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In this work, two-phase flows of Newtonian and/or viscoelastic fluids in a ‘cross-slot’
geometry are investigated both experimentally and numerically in the creeping-flow limit.
A series of microfluidic experiments – using Newtonian fluids – have been carried out in
different cross-section aspect ratios to support our numerical simulations. The numerical
simulations rely on a volume of fluid method and make use of a log-conformation
formulation in conjunction with the simplified viscoelastic Phan-Thien and Tanner model.
Downstream from the central cross, once the flow has become fully developed, we also
estimate analytically the thickness of each fluid layer for both two- and three-dimensional
cases. In addition to providing a benchmark test for our numerical solver, these analytical
results also provide insight into the role of the viscosity ratio. Injecting two fluids with
different elastic properties from each inlet arm is shown to be an effective approach to
stabilize the purely elastic instability observed in the cross-slot geometry based on the
properties of the fluid with the larger relaxation time. Our results show that interfacial
tension can also play an important role in the shape of the interface of the two fluids
near the free-stagnation point (i.e. in the central cross). By reducing the interfacial tension
force, the interface of the two fluids becomes curved and this can consequently change the
curvature of streamlines in this region which, in turn, can modify the purely elastic flow
transitions. Thus, increasing interfacial tension is shown to have a stabilizing effect on the
associated steady symmetry-breaking purely elastic instability. However, at high values of
the viscosity ratio, a new time-dependent purely elastic instability arises most likely due
to the change in streamline curvature observed under these conditions. Even when both
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fluids are Newtonian, outside of the two-dimensional limit, a weak instability arises such
that the fluid interface in the depth (neutral) direction no longer remains flat.

Key words: microfluidics, viscoelasticity, instability control

1. Introduction

Purely elastic instabilities, i.e. those in which the Reynolds number (Re) is vanishingly
small and inertia can play no role, in viscoelastic flows occur frequently due to the
nonlinear nature of the elastic stresses generated not only in simple viscometric flows but
also in more complex flows with so-called ‘mixed’ kinematics of shear and extension.
Generally, beyond a critical value of the Weissenberg number (Wi) – the ratio of
elastic to viscous stresses – the ‘simple’ solution branch of the base state (i.e. steady
and/or symmetric) in such flows bifurcates to a more complex flow either spatially or
temporally. A geometry that allows the study of mixed kinematics but where elongational
flow is important is the so-called ‘cross-slot’ geometry, which is used frequently in
extensional-flow related studies (Haward et al. 2012b). This geometry consists of four
bisecting rectangular channels with two sets of opposing inlets and outlets. These opposing
inlets and outlets produce a flow field with a free-stagnation point. At this point the velocity
is zero and a finite velocity gradient in the streamwise direction appears. In principle, due
to the zero velocity at this point, a fluid element is trapped for an ‘infinite’ time, generating
a significant strain and potentially enabling ‘steady-state’ extensional-flow kinematics to
be realized. Such an effect is a hallmark of this geometry and the reason it is often
proposed as an extensional rheometer (Haward et al. 2012b). Gardner et al. (1982) were
the first to report a steady asymmetric flow field for viscoelastic fluids in this geometry,
although the much later study carried out by Arratia et al. (2006) was the first in which
this phenomenon was suitably characterized and such an asymmetric distribution of the
flow field was unequivocally associated with a purely elastic instability. Interestingly, this
instability has been reproduced numerically by Poole, Alves & Oliveira (2007) using
the upper convected Maxwell (UCM) model, which is an unsatisfactory model for any
steady-state extensional flow beyond a critical strain rate, and finite extensible nonlinear
elastic (FENE)-type models by Rocha et al. (2009). Since then, there have been a number
of experimental and numerical studies on the effects of various parameters on the onset
and development of the elastic instabilities in cross-slot flows (Haward et al. 2012a; Sousa
et al. 2015; Cruz et al. 2016; Haward, McKinley & Shen 2016; Kalb, Villasmil-Urdaneta
& Cromer 2018; Sousa, Pinho & Alves 2018). However, so far, there is no prediction
of the corresponding instability beyond the bifurcation point using linear stability for
two-dimensional purely elongational flows (Lagnado & Leal 1990; Wilson 2012). One
should note that, in this geometry, although a nominally purely elongational flow is
observed at the stagnation point, due to the existence of re-entrant corners (Dean &
Montagnon 1949; Moffatt 1964; Davies & Devlin 1993; Hinch 1993), a fluid particle may
experience a complex mix of shear and extensional deformation as it flows through the
domain. Recently, Davoodi, Domingues & Poole (2019) suggested the use of a cylinder
at the geometric centre of the cross-slot geometry to investigate the effect on the onset of
instability. This geometric modification applies a fundamental difference on the flow field
as the finite value of the strain rate at the free-stagnation point in the standard geometry is
replaced with zero-strain-rate pinned stagnation points at the surface of the cylinder. The
resulting data showed that the suggested modification, although significantly changing the
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Two-phase cross-slot

