theorem 5.1 Assume that δ([| · |−kχG ′ , | · |kχG ′]) 6∈ tempered support(σ), where k

is defined as follows:

k =

{
m(σd) − nd − ηG ′ (m(σd) ≥ n + ηG ′),

nd − m(σd) − ηG (m(σd) < nd + ηG ′).

Then we have the following.
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(i) σ satisfies HW. (See Definition 3.6.)

(ii) m(σ) = m(σd) + n − nd.

(iii) Let

mtemp(σ) =

{
m(σ) m(σ) > n + ηG ′ ,

n + ηG ′ m(σ) ≤ n + ηG ′ .

Then for m(σ) ≤ m ≤ mtemp(σ), the lift Θ(σ,m) is irreducible and tempered, and

its tempered support can be described as follows:

tempered support(σ(m)) = {χGχG ′δ1, . . . , χGχG ′δl, χGχG ′ δ̃1, . . . , χGχG ′ δ̃l}

+ tempered support(σd(m)).

(+ means the union of two multisets.) If m satisfies m > mtemp(σ), then σ(m) is the

Langlands subrepresentation of

| · |n−m+ηG ′χG × | · |n−m+ηG ′ +1χG × · · · × | · |n−mtemp(σ)−ηGχG ⋊ σ(mtemp(σ)).

Now we consider the remaining case for σ. So assume that

δ([| · |−kχG ′ , | · |kχG ′]) ∈ tempered support(σ).

Then an application of the theory of R-groups (see Lemma 2.3) shows that there is
a unique tempered representation σt ∈ Irr Gnt

(a set of representatives of equiva-

lence classes of irreducible smooth representations of Gnt
) and h ∈ Z>0 such that the

following holds:

(i) δ([| · |−kχG ′ , | · |kχG ′]) 6∈ tempered support(σt),

(ii) σ →֒ δ([| · |−kχG ′ , | · |kχG ′]), h) ⋊ σt .

Note that (i) implies that the lifts of σt are determined by Theorem 5.1. In particular,

we have m(σt) = m(σd) + nt − nd. This implies

k =

{
m(σt ) − nt − ηG ′ (m(σt) ≥ nt + ηG ′),

nt − m(σt) − ηG (m(σt) < nt + ηG ′).

Theorem 5.2 Maintaining the same assumptions, we have the following.

(i) Assume m(σt) ≥ nt + ηG ′ . Then δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt is a direct sum

of two non-equivalent tempered representations σ1(h) and σ2(h). The represen-

tation σ is equivalent to σ1(h) or σ2(h). Next, δ([| · |−kχG, | · |
kχG]), h − 1) ⋊

σt (nt + k + ηG ′) and δ([| · |−kχG, | · |
kχG]), h) ⋊ σt (nt + k + ηG ′) are irreducible.

The representations σ1(h) and σ2(h) can be distinguished by their first occurrences

as follows.

(a) m(σ1(h)) = n + k + ηG ′ + 1. Then σ1(h) satisfies HW. Moreover, for m ≥
n + k + ηG ′ + 1, σ(m) is the Langlands subrepresentation of

| · |n−m+ηG ′χG × | · |n−m+ηG ′+1χG × · · · × | · |−1χG

× | det |−1/2δ([| · |−k−1/2χG, | · |
k+1/2χG]))

× δ([| · |−kχG, | · |
kχG]), h − 1) ⋊ σt (nt + k + ηG ′).
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(b) m(σ2(h)) = n + k + ηG ′ (k > 0) and m(σ2(h)) = n − ηG (k = 0). Then

Θ(σ2(h),m) (m ≥ n + k + ηG ′) has the unique maximal proper subrepresen-

tation, the corresponding quotient is denoted by σ2(h)(m), while for k = 0 all

irreducible quotients of Θ(σ2(h), n − ηG) are isomorphic to

δ([χG], h − 1) ⋊ σt (n + ηG ′).

If we let σ2(h)(n− ηG) be that induced representation, then HW2 holds. Next

we have

Θ(σ2(h), n + k + ηG ′) ≃ δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′),

and, for m > n+k+ηG ′ , we have that σ(m) is the Langlands subrepresentation

of

| · |n−m+ηG ′χG × | · |n−m+ηG ′ +1χG × · · · × | · |−k−1χG ⋊ σ2(h)(n + k + ηG ′).

(ii) Assume m(σt) < nt + ηG ′ . Then δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt is irreducible

and isomorphic to σ. Next, δ([| |−kχG, | · |
kχG]), h) ⋊ σt (nt − k − ηG) is a direct

sum of two non-isomorphic tempered representations. Exactly one of them is an

irreducible quotient of Θ(σ, n− k− ηG). In particular, m(σ) = n− k− ηG. Next,

HW1 holds for m > n − k− ηG, while HW2 holds for m > n− k + ηG ′ . Θ(σ,m)

is irreducible and tempered for n + ηG ′ ≥ m > n− k− ηG. Moreover, we have the

following:

tempered support(σ(m)) =

{2h · δ([| · |−kχG, | · |
kχG])} + tempered support(σt (m − n + nt )).

