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Consecutive Large Gaps in Sequences
Defined by Multiplicative Constraints

Emre Alkan and Alexandru Zaharescu

Abstract. In this paper we obtain quantitative results on the occurrence of consecutive large gaps be-

tween B-free numbers, and consecutive large gaps between nonzero Fourier coefficients of a class of

newforms without complex multiplication.

1 Introduction

A recent result of Panaitopol [12] states that if f1 < f2 < · · · is the sequence of

square-free numbers, then

lim sup
n→∞

min( fn+1 − fn, fn − fn−1) = ∞.

In the present paper we make further progress in this line of investigation, from sev-

eral perspectives. We are interested in obtaining a similar result for more general

sequences of integers defined by multiplicative constraints. At the same time, we lo-

calize the problem in short intervals, and provide quantitative lower bounds for the

sizes of gaps as well as for the number of occurrences of pairs of consecutive large

gaps. A natural generalization of square-free numbers is supplied by the concept of

B-free numbers, which was introduced by Erdős [6]. Let B be a sequence of positive

integers 1 < b1 < b2 < · · · satisfying

(∗)
∑

j

1

b j

<∞, gcd(bk, b j) = 1, k 6= j.

Then a number n is called B-free if it is not divisible by any bk in B. Note that by

taking B to be the sequence of squares of prime numbers, the set of B-free numbers

coincides with the set of square-free numbers. Note that B-free numbers have positive

density, more precisely

lim
N→∞

1

N
#{1 ≤ n ≤ N : n is B-free} =

∞
∏

k=1

(

1 − 1

bk

)

> 0.

In spite of this fact, one would expect to find reasonably large gaps, or even pairs of

consecutive large gaps, between B-free numbers. Our first result, which establishes

the existence of many pairs of consecutive large gaps between B-free numbers in short

intervals, is as follows.

Received by the editors March 12, 2006; revised September 22, 2006.
AMS subject classification: Primary: 11N25; secondary: 11B05.
Keywords: B-free numbers, consecutive gaps.
c©Canadian Mathematical Society 2008.

172

https://doi.org/10.4153/CMB-2008-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-019-x


Consecutive Large Gaps in Sequences 173

Theorem 1 Let η, σ be positive real numbers such that 20σ > 9 + 3606η. Let B

be a sequence of positive integers 1 < b1 < b2 < · · · satisfying
∑

j
1
b j
< ∞ and

gcd(bk, b j) = 1 for k 6= j, and denote by f1 < f2 < · · · the sequence of B-free numbers.

For any positive integer N, let Φ(N) be the largest positive integer for which

3Φ(N)
∏

j=1

b j ≤ Nη.

Then for any N large enough in terms of B, η and σ, there exist

≫σ,η,B
(2Φ(N))! Nσ

∏

Φ(N)+1≤s≤3Φ(N) bs

many values of fn in [N,N + Nσ] for which min( fn+1 − fn, fn − fn−1) > Φ(N).

Note that the quality of the above result depends on how sparse the sequence B is.

In the case of square-free numbers, that is, in the case when B consists of the squares

of all prime numbers, Φ(N) is asymptotic to η log N/6 log log N as N → ∞.

Erdős [6] constructed a set of integers B satisfying (∗) such that the gap between

two consecutive B-free numbers is unusually large infinitely often. Unaware of this

result of Erdős, the authors rediscovered and published it [3] (the only difference be-

tween the two published results being that we have a better constant in the exponent).

Here we complement this result by constructing such a set B for which we have many

simultaneous large gaps between consecutive B-free numbers infinitely often.

Theorem 2 Let 0 < λ < 1
8

be a real number. There exists a set of positive integers

B satisfying (∗) such that, denoting the sequence of B-free numbers by f1 < f2 < · · · ,

there are infinitely many n for which

min
{

fn+ j − fn+ j−1 : 1 ≤ j ≤
[

e
√
λ log n log log n

]

}

> e
√
λ log n log log n.

Besides the intrinsic interest about their distribution, the concept of B-free num-

bers proved to be useful in various contexts, such as in questions concerned with

nonvanishing problems for Fourier coefficients of cusp forms of integer weight for

congruence subgroups of the full modular group SL2(Z). To be more specific, let

f (z) =

∞
∑

n=1

a f (n)qn ∈ Sk(Γ0(N), χ), q = e2πiz, Im z > 0

be a nonzero cusp form of integer weight k ≥ 2 without complex multiplication.