flow distribution in the region near the stagnation point, does not change the nature of
the symmetry-breaking instability or, for small cylinders, the critical condition for onset.
It was therefore concluded that the instability cannot be solely related to the extensional
flow near the stagnation point but it is more likely related to streamline curvature and
the high deformation rates towards the corners i.e. a classic ‘curved streamlines’ purely
elastic instability (Shaqfeh 1996). In Davoodi et al. (2019), using a combination of
an analytical approach and supporting numerical simulations, it was shown that, by
controlling the size of the cylinder, and consequently the curvature of streamlines, one may
be able to control/delay onset of the instability to higher Wi. A well-known dimensionless
parameter which rationalizes these types of ‘curved streamline’ instabilities is the M
parameter introduced by McKinley, Pakdel & Öztekin (1996) (often referred to as the
‘Pakdel–McKinley’ criterion) which is defined as

M =
√
λ̃Ũ

R̃
τ̃11

η̃0 ˜̇γ , (1.1)

where Ũ is a reference velocity, λ̃ is the relaxation time, R̃ is the curvature of
the streamline, τ̃11 is the elastic normal stress in the streamwise direction, η̃0 is the
zero-shear-rate viscosity of the fluid and ˜̇γ is the magnitude of the shear rate. This
parameter can be considered as the viscoelastic complement of the Görtler number
(Görtler 1955). In (1.1), the first term on the right-hand side shows the ratio of a
characteristic length λ̃Ũ over which disturbance information is convected before it decays
to the streamline curvature (this term can also be referred to as a local Deborah number,
showing the ratio of the relaxation time of the fluid to the time a disturbance takes to
travel along a streamline). The second term on the right-hand side of (1.1) is added to
scale properly the effect of the normal stress in the streamwise direction with a reference
stress scale. This term is generally of the same order of magnitude as a local Weissenberg
number, which is the destabilizing term in the disturbance equation (McKinley et al. 1996).
Equation (1.1) proposes that the kinematic and dynamic conditions corresponding to the
curvature of the flow and the tensile elastic stress along the streamlines, respectively, can
be combined into a single dimensionless criterion that must be exceeded for the onset of
purely elastic instabilities. Using this approach, Haward et al. (2016) have shown that in
an ideal planar elongational flow, such as that observed in the optimized-shape cross-slot
extensional rheometer, the purely elastic instability may also be triggered due to strong
streamline curvature close to the stagnation point.