If m > n + ηG ′ , then σ(m) is the Langlands subrepresentation of

| · |n−m+ηG ′χG × | · |n−m+ηG ′ +1χG × · · · × | · |−1χG ⋊ σ(n + ηG ′).

6 Proof of the Main Results

In this section we prove Theorems 5.1 and 5.2. We start with some general observa-
tions. Assume the following:

(i) σ →֒ δ(∆, l) ⋊ σ1, where ∆ = [| det |−k ′

ρ, | det |k
′

ρ] (k′ ∈ Z≥0 and ρ ∈
Irr GL(mρ, F) is a unitary and supercupidal representation), l ∈ Z>0, and σ1 ∈
Irr Gn1

is a tempered representation such that δ(∆) does not appear in its tem-

pered support (see Lemma 2.1).
(ii) σ1 satisfies HW

We start with the following lemma.

Lemma 6.1 Let m ∈ Z≥m0
. If (k′, ρ) 6= (n−m−ηG, χG ′), then we have the following:

χGχG ′ δ̃(∆, l) ⋊ Θ(σ1,m − n + n1) ։ Θ(σ,m).
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Proof By (i) above, there are tempered representations σi ∈ Irr Gni
, i = 2, . . . , l + 1,

such that σ = σl+1 and σi+1 →֒ δ(∆) ⋊ σi (i = 1, . . . , l). By the Frobenius reci-

procity, we obtain RPni+1−ni
(σi+1) ։ δ(∆) ⊗ σi (i = 1, . . . , l). Put mi = ni − n + m,

i = 1, . . . , l + 1. Then ωni+1,mi+1
։ σi+1 ⊗ Θ(σi+1,mi+1) and the exactness of Jacquet

functor imply

RPni+1−ni
(ωni+1,mi+1

) ։ δ(∆) ⊗ σi ⊗ Θ(σi+1,mi+1) (i = 1, . . . , l).

By the definition of an isotypic component, we have

(6.1) Θ(δ(∆) ⊗ σi ,RPni+1−ni
(ωni+1,mi+1

)) ։ Θ(σi+1,mi+1).

Then our assumption implies

(6.2) | det |−k ′

ρ 6≃ | det |mi+1−ni+1+ηGχG ′ .

Now (6.1), (6.2), and Theorem 3.5 imply

χGχG ′ δ̃(∆) ⋊ Θ(σi ,mi) ։ Θ(σi+1,mi+1), (i = 1, . . . , l).

The lemma follows by an easy induction.

We continue by the following lemma.

Lemma 6.2 If (k′, ρ) 6= (n1−m(σ1)+ηG ′ , χG ′), then we have m(σ) ≥ n−n1+m(σ1).

Proof Let m = n − n1 + m(σ1) − 1. If the claim of the lemma does not hold, then
Θ(σ,m) 6= 0. Then since ηG + ηG ′ = 1, we obtain

(k′, ρ) 6= (n1 − m(σ1) + 1 − ηG, χG ′) = (n − m − ηG, χG ′).

Now Lemma 6.1 implies Θ(σ1,m(σ1) − 1) 6= 0. This is a contradiction.

Lemma 6.3 Let ρ = χG ′ . If m(σ1) > n1 + k′ + ηG ′ , then m(σ) = n − n1 + m(σ1).

Moreover, σ satisfies HW and σ(m(σ)) →֒ χGχG ′δ(∆, l) ⋊ σ1(m(σ1)).

Proof By Lemma 6.2, m(σ) ≥ n−n1 + m(σ1). Hence m(σ) > n + k′ +ηG ′ . Applying
Theorem 3.8, m ≥ m(σ), Θ(σ,m) has the unique maximal proper subrepresentation,

and its irreducible quotient σ(m) satisfies

σ(m) →֒ χGχG ′δ(∆, l) ⋊ σ1(m − n + n1).

In addition, the direct application of Lemma 3.3(ii) show that σ satisfies HW. Taking
m = m(σ), we obtain the displayed embedding. Finally, we need to compute m(σ).

This follows directly from Theorem 3.9. The exceptional case of type (b) does not

show up.

The next two lemmas have the similar proofs. The details are left to the reader.
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Lemma 6.4 Let ρ = χG ′ . Assume n1 + k′ + ηG ′ > m(σ1) ≥ n1 + ηG ′ . Then

m(σ) = n − n1 + m(σ1). Moreover, σ satisfies HW and

σ(m(σ)) →֒ χGχG ′δ(∆, l) ⋊ σ1(m(σ1)).

Lemma 6.5 Let ρ 6≃ χG ′ . Assume m(σ1) ≥ n1 + ηG ′ . Then m(σ) = n− n1 + m(σ1).

Moreover, σ satisfies HW and σ(m(σ)) →֒ χGχG ′δ(∆, l) ⋊ σ1(m(σ1)).