Serre introduced the gap function i f (n) = min{ j ≥ 0 : a f (n + j) 6= 0} to study

the frequencies of vanishing of Fourier coefficients a f (n). In [1, 2, 4], various results

were obtained on the size of i f (n) and on the nonvanishing of a f (n) in the case where

f (z) is a newform without complex multiplication. New results on this problem of

understanding the behavior of i f (n) were obtained more recently by Kowalski, Robert

https://doi.org/10.4153/CMB-2008-019-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-019-x


174 E. Alkan and A. Zaharescu

and Wu [9]. One of our theorems [1] states that i f (n) ≪ f ,Ψ Ψ(n) for almost all n,

where Ψ(n) is essentially any function monotonically tending to infinity. It was also

proved [2] that given ǫ > 0, there exists M = M(ǫ, f ) such that

#{n ≤ x : i f (n) ≤ M} ≥ (1 − ǫ)x.

The proof of Theorem 3 below shows in particular that working in this generality,

the above estimates on i f (n) are the best possible. We obtain a stronger result by

constructing many pairs of consecutive large gaps in the Fourier expansion of f (z),

when n is confined to a short interval.

Theorem 3 Let f (z) =
∑∞

n=1 a f (n)qn ∈ Sk(Γ0(N)) be a newform of integer weight

k ≥ 2 without complex multiplication having integer Fourier coefficients. Let σ, η be

positive real numbers such that 20σ > 9 + 3606η. Assume that the set {p prime :

a f (p) = 0} is infinite and denote these primes by p1 < p2 < · · · . For any M, let Φ(M)

be the largest integer for which

π(Φ(M))+2Φ(M)
∏

j=π(Φ(M))+1

p2
j ≤ Mη.

Then for M large enough in terms of f , σ, η there are

≫ f ,σ,η
(2Φ(M))! Mσ

∏π(Φ(M))+2Φ(M)
j=π(Φ(M))+1 p2

j

many integers x ∈ [M,M + Mσ] such that

i f (x − Φ(M)) = Φ(M) and i f (x + 1) ≥ Φ(M).

The proof of Theorem 3 in the case k > 2 is the same as in the case k = 2, so

we chose to state the theorem for a general k. We remark though that in his work on

Frobenius distributions and Galois representations, Kumar Murty provides a gener-

alization of the conjecture of Lang and Trotter, which implies that for k > 2 the set

{p prime : a f (p) = 0} from the statement of Theorem 3 is finite (see [11, Conjec-

tures 2.17, 3.1]). Thus for k > 2, Theorem 3 would only apply to counterexamples,

if any, to Murty’s conjecture. The situation is entirely different for k = 2. Theorem 3

does apply in particular to the case when f (z) is the newform associated to an elliptic

curve over Q without complex multiplication, since Elkies proved that there are in-

finitely many supersingular primes for every such elliptic curve. In this case, the size

Φ(M) of the gaps provided in Theorem 3 is dictated by the counting function π0(x)

of supersingular primes ≤ x of a given elliptic curve E. Assuming the generalized

Riemann hypothesis, Ram Murty [10] proved that π0(x) >
√

log log x. Later, he and

Fouvry [7] succeeded in proving a strong unconditional result. Namely, they showed
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that for any E and for any δ > 0, there exists x0(E, δ) such that the inequality

π0(x) >
log3 x

(log4 x)1+δ

holds for x > x0(E, δ). Here logk stands for the k-fold iterated logarithm function.

In the case when the elliptic curve does not have complex multiplication, the precise

asymptotics of π0(x) are predicted by the Lang–Trotter conjecture, claiming that

π0(x) ∼ CE

√
x

log x
, as x → ∞,

where CE > 0 is a constant depending only on E. David and Pappalardi [5] investi-

gated the general problem of the asymptotics of #{p ≤ x : aE(p) = r} in the case

aE(p) = p + 1 − #(E/Fp), where E/Fp is the reduction of E modulo a prime p, and

r ≥ 0 is a given integer. In particular they showed that π0(x) is close to CE

√
x

log x
for al-

most all elliptic curves Y 2
= X3 + aX + b with a, b integers varying in a large rectangle

whose sides grow with x. The Lang–Trotter conjecture implies that the size Φ(M) of

the pairs of consecutive gaps provided by Theorem 3 in the case when f (z) = fE(z)

is the weight 2 newform associated with an elliptic curve E over Q without complex

multiplication satisfies an asymptotic formula of the form

Φ(M) ∼ η log M

C ′
E

√

log log M
, as M → ∞,

for some constant C ′
E > 0 depending on CE.