In two-phase flow problems, the influence of the capillary number (Ca) on the interface
shape, and so on the streamline curvature, of two fluids has been studied in many different
problems (e.g. Chinyoka et al. 2005; Capobianchi et al. 2019; Zografos et al. 2020). In
such situations, across the interface of two fluids, a jump in normal forces is balanced
by the curvature of the interface and the interfacial tension. As an example, in studies
related to drop motion and deformation, Taylor & Acrivos (1964) have shown that by
increasing Re the shape of Newtonian droplets may change from a spherical shape to an
oblate shape, which is related to the nonlinear contribution of the inertial force. Such
complex deformations are attributed to the presence of a non-uniform distribution of the
normal forces at the interface of two fluids. Due to this non-uniform jump of the normal
stress, at a constant interfacial tension, a non-uniform distribution of curvature is required
to balance the applied forces (so the droplet loses its constant-curvature spherical shape).
In such problems, it is well known that, by increasing the interfacial tension, one can
change this distribution of the curvature along the interface of two fluids to retain the
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spherical shape of the droplet. The use of the interfacial tension as an important parameter
in the evolution of a disturbance at the interface of two fluids has been studied in many
different two-phase flow instabilities (see for example Graham 2003; Lee, Kim & Kim
2011).

For viscoelastic fluids, all previous studies in the cross-slot were restricted to a single
fluid phase. In this work, a series of two-phase flow simulations were performed, supported
by Newtonian experiments, and some limited three-dimensional (3-D) calculations, to
investigate the effect of different viscoelasticities in each inlet arm, viscosity jumps across
the interface and the interfacial tension applied at the boundary of two different fluids
injected from opposing inlets of the cross-slot geometry. By increasing the interfacial
tension to a sufficiently large value, one may hope to influence the streamline curvature
R̃ in the central region of the cross-slot geometry. Thus we postulate that the interfacial
tension may be used as a means to control the symmetry-breaking instability.

2. Geometric and problem set-up configuration

Here, we consider two-phase flows through cross-slot geometries. A schematic of the
problem being studied is presented in figure 1. In this study, inlets are located at the left
(fluid-1) and right (fluid-2) side arms while outlets are located at the top and bottom arms.
The width W̃ of all inlet and outlet arms are the same. We consider both 2-D and 3-D
configurations with different aspect ratios Λ = H̃/W̃, where H̃ is the depth of the channel,
which is considered constant throughout. Two different fluids are injected at the inlets
with an equal constant bulk velocity ŨB. We consider a range of fluid pairs, both miscible
and immiscible (referred to throughout as two ‘phases’ for simplicity) to study the effect
of viscosity ratio, K = η̃2,t/η̃1,t with η̃1,t and η̃2,t being the total viscosity of fluid-1 and
fluid-2, and capillary number, Ca on the interface and on the onset of elastic instabilities.
We combine 2-D and 3-D numerical simulations together with analytical solutions and
experiments in microfluidic devices to characterize the flow field for both Newtonian and
viscoelastic fluid flows.

3. Governing equations and numerical method

Numerical approaches to simulate a two-phase flow field may be divided into two main
categories, known as ‘interface-tracking’ and ‘interface-capturing’ methods. Amongst the
interface-tracking methods, such as immersed boundary (Peskin 1982; Mittal & Iaccarino
2005), front-tracking (Tryggvason et al. 2001) and boundary integral (Peterlin 1976)
methods have received considerable attention due to their accurate prediction of the shape
of the interface at the boundary of the two fluids. In such methods, a moving sharp
boundary is considered to track the interface of the two fluids. Tracking methods are known
to be accurate for most flows but due to singularity issues in problems with morphological
change, such as the ones observed in droplet breakup and coalescence (Jacqmin 1999; Yue
et al. 2004; Magaletti et al. 2013), cannot be used for these types of simulations. Also, due
to the presence of a moving mesh (which needs to be updated and reconstructed in every
time step in the simulation), such methods are expensive with respect to their simulation
computational time.