Now we prove Theorem 5.1. First we assume that m(σd) ≥ n+ηG ′ . Then Theorem

5.1(i) and (ii) are proved by the induction on the number of elements in the tempered
support of σ. The base of this induction is the case σ = σd. Then Theorem 5.1(i)

is Theorem 4.2(iii) and Theorem 5.1(ii) trivially holds. Assume that Theorem 5.1(i)
and (ii) hold for σ1. Then they hold for σ applying Lemmas 6.3, 6.4, and 6.5. Part

(iii) related to the irreducibility of the lifts Θ(σ,m) (m(σ) ≤ m ≤ mtemp(σ)) and

the temperedness of σ(m) follows again by the same type of induction. If σ = σd,
then the claims follow from Theorem 4.2. Assume that they hold for σ1. Then the

structure of tempered support of σ follows from the embedding displayed in Lemmas

6.3, 6.4, and 6.5. Also, for m(σ) ≤ m ≤ mtemp(σ), by the inductive assumption
σ1(m − n + n1) ≃ Θ(σ1,m − n + n1) is a tempered representation. Now Lemma 6.1

implies

χGχG ′ δ̃(∆) ⋊ σ1(m − n + n1) ։ Θ(σ,m).

Since the induced representation on the left-hand side is completely irreducible, we

conclude that Θ(σ,m) is completely reducible. This implies its irreducibility since
Θ(σ,m) has the unique irreducible quotient (by Theorem 5.1(i)). This completes

the proof of Theorem 5.1 for m(σd) ≥ n + ηG ′ .

Now we prove Theorem 5.1 when m(σd) < n + ηG ′ . This is done by induction on
the number of elements in the tempered support of σ. If σ = σd, the claim follows

from Theorem 4.2. Assume that the claim holds for σ1 (see (i) and (ii) above). We
show that the first occurrence is given by m(σ) = m(σ1) + n − n1. To accomplish

this, we observe that because of the symmetry of Θ-correspondence we have proved

the analogue result (the part of Theorem 5.1 already proved), also for lifting from the
tower G ′

m, m ≥ m0, to the tower Gn, n ≥ n0. In more detail, we look at the following

induced representation:

(6.3) χGχG ′ δ̃(∆, l) ⋊ σ1(m(σ1)) of G ′
m(σ1)+n−n1

.

We have (see the notation introduced in Lemma 2.1) (σ1(m(σ1)))d = σd(m(σd))

by the inductive assumption and Theorem 4.2. Now describe the first occurrence of

σd(m(σd)). First by our assumption we have nd + ηG ′ > m(σd). Since ηG + ηG ′ = 1,
we have

(6.4) m(σd) + ηG ≤ (nd + ηG ′ − 1) + ηG = nd.

Thus, since its lift to Gnd
is σd , a representation in discrete series, by Theorem 4.2 we

obtain

(6.5) m(σd(m(σd))) = nd.
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Also, we have the following

(6.6) m(σd(m(σd))) − m(σd) − ηG = nd − m(σd) − ηG 6= k.

Now (6.4), (6.5), and (6.6) show that the analogue result (a part of Theorem 5.1

already proved), except for lifting from the tower G ′
m, m ≥ m0 to the tower Gn, n ≥

n0, can be applied to (tempered) subrepresentations of the induced representations

in (6.3). Furthermore, by that part of Theorem 5.1, their full lifts to Gn are irreducible

and are subrepresentations of

(6.7) δ(∆, l) ⋊ σ1.

We would like to show that one of them lifts to σ. At this point we need the theory of

R-groups. In more detail, Lemma 2.4 shows that the induced representation in (6.3)

(resp., (6.7)) is reducible (and, consequently, the direct sum of two non-equivalent
tempered representations) if and only if δ(∆)⋊σd(m(σd)) (resp., δ(∆)⋊σd) reduces.

Now we apply the following result that follows from [11, Theorems 4.2, 4.3].

Theorem 6.6 Let δ ∈ Irr GL(mδ, F) be a square-integrable representation. Let σ ∈
Irr Gn be in discrete series. Assume that m(σ) < n + ηG ′ . (Theorem 4.2 implies σ(m) is

in discrete series for m(σ) ≤ m < n + ηG ′ .) Let k = n − m − ηG. (Note k ≥ 0.) Then

if δ 6≃ δ([| · |−kχG ′ , | · |kχG ′]), then δ ⋊ σ is reducible if and only if χGχG ′δ ⋊ σ(m)
is reducible. If δ ≃ δ([| · |−kχG ′ , | · |kχG ′]), then δ ⋊ σ is irreducible, while χGχG ′δ ⋊

σ(m) is reducible.

We note that this theorem uses almost all parts of the classification of discrete
series [8, 9]. It depends on the hypothesis of [8, 9]. We do not know how to prove

this deep theorem directly.
Now the proof of other claims of Theorem 5.1, in the case m(σd) < nd + ηG ′ ,

follows the same lines as the one for m(σd) ≥ nd + ηG ′ . We leave the details to the

reader. For example HW2 can be established as in the case of discrete series. (See the
proof of Theorem 4.2.)

Now we begin the proof of Theorem 5.2. We recall the assumption stated before

Theorem 5.2 for σ. So assume that δ([| · |−kχG ′ , | · |kχG ′]) ∈ tempered support(σ).
Then an application of the theory of R-groups (see Lemma 2.3), shows that there is

the unique tempered representation σt ∈ Irr Gnt
and h ∈ Z>0 such that the following

holds

(i) δ([| · |−kχG ′ , | · |kχG ′]) 6∈ tempered support(σt).