2 Proof of Theorem 1

Let η, σ, B and Φ be as in the statement of the theorem. We fix a positive integer N

and consider the system of congruences

x ≡ 1 (mod b j1
),

x ≡ 2 (mod b j2
),

· · ·
x ≡ Φ(N) (mod b jΦ(N)

),

x ≡ −1 (mod b jΦ(N)+1
),

x ≡ −2 (mod b jΦ(N)+2
),

· · ·
x ≡ −Φ(N) (mod b j2Φ(N)

),

where we choose in order the moduli b j1
, b jΦ(N)+1

, b j2
, b jΦ(N)+2

, . . . , b jΦ(N)
, b j2Φ(N)

to be
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distinct, and satisfying the following coprimality conditions:

(b j2
, 2) = 1 = (b jΦ(N)+2

, 2),

(b j3
, 3) = 1 = (b jΦ(N)+3

, 3),

· · ·
(b jΦ(N)

,Φ(N)) = 1 = (b j2Φ(N)
,Φ(N)).

Note that one can always find elements b j of B satisfying the above conditions since

the elements of B are pairwise relatively prime. Moreover it is easy to see that such

admissible choices for b j1
, . . . , b j2Φ(N)

can be found among the first 3Φ(N) elements

of B. Indeed, any prime number p ≤ Φ(N) can divide at most one element of

B. Therefore there are less than Φ(N) many elements of B which are divisible by

at least one prime number p ≤ Φ(N). So at least 2Φ(N) numbers among the first

3Φ(N) elements of B are relatively prime with each of the numbers 2, 3, . . . ,Φ(N),

and hence the desired moduli b j1
, . . . , b j2Φ(N)

can be chosen from this set of numbers.

As a consequence we have
2Φ(N)
∏

s=1

b js
≤

3Φ(N)
∏

j=1

b j .

Next, by the Chinese Remainder Theorem all the solutions x of the above system of

congruences form an arithmetic progression {b + m
∏

1≤s≤2Φ(N) b js
: m ∈ Z} for

some integer number b. Note that b is relatively prime to the product
∏

1≤s≤2Φ(N) b js

since otherwise there will be a prime p such that p | b and p | b js
for some 1 ≤ s ≤

2Φ(N). Moreover we either have b ≡ x ≡ s (mod b js
) for some 1 ≤ s ≤ Φ(N), or we

have b ≡ x ≡ Φ(N)− s (mod b js
) for some Φ(N) + 1 ≤ s ≤ 2Φ(N). Both cases give

us a contradiction, since (b js
, s) = 1 for 1 ≤ s ≤ Φ(N) and since (b js

,Φ(N) − s) = 1

for Φ(N) + 1 ≤ s ≤ 2Φ(N). We now employ the following proposition which can be

derived from the proof of [3, Theorem 1].

Proposition Let η, σ be positive real numbers satisfying 20σ > 9+3606η and let B be

a sequence of pairwise relatively prime positive integers with sum of inverses finite. Then

there exists NB,σ,η such that for any N ≥ NB,σ,η and any relatively prime integers a, b
with 1 ≤ a ≤ Nη, there are ≫σ,η,B

Nσ

a
many B-free integers n, with N ≤ n ≤ N + Nσ ,

for which n ≡ b (mod a).

Note that this result is applicable in our case with a =
∏

1≤s≤2Φ(N) b js
and

η, σ,B, b as before, since a, b are relatively prime and

a =

∏

1≤s≤2Φ(N)

b js
≤

3Φ(N)
∏

j=1

b j ≤ Nη.

Using the proposition, it follows that the number of B-free numbers from the

interval [N,N + Nσ] which belong to the arithmetic progression

{b + m
∏

1≤s≤2Φ(N)

b js
: m ∈ Z}
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is

≫σ,η,B
Nσ

∏

1≤s≤2Φ(N) b js

.