In contrast, in numerical simulations involving interface-capturing methods, the mesh
could be either static (i.e. fixed grid distribution) or dynamic and the interface between
two fluids is defined based on the variation of a scalar phase indicator parameter C̃.
The volume of fluid (VOF) and phase-field (PF) methods are arguably the most popular
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Two-phase cross-slot
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Figure 1. (a) Schematic of the cross-slot geometry with insets highlighting the notation used in 3-D (top
right) and a typical 2-D computational mesh (bottom left). Here, h̃ indicates the passage width of fluid-1 in the
outlet arms. (b) Schematic illustrating the experimental microfluidic cross-slot apparatus allowing for direct
observation of the (x, y) plane. Not to scale.

interface-capturing methods (Hirt & Nichols 1981). For VOF and PF, this scalar quantity
is usually related to a volume fraction or a mass concentration. In these methods, the scalar
parameter C̃ varies in between two limits (mostly 0 ≤ C̃ ≤ 1), with C̃ equal to the lower
and upper limits being indicative of fluid-1/fluid-2, respectively. The interface of the two
fluids is specified where C̃ exhibits a mid-value in between these two limits (in the current
case C̃ = 0.5). In the VOF method, in order to find the evolution of C̃, generally, the
classic transport diffusion equation is solved, while in the PF model, this equation has an
additional double-well potential term in comparison with the classic diffusion equation.
In these methods, the system is dealt with as one single fluid with variable properties. By
solving the transport equation for C̃, one can define different properties in space and time
based on the regions that different fluids flow and treat the interfacial tension as a body
force.

In the current work, the VOF method is used to find the variation of the C̃ parameter in
both space and time domains, the standard advection transport equation using a velocity
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field ũ is solved as

∂C̃
∂ t̃

+ ũ∇̃C̃ = 0, 0 ≤ C̃ ≤ 1. (3.1)

For a binary fluid composed of fluid-1 and fluid-2, once the space/time distribution of C̃
is known, one can define the following equations as was recommended in the viscoelastic
toolbox RheoTool version 4.1 (Pimenta & Alves 2017):

ρ̃ = C̃ρ̃1 + (1 − C̃)ρ̃2, (3.2)

η̃s = C̃η̃s,1 + (1 − C̃)η̃s,2, (3.3)

τ̃ = C̃τ̃1 + (1 − C̃)τ̃2, (3.4)

where indices 1 and 2 indicate fluid-1 and fluid-2, η̃s is the solvent viscosity, ρ̃ is the
density and τ̃ is the viscoelastic contribution of the stress tensor. The governing equations
for the motion of this fluid are conservation of mass, assuming incompressibility, and
momentum

∇̃ · ũ = 0, (3.5)

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇̃ũ
)

= −∇̃p̃ + ∇̃ · τ̃ + ∇̃ ·
(
η̃s

(
∇̃ũ + ∇̃ũT

))
+ F̃ , (3.6)

where p̃ is the pressure and F̃ is the capillary force applied at the interface of the two fluids
due to the existence of the interfacial tension and is calculated as follows (Figueiredo et al.
2016; Brackbill, Kothe & Zemach 1992):

F̃ = σ̃ κ̃nδ̃i = σ̃ κ̃∇̃C̃, (3.7)

where σ̃ is the surface tension coefficient, κ̃ = −∇̃ · n is the interface curvature, n =
∇̃C̃/‖∇̃C̃‖ is the unit vector normal to the interface (Francois et al. 2006) and δ̃i is
the δ-function at the interface. Here, to simulate the viscoelastic contribution of the
stress tensor (i.e. τ̃ ), the simplified Phan-Thien and Tanner (sPTT) constitutive equation
is employed which is derived from network theory (Phan-Thien & Tanner 1977) and
is a suitable model for simulation of shear-thinning polymeric fluids (Bird, Armstrong
& Hassager 1987). The extra-stress tensor using the sPTT model may be calculated as
follows:

fiτ̃i + λ̃i
∇̃
τ̃i= η̃p,i(∇ũ + ∇ũT) i = {1, 2}, (3.8)

where index i can be either 1 or 2 (i.e. i = {1, 2}) indicating fluid-1 and fluid-2. Here, the
fi function for the linear-sPTT model is defined as

fi = 1 + αi
λ̃i

η̃p,i
Tr(τ̃i) i = {1, 2}, (3.9)

where α is the extensibility parameter. In the limiting case of α = 0 the sPTT constitutive
equation reduces to the Oldroyd-B model and if additionally η̃s = 0, the UCM model
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Two-phase cross-slot