(ii) σ →֒ δ([| · |−kχG ′ , | · |kχG ′]), h) ⋊ σt .

Note that (i) implies that the lifts of σt are determined by Theorem 5.1. In particular,

we have m(σt) = m(σd) + nt − nd. This implies

(6.8) k =

{
m(σt) − nt − ηG ′ if mσt ) ≥ nt + ηG ′ ,

nt − m(σt) − ηG if m(σt) < nt + ηG ′ .

We start with the following lemma.
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Lemma 6.7 Let σ and h be as in Theorem 5.2, that is, (i) and (ii) above hold). Assume

m(σt) ≥ nt + ηG ′ . (See (6.8).) Then δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt is a direct sum of

two non-equivalent tempered representations σ1(h) and σ2(h) satisfying

σi(h) ≃ δ([| · |−kχG, | · |
kχG], h) ⋊ σi(h − 1), h > 1, i = 1, 2.

Moreover, δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′) is irreducible

Proof Let τd = σd(nt + k + ηG ′). Since it lifts to σd ∈ Irr Gnd
, we have

m(τd) ≤ nd < nd + k + 1 = (nd + k + ηG ′) + ηG.

This shows that we can apply Theorem 6.6 to the lift of τd to Gn. Since

(nd + k + ηG ′) − n − ηG ′ = k,

we obtain that δ([| · |−kχG, | · |
kχG]) ⋊ τd is irreducible and δ([| · |−kχG ′ , | · |kχG]) ⋊

σd. Now Lemmas 2.3 and 2.4 complete the proof.

Lemma 6.8 We maintain the assumptions of Lemma 6.7. We have the following:

(i) m(σ) = n + k + ηG ′ + 1 holds. Then σ satisfies HW and

(6.9) σ(n + k + ηG ′ + 1) →֒ δ([| · |−k−1χG, | · |
kχG])

× δ([| · |−kχG, | · |
kχG], h − 1) ⋊ σt (nt + k + ηG ′).

(Note that Lemma 2.4 and Lemma 6.7 imply that δ([| · |−kχG, | · |
kχG], h − 1) ⋊

σt (nt + k + ηG ′) is irreducible.)

(ii) m(σ) ≤ n + k + ηG ′ holds. Then Θ(σ,m) has the unique maximal proper

subrepresentation and σ(m) →֒ | · |n−m+ηG ′χG ⋊ σ(m − 1) (m ≥ n + k + ηG ′ + 1),

where, for m = n + k + ηG ′ + 1, σ(m − 1) is some irreducible quotient of Θ(σ,m − 1).

Moreover, every irreducible quotient σ(n + k + ηG ′) of Θ(σ, n + k + ηG ′) satisfies

σ(n + k + ηG ′) →֒ δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′).

If k > 0, then m(σ) = n + k + ηG ′ .

Proof We argue as in Lemma 6.3. In particular, Theorem 3.9 shows m(σ) ≤ n + k +
ηG ′ + 1. For m = n + k +ηG ′ + 1, Theorem 3.9 (b) is applicable. If Theorem 3.9 (b)(1)

holds, then we obtain (ii), where for the description of all irreducible quotients of

Θ(σ, n + k + ηG ′) we use Lemma 6.1 and the fact that Θ(σt ,m(σt)) is irreducible and
tempered. (If k > 0, then Lemma 6.2 implies that m(σ) ≥ n + k + ηG ′ .) If Theorem

3.9(b)(1) holds, then we obtain all claims in (i) except the m(σ) = n + k + ηG ′ + 1.

If we would have m(σ) ≤ n + k + ηG ′ , then we obtain that (i) holds. In particular, all
irreducible quotients of Θ(σ, n + k + ηG ′) are tempered. Now Theorem 3.4 implies

σ(n + k + ηG ′ + 1) →֒ | · |−k−1χG ⋊ σ(n + k + ηG ′), for some irreducible quotient

σ(n + k + ηG ′) of Θ(σ, n + k + ηG ′) giving the realization of the same representa-
tion σ(n + k + ηG ′ + 1) in the Langlands classification different than (6.9). This is a

contradiction.
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Lemma 6.9 We maintain the assumptions of Lemma 6.7. If m(σ) ≤ n + k +ηG ′ , then

Θ(σ, n + k + ηG ′) is irreducible.

Proof First Lemma 6.1 and the irreducibility of Θ(σt , nt + k + ηG ′) imply

δ̃([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′) ։ Θ(σ, n + k + ηG ′).

Now Lemma 6.7 completes the proof.

Lemma 6.10 We maintain the assumptions of Lemma 6.7. The representations σi(h),

i = 1, 2, can be distinguished as follows:

When m(σ1(h)) = n + k + ηG ′ + 1,

σ1(h)(n + k + ηG ′ + 1) →֒

(6.10)

δ([| · |−k−1χG, | · |
kχG]) × δ([| · |−kχG, | · |

kχG], h − 1) ⋊ σt (nt + k + ηG ′),

When m(σ2(h)) ≤ n + k + ηG ′ ,

(6.11) σ2(h)(n + k + ηG ′) ≃ δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′),

Proof Let us remark that this follows immediately from Lemma 6.8 if the Howe

duality holds [18], a result that we do not use directly in this paper.