Finally, we take any permutation of the moduli b js
with 1 ≤ s ≤ 2Φ(N) and then

apply the Chinese Remainder Theorem as above. In this way we produce (2Φ(N))!

many distinct arithmetic progressions having the same modulus
∏

1≤s≤2Φ(N) b js
.

Hence these arithmetic progressions are disjoint, and their union contains

≫σ,η,B
(2Φ(N))! Nσ

∏

1≤s≤2Φ(N) b js

≥ (2Φ(N))! Nσ

∏

Φ(N)+1≤s≤3Φ(N) bs

many B-free numbers from the interval [N,N + Nσ]. This completes the proof of the

theorem.

3 Proof of Theorem 2

We follow the constructions from [3, 6], with an improvement in the inductive step,

which will allow us to obtain long tuples of consecutive large gaps between B-free

numbers. Let λ < 1
8

be a real number. We proceed inductively. Fix a k and assume

that nk and b1 < b2 < · · · < bsk
< nk are already constructed. Denote as usual

by ψ(x, y) the number of positive integers n ≤ x with all prime factors ≤ y. As a

consequence of a theorem of Hildebrand and Tenenbaum on the number of smooth

numbers for u =
log x
log y

,

ψ(x, y) = xρ(u)
(

1 + O
( log(u + 1)

log y

))

uniformly for y ≥ 2 and 1 ≤ u ≤ exp((log y)
3
5
−ǫ), where log ρ(u) = −u log u +

o(u log u). Then for any fixed η > 0, ρ(u) ≤ e−(1−η)u log u. Fix a small δ > 0, and

for each k set u = uk and n = nuk

k so that (1 − η)uk log uk = (1 + δ) log nk. Here

uk = O
( log nk

log log nk

)

, and ψ(2n, nk) ≪ nρ(uk) ≪ n/n1+δ
k . Therefore there are integers

x, y with n ≤ x < y ≤ 2n and y − x ≥ nk such that any integer m ∈ [x, y]

has a prime factor > nk. We set nk+1 = x. Then the largest prime factor qm of

any m ∈ [nk+1, nk+1 + nk] satisfies qm > nk. Here the qm’s are necessarily distinct,

since no qm can divide two different numbers in this interval. Denote now by lk the

integer part of
√

nk and choose an integer rk which is relatively prime with lk. Let

Sk denote the set of integers inside the interval [nk+1, nk+1 + nk] which are congruent

to rk modulo lk. Let Tk be the set of integers in the interval [nk+1, nk+1 + nk] which

do not belong to Sk. We list the primes qm, with m ∈ Tk in increasing order, and

redenote them by bsk+1 < bsk+2 < · · · < bsk+1
with sk+1 = sk + #(Tk). By repeating this

construction we obtain a sequence of positive integers n1 < n2 < · · · < nk < · · · and

a sequence of prime numbers b1 < b2 < · · · < bsk
< · · · . Next, the sum S =

∑∞
s=1

1
bs

is convergent. Indeed, S =
∑∞

k=0 Sk+1, with Sk+1 =
∑

sk+1≤s≤sk+1

1
bs
, and one has

Sk+1 ≤
∑

nk<p≤2nk log nk

p prime

1

p
= O

( log log nk

log nk

)

.
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Clearly uk log nk ≤ log nk+1 ≤ log 2 + uk log nk, and since uk ≪ log nk

log log nk
, we have

log log nk+1

log nk+1
≪ log log nk

uk log nk
.

This proves that S =
∑∞

s=1
1
bs
< ∞. Returning now to a fixed k, let us remark

that the set Sk is a finite arithmetic progression whose elements are relatively prime

with its modulus. Then by the lower bound aspect of the linear sieve (see [8, The-

orem 8.4]) it follows that a positive proportion of the elements of Sk are relatively

prime with any of the primes b1 < b2 < · · · < bsk
. We also know that none of

the primes bsk+1 < bsk+2 < · · · < bsk+1
can divide any of the elements of Sk, since

each of the primes bsk+1 < bsk+2 < · · · < bsk+1
coincides with a qm that divides one

of the elements of Tk, and, as we remarked before, no qm can divide two integers in