Mesh NC
�x̃min

W̃
= �ỹmin

W̃

�z̃

H̃

M21 13 005 0.02 2-D
M22 51 005 0.01 2-D
M31 663 255 0.02 0.02
M32 5 151 505 0.01 0.02

Table 1. Characteristics of the computational meshes. NC is number of cells, W̃ is channel width and H̃ is
channel height.

Ca = ∞ Ca = 0.5 Ca = 0.1 Ca = 0.05 Ca = 0.03

Decr − M21 0.5109 0.5235 0.5806 0.6604 0.7684
Decr − M22 0.5086 0.5195 0.5769 0.6563 0.7622

Table 2. Mesh dependency study for 2-D simulations using mesh M21 with 13 005 and mesh M22 with
51 005 cells.

is recovered. The upper-convective derivative of the extra-stress tensor,
∇̃
τ̃ i, is defined as

∇̃
τ̃ i= D

Dt̃
(τ̃ i) −

(
τ̃i · ∇̃ũ + ∇̃ũT · τ̃i

)
i = {1, 2}, (3.10)

where the material derivative of an arbitrary matrix A is defined as (D/Dt̃)(A) = (∂A/∂ t̃ +
ũ · ∇̃A). To solve the series of equations presented in (3.1)–(3.10) the rheoInterFoam solver
in the rheoTool package of OpenFoam is used (Pimenta & Alves 2017).

A zero gradient boundary condition for the stress and velocity components is applied
at the outlets to simulate fully developed conditions. At the walls, values of the stress
components are calculated using an extrapolation method, as suggested by Pimenta &
Alves (2017) and no slip is assumed for the velocities. For the phase indicator parameter C̃,
constant values of 1 and 0 are used at the left and right inlet arms and a zero gradient at the
outlet and walls (cf. figure 1). The flow domain has been divided into 5 smaller sub-domain
blocks (four inlet/outlet arms and one central block). Most simulations were carried out
using a mesh similar in density to that of Cruz et al. (2016) (table 1). Additionally, some
limited 3-D simulations are also carried out to study the effect of the K parameter and
Ca on the interface shape and location. The effect of mesh refinement on the numerical
simulations is presented in table 2 and figure 8 for 2-D and 3-D cases, respectively. In
table 2, the effect on the critical Weissenberg number for two different uniform meshes
are shown for different capillary numbers. The total number of cells for the M21 and M22
meshes are 13 005 and 51 005, respectively and the error between these two calculated
critical Weissenberg numbers are less than 1 %. Similar to this, two different meshes,
consisting of 663 255 and 5 151 505 cells, have been used to study the effect of mesh on
the ‘dimple size’ – discussed later in § 7 – of 3-D geometries and the error was calculated
to also be smaller than 1 %. These results give us sufficient confidence to continue our
study with the smaller of the meshes in both 2-D and 3-D cases.
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4. Non-dimensionalization

In our analysis, to better characterize the flow field and the important parameters playing
a role in this problem, the following dimensionless parameters are adopted:

x = x̃

W̃
, y = ỹ

W̃
, z = z̃

W̃
, Λ = H̃

W̃
, U = ũ

ŨB
, τ = τ̃

η̃1,tŨB/W̃
, p = p̃

η̃1,tŨB/W̃
,

Rei = ρ̃iŨBW̃
η̃i,t

, Wii = λ̃iŨB

W̃
, βi = η̃i,s

η̃i,t
, Ca = η̃1,tŨB

σ̃
, K = η̃2,t

η̃1,t
, AP = Q̃i1 − Q̃i2

Q̃i
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(4.1)