Now we begin the proof. Using Lemma 6.8, it is enough to show that both repre-
sentations σi (h), i = 1, 2, cannot satisfy one of the following:

(6.12)
m(σ1(h)) = m(σ2(h)) = n + k + ηG ′ + 1;

m(σ1(h)),m(σ2(h)) ≤ n + k + ηG ′ .

Assume that the first system of equalities in (6.12) holds. Then

(6.13) σi(h)(n + k + ηG ′ + 1) →֒ δ([| · |−k−1χG, | · |
kχG])

× δ([| · |−kχG, | · |
kχG], h − 1) ⋊ σt (nt + k + ηG ′), i = 1, 2.

The Langlands classification implies that

δ([| · |−k−1χG, | · |
kχG]) × δ([| · |−kχG, | · |

kχG], h − 1) ⋊ σt (nt + k + ηG ′).

It has a unique irreducible subrepresentation which we denote by τ . Hence, (6.13)
implies σi (h)(n + k + ηG ′ + 1) ≃ τ , i = 1, 2. Now Proposition 6.11(i) below implies

(6.14) ωn,n+k+ηG ′ +1 ։ (σ1(h) ⊕ σ2(h)) ⊗ τ.

Since σi(h) →֒ δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt , the Frobenius reciprocity implies

(6.15) RPh·(2k+1)
(σi(h)) ։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt .
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Thus, applying RPh·(2k+1)
(·) to (6.14), we obtain

RPh·(2k+1)
(ωn,n+k+ηG ′ +1) ։ (RPh·(2k+1)

(σ1(h)) ⊕ RPh·(2k+1)
(σi(h))) ⊗ τ.

Hence, using (6.15), we obtain

ϕ : RPh·(2k+1)
(ωn,n+k+ηG ′ +1) ։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ).

We show that ϕ induces an epimorphism

(6.16) Ind
GL(h·(2k+1),F)×Gnt×G ′

n+k+η
G ′+1

GL(h·(2k+1),F)×Gnt×P ′

h·(2k+1)
(Σh·(2k+1) ⊗ ωnt ,nt +k+ηG ′+1) ։

δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ).

To show (6.16) we use the filtration of RPh·(2k+1)
(ωn,n+k+ηG ′+1) given by Theorem 3.2:

0 = Jh·(2k+1)+1 ⊂ Jh·(2k+1) ⊂ · · · ⊂ J0 = RPh·(2k+1)
(ωn,n+k+ηG ′ +1).

It is enough to show that the restriction ϕ| Jh·(2k+1)
is an epimorphism. If not, then the

cokernel of ϕ| Jh·(2k+1)
must have a quotient isomorphic to δ([| · |−kχG ′ , | · |kχG ′], h) ⊗

σt ⊗ τ . We write p for the composition of quotient maps

δ([| · |−kχG ′ ,| · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ)

։

(
δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ)

)
/ Imϕ| Jh·(2k+1)

։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ τ.

Let ψ = p ◦ ϕ. Then

ψ : RPh·(2k+1)
(ωn,n+k+ηG ′ +1) ։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ τ, ψ| Jh·(2k+1)

= 0.

Now let 0 ≤ j < h · (2k + 1) be defined by ψ| J j+1
= 0 and ψ| J j

6= 0. Then ψ

induces an epimorphism J j/ J j+1 ։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ τ . Now as
in the proof of [11, Remark 5.1, p. 121], the Frobenius reciprocity and the fact that

δ([| · |−kχG ′ , | · |kχG ′], h) is non-degenerate [20] imply that j = h · (2k + 1) − 1 and

there exists an irreducible representation δ ′ (perhaps, the trivial representation 1 of
GL(0, F), see the conventions introduced in the proof of Theorem 2.7) such that the

following holds:

Ψh·(2k+1)h·(2k+1)−1 × δ ′ ։ δ([| · |−kχG ′ , | · |kχG ′], h),

where, in our case, we have Ψh·(2k+1)h·(2k+1)−1 = χG ′ | |k+2. Taking contragredients,
we obtain the following:

δ([| · |−kχG ′ , | · |kχG ′], h) →֒ χG ′ | · |−k−2 × δ̃ ′.
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Now the Frobenius reciprocity shows that the Jacquet module of

δ([| · |−kχG ′ , | · |kχG ′], h)

with respect to appropriate maximal parabolic subgroup contains χG ′ | · |−k−2 ⊗ δ̃ ′.
On the other hand, using [20], it is easy to compute all Jacquet modules of

δ([| · |−kχG ′ , | · |kχG ′], h),

showing that such a term cannot exist. This is a contradiction, which proves (6.16).

Hence, applying the Frobenius reciprocity to (6.16), we obtain a non-zero equiv-

ariant map:

Σh·(2k+1) ⊗ ωnt ,nt +k+ηG ′ +1 →

δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (R̃P ′

h·(2k+1)
(τ̃) ⊕ R̃P ′

h·(2k+1)
(τ̃ )).

By Proposition 6.11(ii), it descends to the equivariant map

Σh·(2k+1) ⊗ σt ⊗ Θ(σt , nt + k + ηG ′ + 1) →

δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (R̃P ′

h·(2k+1)
(τ̃) ⊕ R̃P ′

h·(2k+1)
(τ̃ )).