[nk+1, nk+1 + nk] = Sk ∪ Tk. Also, each b j with j > sk+1 is larger than any element of

Sk, thus no such b j can divide any element of Sk. Consequently, a positive proportion

of the elements of Sk is B-free. We also know that no element of Tk is B-free, since by

our construction for each integer m in Tk the largest prime factor qm of m coincides

with one of the elements b j of B. Recall that Sk consists of about [
√

nk] many ele-

ments in an arithmetic progression of modulus about the size of
√

nk. In conclusion,

the interval [nk+1, nk+1 + nk] contains ≫ √
nk many B-free numbers, and the gap be-

tween any two of them is at least as large as the modulus of the arithmetic progression

on which Sk is supported, that is, this gap is ≫ √
nk. Lastly, since nk+1 ≤ 2nuk

k and

uk log uk =
(1+δ)
(1−η)

log nk, we see that

uk ≤ (1 + c)
log nk

log log nk

,

for some small constant c > 0 depending on δ and η. Combining these, we have
√

nk > e
√
λ log nk+1 log log nk+1 , for any fixed λ < 1

8
and small enough c, δ, η > 0. This

completes the proof of the theorem.

4 Proof of Theorem 3

Let f (z) =
∑∞

n=1 a f (n)qn ∈ Sk(Γ0(N)) be a newform without complex multiplica-

tion, and define B f = {p prime : a f (p) = 0} ∪ {2} ∪ {q prime : q|N}. Since B f is

infinite by our assumption, we may write all the primes in B f in increasing order as

2 ≤ p1 < p2 < · · · . Serre proved that for any ǫ > 0,

|B f ∩ [2, z]| ≪ǫ, f
z

(log z)
3
2
−ǫ .

Consequently,
∑

p∈B f

1
p

is convergent. Next, let M and Φ(M) be positive integers,

where Φ(M) will be defined explicitly later as an increasing function of M. Consider
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the system of congruences

x ≡ 1 + p j1
(mod p2

j1
),

x ≡ 2 + p j2
(mod p2

j2
),

· · ·

x ≡ Φ(M) + p jΦ(M)
(mod p2

jΦ(M)
),

x ≡ −1 + p jΦ(M)+1
(mod p2

jΦ(M)+1
),

x ≡ −2 + p jΦ(M)+2
(mod p2

jΦ(M)+2
),

· · ·

x ≡ −Φ(M) + p j2Φ(M)
(mod p2

j2Φ(M)
),

where we choose in order the odd primes p j1
, p jΦ(M)+1

, p j2
, p jΦ(M)+2

, . . . , p jΦ(M)
, p j2Φ(M)

to be distinct, not dividing N , and satisfying the following coprimality conditions:

(p j2
, 2) = 1 = (p jΦ(M)+2

, 2),

(p j3
, 3) = 1 = (p jΦ(M)+3

, 3),

. . .

(p jΦ(M)
,Φ(M)) = 1 = (p j2Φ(M)

,Φ(M)).

Since B f is infinite, one can always find primes p js
in B f as above, where 1 ≤ s ≤

2Φ(M). Moreover, for M large enough, we have

2Φ(M)
∏

s=1

p js
≤

π(Φ(M))+2Φ(M)
∏

j=π(Φ(M))+1

p j ,

where π(x) denotes the number of primes ≤ x. We define Φ(M) to be the largest

integer satisfying the inequality

π(Φ(M))+2Φ(M)
∏

j=π(Φ(M))+1

p2
j ≤ Mη,

where η is as in the statement of the theorem. By the Chinese Remainder Theorem

all the solutions x of the above system of congruences constitute an arithmetic pro-

gression of the form

{b + m

2Φ(M)
∏

s=1

p2
js

: m ∈ Z}

for some integer b. Note that if p js
divides b for some 1 ≤ s ≤ 2Φ(M), then either

s + p js
≡ x ≡ b(modp2

js
) when 1 ≤ s ≤ Φ(M) or Φ(M) − s + p js

≡ x ≡ b(mod
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p2
js

) when Φ(M) + 1 ≤ s ≤ 2Φ(M). Both possibilities give us that p js
divides s, a

contradiction. In conclusion b is relatively prime to the modulus
∏2Φ(M)

s=1 p2
js

. Using

the proposition from Section 2, it follows that for M ≥ MB f ,σ,η , 20σ > 9 + 3606η
and

a =

2Φ(M)
∏

s=1

p2
js
≤

π(Φ(M))+2Φ(M)
∏

j=π(Φ(M))+1

p2
j ≤ Mη,

the number of B f -free integers x ∈ [M,M + Mσ] which belong to the arithmetic

progression

{

b + m

2Φ(M)
∏

s=1

p2
js

: m ∈ Z

}

is ≫B f ,σ,η
Mσ

∏2Φ(M)
s=1 p2

js

.