where index i can be either 1 or 2 (i.e. i = {1, 2}) indicating properties of fluid-1 and
fluid-2, x̃, ỹ, z̃ are the variables related to the Cartesian coordinate system, W̃ is the width
and H̃ is the depth of the channel, Λ is the cross-section aspect ratio, ũ is the velocity
vector, ŨB is the imposed bulk velocity at the inlets, τ̃ is the extra-stress tensor, p̃ is the
pressure, Rei is the Reynolds number in each inlet stream and was set to be 10−3 for all
simulations in order to model creeping flow, Wii is the Weissenberg number defined for
each phase, βi is the solvent-to-total viscosity ratio of each of the two phases and η̃i,t is
the total viscosity of each of the phases (i.e. η̃i,t = η̃i,s + η̃i,p), Ca is the capillary number
defined based on the properties of fluid-1, K is the ratio of total viscosity of fluid-2 to
fluid-1 (and so CaK is the capillary number based on fluid-2), Q̃i is the imposed flow rate
at the inlets (i.e. in the two-dimensional problem Q̃i = W̃ŨB), Q̃i1 and Q̃i2 are defined
in figure 1 and AP is the asymmetry parameter used in our simulations to quantify the
magnitude of asymmetry in the flow (before onset of any symmetry-breaking instability
Q̃i1 = Q̃i2 so AP = 0, but once the symmetry of the flow is broken Q̃i1 /= Q̃i2 and AP
exhibits a non-zero value). A previous study conducted by Wilson & Rallison (1997) has
shown that a non-zero value of the normal-stress jump at the interface of viscoelastic fluids
may trigger an instability in three-layer planar flows. In this work, to concentrate on two
key effects we study the effect of either varying the elasticity of each fluid stream (but
in the limit of negligible interfacial tension) or keeping the elasticity fixed, but interfacial
tension can be varied. The values of β1 = β2 = 1/9 and the extensibility parameter of two
fluids α1 = α2 = 0.02 are held fixed to reduce the parameter space.

5. Experimental

Experiments in 3-D microfluidic planar channels were carried out to visualize the
Newtonian flow field for comparison with the numerical results and to study the effect
of aspect ratio. A schematic diagram of the experimental rig is shown in figure 1. The
experimental microchannels were made from polydimethylsiloxane (Sylgard 184, Dow
Corning) and were fabricated using a SU-8 mould by standard soft-lithography techniques.
Three different cross-slot microfluidic devices with varying aspect ratios (Λ = H̃/W̃)
were used: Λ = 0.83, Λ = 0.28 and Λ = 0.22. To study the effect of viscosity ratio,
deionized water and a variety of gycerol/water solutions were prepared with viscosities
ranging from 6.47 mPa s to 300 mPa s (cf. table 3). In addition, for the experiments on
the effect of interfacial tension, perfluorodecalin (Sigma Aldrich, η̃ = 6.7 mPa s) was
used together with the most viscous gycerol/water solution tested (η̃ = 300 mPa s). The
interfacial tension between these two fluids was measured to be 35.03 ± 0.04 mN m−1

at 293.2 K. The fluids were characterized in steady shear on a DHR-2 hybrid rotational
rheometer (TA Instruments) with a cone-plate geometry (60 mm diameter, 1◦ cone angle)
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Two-phase cross-slot

Fluid Density kg m−3 Viscosity Pa s Viscosity ratio

Deionized Water 998 1.00 × 10−3 1
22.8 wt% Glycerol solution 1047 1.97 × 10−3 1.97
41.9 wt% Glycerol solution 1100 4.15 × 10−3 4.15
50.9 wt% Glycerol solution 1172 6.41 × 10−3 6.41
61.6 wt% Glycerol solution 1154 1.22 × 10−2 12.0
74.3 wt% Glycerol solution 1195 3.36 × 10−2 33.6
80.1 wt% Glycerol solution 1209 6.90 × 10−2 60.90
84.2 wt% Glycerol solution 1222 1.01 × 10−1 101
HPF10 1908 6.70×10−3 6.7
91.8 wt% Glycerol solution 1240 3.00×10−1 44.8∗