Further, by Proposition 6.11(ii), it descends to the equivariant map

(6.17) δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ Θ(δ([| · |−kχG ′ , | · |kχG ′], h),Σh·(2k+1))

⊗ σt ⊗ Θ(σt , nt + k + ηG ′ + 1)

→ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (R̃P ′

h·(2k+1)
(τ̃) ⊕ R̃P ′

h·(2k+1)
(τ̃ )).

Since

Θ(δ([| · |−kχG ′ , | · |kχG ′], h),Σh·(2k+1)) ≃ δ([| · |−kχG, | · |
kχG], h),

(6.17) implies

(6.18) δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ δ([| · |−kχG, | · |
kχG], h)

⊗ σt ⊗ Θ(σt , nt + k + ηG ′ + 1)

→ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (R̃P ′

h·(2k+1)
(τ̃) ⊕ R̃P ′

h·(2k+1)
(τ̃ )).

Composing the equivariant map in (6.18) with projections, corresponding to the
direct sum, we obtain two non-zero equivariant maps. Their images must be of the

form

δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ δ([| · |−kχG, | · |
kχG], h) ⊗ τi

https://doi.org/10.4153/CJM-2008-056-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-056-6


1330 G. Muić

for the i-th component. Thus, Proposition 6.11(iii) results in an epimorphism:

Θ(σt , nt + k + ηG ′ + 1) ։ τ1 ⊕ τ2.

This contradicts HW for σt . This shows that the first line in (6.12) cannot hold.

Similarly, we can prove that the second one cannot hold; we sketch a short proof,
which we believe is of some interest. If the second line in (6.12) holds, then Lemma

6.7 and Lemma 6.8(ii) imply

σi(h)(n + k + ηG ′) ≃ δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′) =: τ, i = 1, 2.

Now Proposition 6.11(i) implies

(6.19) ωn,n+k+ηG ′ +1 ։ (σ1(h) ⊕ σ2(h)) ⊗ τ.

Applying RPh·(2k+1)
( · ) to (6.19), we obtain

RPh·(2k+1)
(ωn,n+k+ηG ′ +1) ։ (RPh·(2k+1)

(σ1(h)) ⊕ RPh·(2k+1)
(σi(h))) ⊗ τ.

Hence, using (6.15), we obtain

RPh·(2k+1)
(ωn,n+k+ηG ′

) ։ δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ).

As in (6.16), we use Theorem 3.2 to show that the above epimorphism descends to

Ind
GL(h·(2k+1),F)×Gnt×G ′

n+k+η
G ′

GL(h·(2k+1),F)×Gnt×P ′

h·(2k+1)
(Σh·(2k+1) ⊗ ωnt ,nt +k+ηG ′

) ։

δ([| · |−kχG ′ , | · |kχG ′], h) ⊗ σt ⊗ (τ ⊕ τ).

Now [14, Lemma 3.3] implies

δ([| · |−kχG, | · |
kχG], h) ⋊ Θ(σt , nt + k + ηG ′) ։ τ ⊕ τ.

This is a contradiction, since σt (nt + k + ηG ′) ≃ Θ(σt , nt + k + ηG ′) and

δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt + k + ηG ′)

is irreducible.

The next proposition collects some general results used in the proof of the previ-

ous lemma.

Proposition 6.11 (i) Let G be an l-group. Assume that (π,V ) is a smooth repre-

sentation of G and (ρi,Vi), i = 1, 2, two non-equivalent irreducible admissible repre-

sentations of G. If there are non-zero equivariant maps V → Vi , i = 1, 2, then their

direct sum is an equivariant epimorphism V → V1 ⊕V2.
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(ii) Assume that Gi , Hi , i = 1, 2, are l-groups. Assume that (πi ,Vi) is a smooth

representation of Gi × Hi and (ρi,Wi) is an irreducible admissible representation of Gi ,

i = 1, 2. Then we consider a smooth representation V1 ⊗ V2 of G1 × H1 × G2 × H2.

If (σ,W ) is an admissible representation of H1 × H2 of finite length and if we have a

non-zero G1 × H1 × G2 × H2-equivariant map V1 ⊗ V2 → W1 ⊗ W2 ⊗ W , then it

factors through the cannonical map V1 ⊗V2 → W1 ⊗ Θ(W1,V1) ⊗V2, to G1 × H1 ×
G2 × H2-equivariant map

W1 ⊗ Θ(W1,V1) ⊗V2 → W1 ⊗W2 ⊗W.

Finally, this map factors through the canonical map

W1 ⊗ Θ(W1,V1) ⊗V2 → W1 ⊗ Θ(W1,V1) ⊗W2 ⊗ Θ(W2,V2),

resulting in a non-zero G1 × H1 × G2 × H2-equivariant map

W1 ⊗ Θ(W1,V1) ⊗W2 ⊗ Θ(W2,V2) → W1 ⊗W2 ⊗W.

Moreover, we have the following isomorphism of smooth representations of H1 × H2:

Θ(W1 ⊗W2,V1 ⊗V2) ≃ Θ(W1,V1) ⊗ Θ(W2,V2).