Let us also observe that by taking permutations of the moduli p2
js

for 1 ≤ s ≤ 2Φ(M)

and applying the Chinese Remainder Theorem, one can produce (2Φ(M))! many

disjoint arithmetic progressions with the same modulus
∏2Φ(M)

s=1 p2
js

. Hence in this

way one can find

≫B f ,σ,η
(2Φ(M))! Mσ

∏2Φ(M)
s=1 p2

js

≥ (2Φ(M))! Mσ

∏π(Φ(M))+2Φ(M)
j=π(Φ(M))+1 p2

j

,

B f -free integers x ∈ [M,M + Mσ] satisfying the above congruences. Note that

p j1
||x − 1 (where the notation means that p j1

divides x − 1 but p2
j1

does not di-

vide x− 1). Hence using the multiplicativity of the Fourier coefficients of a newform

we have

a f (x − 1) = a f (p j1
)a f

( x − 1

p j1

)

= 0.

Similarly, using p j2
||x − 2, . . . , p jΦ(M)

||x − Φ(M) and p jΦ(M)+1
||x + 1, . . . , p jΦ(2M)

||x +

Φ(M) we see that a f (x ± s) = 0 for 1 ≤ s ≤ Φ(M). Next, we claim that a f (x) 6= 0.

To show this, let us write x =
∏r

j=1 qk j
j as the prime factorization of x. Then a f (x) =

∏r
j=1 a f (qk j

j ), and note that since x is B f -free, q j is not in B f for any 1 ≤ j ≤ r and

consequently a f (q j) 6= 0. Let us now see that a f (qu
j ) 6= 0 for any u ≥ 1. We proceed

by induction on u. Let ν j be the exact exponent of q j in a f (q j). Note that ν j is well

defined since a f (q j) 6= 0. We may put νq j
(a f (q j)) = ν j , where νq j

denotes the q j-adic

valuation. Let us see by induction that νq j
(a f (qu

j )) = uν j for any u ≥ 1. Since f (z)

is a newform of weight k and q j does not divide N , the Fourier coefficients of f (z)

satisfy the recursion a f (qu+1
j ) = a f (q j)a f (qu

j ) − qk−1
j a f (qu−1

j ) for u ≥ 1. Taking the

q j-valuation of the terms on the right side of the recursion and using the induction

hypothesis we obtain

ν(a f (q j)a f (qu
j )) = ν(a f (q j)) + ν(a f (qu

j )) = (u + 1)ν j

and

ν(qk−1
j a f (qu−1

j )) = ν(qk−1
j ) + ν(a f (qu−1

j )) = k − 1 + (u − 1)ν j .
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Note that Deligne’s proof of the Weil conjectures implies the precise bound

|a f (q j)| ≤ 2q
k−1

2

j .

Since q j is not in B f , q j is odd and we have ν j ≤ [ k−1
2

]. This forces (u + 1)ν j <
k − 1 + (u − 1)ν j . Hence ν(a f (qu+1

j )) = (u + 1)ν j and a f (qu+1
j ) 6= 0. This completes

the induction step and proves our claim that a f (x) 6= 0. Finally, by the definition of

the gap function, i f (x − Φ(M)) = Φ(M) and i f (x + 1) ≥ Φ(M). This completes the

proof of the theorem.

In the statement of Theorem 3 we concentrated on large values of Φ(M), which

give us large consecutive gaps in the Fourier expansion of f (z). One can, of course,

repeat the proof of Theorem 3 with smaller values of Φ(M), in particular with

Φ(M) = K a constant independent of M, thereby obtaining a positive proportion,

depending on K, of consecutive gaps of size at least K.
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