(iii) Assume that G,H are l-groups. Let (ρ,U ) be an irreducible admissible repre-

sentation of G. Assume that (π,V ), (σ,W ) are smooth representations of H. If we have

a G × H-equivariant epimorphism U ⊗ V ։ U ⊗ W , then there is an H-equivariant

epimorphism V ։ W .

Proof (i) is elementary. It is obvious that the equivariant map in (ii) factors through
the canonical maps. Then the last isomorphism follows by definition of an isotypic

component. We leave the details to the reader. We prove (iii), which follows from the

next result:

HomH(V,W ) ≃ HomG×H(U ⊗V,U ⊗W ), ψ 7→ idU ⊗ψ,

which we prove now. It is obvious that ψ 7→ idU ⊗ψ is injective. We prove that
it is surjective. Let ϕ ∈ HomG×H(U ⊗ V, U ⊗ W ). Let us write (ρ̃, Ũ ) for the

contragredient representation of (ρ,U ). Let 〈 , 〉 : Ũ × U → C be the canonical

pairing. It induces a G × G-equivariant map p : Ũ ⊗ U → C. We claim that there is
ψ ∈ HomH(V,W ) such that the following diagram commutes:

Ũ ⊗U ⊗V

ideU ⊗ϕ
//

p⊗idV

��

Ũ ⊗ U ⊗W

p⊗idW

��

V
ψ

// W.
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It is enough to prove

(p ⊗ idV )(x) = 0 =⇒
(

(p ⊗ idW ) ◦ (ideU ⊗ϕ)
)

(x) = 0.

Let us write x =
∑l

i=1 ũi ⊗ ui ⊗ vi , with the minimal possible number of vi ’s. Then

v1, . . . , vl are linearly independent, and

0 = (p ⊗ idV )(x) =

l∑

i=1

〈ũi, ui〉vi .

Hence 〈ũi, ui〉 = 0, 1 ≤ i ≤ l. Let w∗ ∈ W ∗ (the space of all linear functionals

on W ). Then the mapping

(ũ, u) 7→
〈(

(p ⊗ idW ) ◦ (ideU ⊗ϕ)
)

(ũ ⊗ u ⊗ v),w∗
〉
,

is a G-invariant bilinear form Ũ ×U → C. Since (ρ,U ) is irreducible and admissible,

Schur’s lemma implies that there is bilinear form c : V × W ∗ → C such that

〈(
(p ⊗ idW ) ◦ (ideU ⊗ ϕ)

)
(ũ ⊗ u ⊗ v),w∗

〉
= 〈ũ, u〉c(v,w∗),

for all u ∈ U , ũ ∈ Ũ , v ∈ V,w∗ ∈ W ∗. Hence, for w∗ ∈ W ∗, we obtain

l∑

i=1

〈(
(p ⊗ idW ) ◦ (ideU ⊗ϕ)

)
(ũi ⊗ ui ⊗ vi),w

∗
〉

=

l∑

i=1

〈ũi , ui〉c(vi,w
∗) = 0,

proving the claim. Finally, we prove ϕ = idU ⊗ψ. First, it is clear that if we put
idU ⊗ψ in the above diagram instead of ϕ, the diagram would commute. Thus, it is

enough to show that if ψ = 0, then ϕ = 0. First, the commutative diagram implies

((p ⊗ idW ) ◦ (ideU ⊗ϕ)) = 0. If ϕ 6= 0, then there are u ∈ U , v ∈ V , such that

ϕ(u ⊗ v) 6= 0. We write ϕ(u ⊗ v) =
∑l

i=1 ui ⊗ wi , with a minimal possible number

of wi ’s. Then w1, . . . ,wl are linearly independent, and, for ũ ∈ Ũ ,

0 = (p ⊗ idW )(ũ ⊗ ϕ(u ⊗ v)) =

l∑

i=1

〈ũ, ui〉wi .

This implies 〈ũ, ui〉 = 0, 1 ≤ i ≤ l, for all ũ ∈ Ũ . This is a contradiction.

The next lemma refines Lemma 6.8(ii) and Lemma 6.10 (see (6.11)) for k = 0.

Also, it completes the proof of Theorem 5.2(i). (Combining Lemmas 3.3, 6.8, 6.9,
and 6.10, σ2(h) satisfies HW for k > 0. The case k = 0 is discussed in the next

lemma.)

Lemma 6.12 We maintain the assumptions of Lemma 6.10. Let k = 0. Then

m(σ2(h)) = n − ηG. Moreover, every irreducible subquotient of Θ(σ2(h), n − ηG)

is of the form δ([χG], h − 1) ⋊ σt (n + ηG ′). (Note that this induced representation is

irreducible by Lemma 6.7.)
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Proof First we prove m(σ) ≥ n − ηG. If not, then Θ(σ2(h), n − ηG − 1) 6= 0.
Moreover, Lemma 6.1 implies

δ̃([χG], h) ⋊ Θ(σt , nt − ηG − 1) ։ Θ(σ2(h), n − ηG − 1).

Hence, Θ(σ2(h), n − ηG − 1) 6= 0. This is a contradiction. The non-vanishing

Θ(σ2(h), n − ηG) 6= 0 can be proved using induction on h using [11, Lemma 9.1(ii)]
(the proof is based on Theorem 3.2 only). We leave the details to the reader. Now

we prove the rest of the lemma. Let σ2(0) = σt (n + ηG ′). Now Lemma 6.7 im-

plies σ2(h) →֒ χG ′ ⋊ σ2(h − 1), h ≥ 1. Hence, the Frobenius reciprocity implies
RP1

(σ2(h)) ։ χG ′ ⊗ σ2(h − 1). Thus, applying RP1
( · ) to ωn,n−ηG

։ σ2(h) ⊗
Θ(σ2(h), n − ηG), we obtain

RP1
(ωn,n−ηG

) ։ χG ′ ⊗ σ2(h − 1) ⊗ Θ(σ2(h), n − ηG).

(The argument is similar to the proof of Lemma 6.10.) Applying Theorem 3.5 we see

that Θ(σ2(h), n − ηG) has a filtration of the form 0 ⊂ Θ ⊂ Θ(σ2(h), n − ηG), where

χG ⋊ Θ(σ2(h − 1), (n − 1) − ηG) ։ Θ,

Θ(σ2(h), n − ηG)/Θ ։ Θ(σ2(h − 1), (n − 1) + ηG ′).

Lemma 6.9 implies Θ(σ2(h− 1), (n− 1) + ηG ′) ≃ σ2(h− 1)((n− 1) + ηG ′). Now the
lemma follows by induction on h using (6.11).

Now we prove Theorem 5.2(ii).

Lemma 6.13 Assume that (a) and (b) of Theorem 5.2(i) hold. Assume m(σt) <
nt + ηG ′ . (See (6.8).) Then we have the following:

(i) n + ηG ′ ≥ m(σ) ≥ n − k − ηG.

(ii) Θ(σ,m) is irreducible and tempered for n + ηG ′ ≥ m ≥ m(σ), m > n − k − ηG.

Moreover, we have the following:

tempered support(σ(m)) =

{2h · δ([| |−kχG, | · |
kχG])} + tempered support(σt (m − n + nt )).

(iii) If m > n + ηG ′ , then σ(m) is a unique irreducible (Langlands) subrepresentation

of

| · |n−m+ηG ′χG × | · |n−m+ηG ′ +1χG × · · · × | · |−1χG ⋊ σ(n + ηG ′).

(iv) Let m > n − k − ηG, m ≥ m(σ). Then Θ(σ,m) has a unique maximal proper

subrepresentation; we denote the corresponding irreducible quotient by σ(m), and

σ(m + 1) →֒ χG| · |
n−m+1+ηG ′ ⋊ σ(m).
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Proof We prove (i). The inequality m(σ) ≥ n− k−ηG follows directly from Lemma
6.2. The other follows from Theorem 3.5. The argument needed to prove (ii) is

already explained in the proof of Theorem 5.1. (iii) follows from Lemma 3.3 and
Theorem 3.4. Finally, (iv) follows using the argument used in the proof of Theorem

4.2(iii).

The next lemma completes the proof of Theorem 5.2(ii).

Lemma 6.14 We maintain the assumptions of the previous lemma. Then

δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt

is irreducible. In particular, σ ≃ δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt . Moreover,

δ([| · |−kχG, | · |
kχG], h) ⋊ σt (nt − k − ηG)

is a direct sum of two non-equivalent tempered representations. Exactly one of them is

an irreducible quotient of Θ(σ, n − k − ηG). Finally, m(σ) = n − k − ηG.

Proof Note that m(σd) < nd−k−ηG +1 = nd−k+ηG ′ ≤ nd +ηG ′ . Hence, Theorem

4.2 implies that τd = σd(m(σd)) ∈ Irr G ′
m(σd) is in a discrete series. We compute its

first occurrence index. First, obviously we have m(τd) ≥ nd, since it is lifted to σ.

Next, since τd is a representation of G ′
m(σd), we see that

m(τd) ≥ nd = m(σd) + ηG + k > m(σd) + ηG.

Now a direct application of Theorem 4.2 shows that m(τd) = nd, since their lift σd to

Gnd
is in discrete series. Next we remark that

(6.20) k = nd − m(σd) − ηG = m(τd) − m(σd) − ηG.

Thus, Theorem 5.1 applied to σt gives the description of the tempered support for

τt := σt (nt − k − ηG). This shows that Theorem 5.1 is applicable to τt . In particular,
using (6.20), we obtain m(τt) = nt ,Θ(τt , nt ) ≃ σt . Now Theorem 5.2(i) describes

the lifts of irreducible components (see Lemma 6.7)

τ1(h) ⊕ τ2(h) ≃ δ([| · |−kχG, | · |
kχG]), h) ⋊ τt .

Applying, Lemma 6.10, we obtain

τ2(h)(n) ≃ δ([| · |−kχG ′ , | · |kχG ′], h) ⋊ σt ≃ σ, m(τ2(h)) ≤ n.

This proves that τ2(h) is a quotient of Θ(σ, n − k − ηG). Hence, Lemma 6.13 implies

m(σ) = n − k − ηG. Since Lemma 6.10 implies m(τ1(h)) = n + 1, the proof of the

lemma is complete.
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