Table 3. Characterization of different fluids used in the experiment.
∗Reference fluid for all cases is water, except for the 91.8 wt% glycerol and water solution, for which the

viscosity ratio is reported relative to HPF10.

at a temperature of 293.2 K. The surface tension and interfacial tension measurements
were carried out with a drop shape analyser (model DSA25, Kruss) using the pendant-drop
method, in which the shape of the pendant drop was fit using the Young–Laplace equation

�p̃ = σ̃

(
1
r̃1

+ 1
r̃2

)
, (5.1)

where �p̃ is the pressure difference across the interface and r̃1 and r̃2 are the principal radii
of curvature of the interface. A high-precision syringe pump with independent modules
(neMESYS, Cetoni GmbH) was used for precise fluid control, imposing flow rates in
the range Q̃ ≤ 2.5 ml h−1, yielding a maximum Reynolds number Re ≤ 3.0 (based on
the less viscous fluid properties as reference). SGETM gastight syringes of appropriate
volumes were used to ensure that the syringe pump pulsation-free minimum dosing rate
is exceeded. The flow was illuminated with a 100 W metal halide lamp and visualized
using an inverted microscope (Olympus IX71), equipped with a 20X objective lens, a
CCD camera (Olympus XM10) and an adequate filter cube (Olympus U-MWIGA3). For
flow visualization rhodamine-B (Sigma-Aldrich) was added to one of the inlet streams.
In addition, a number of experiments were also carried out using streak photography
in which the fluids were seeded with 1 μm fluorescent tracer particles (FluoSpheres
carboxylate-modified, Nile Red (Ex/Em: 535/575 nm)) at concentration of approximatly
0.02 %wt. Long exposure photography was used to capture the flow patterns at the centre
plane of the microchannel (z̃ = H̃/2).

6. Analytical solutions for two-phase flow of fully developed Newtonian fluids in a
channel and rectangular ducts

It is well known that in the limit of no inertia or surface tension, channel flows of
Newtonian fluids with a viscosity stratification are potentially linearly unstable (Yih 1967),
nevertheless, in this section, exact analytical solutions for the pressure driven, creeping
two-phase fully developed flow of Newtonian fluids in a 1-D channel between two infinite
parallel plates (figure 2a) and rectangular cross-sections (figure 2b) are derived. These
solutions will then provide a partial benchmark solution for the nonlinear simulations in
the cross-slot geometry (i.e. in the outlet arms sufficiently far downstream of the cross-slot
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Fluid-2

Fluid-1

Fluid-1 Fluid-2

W̃

W̃
H̃h̃

h̃ x̃1

x̃1

ỹ1

z̃1

ỹ1

(a) (b)

Figure 2. Schematic of (a) the 1-D channel geometry (flow is left to right) and (b) the 2-D rectangular duct
geometry (flow is into page) and the employed coordinate system. Not to scale. Note choice of coordinate
system to match that of ‘outlet’ arms in cross-slot.

where the flow becomes ‘fully developed’). To avoid Yih-type instability, the numerical
simulations include interfacial tension (Hooper & Boyd 1983; Barmak et al. 2016). A
schematic of the problem and the employed coordinate system is shown in figure 2. In the
limit of no inertia, or fully developed flow, the Navier–Stokes equation in dimensionless
form for fluid-1 and fluid-2 can be written as

∇2Ui = G, i = 1 (6.1)

K∇2Ui = G, i = 2, (6.2)

where Ui is the dimensionless velocity in the ỹ direction with respect to the reference bulk
velocity (i.e. Ui = Ũi/ŨB) and G is the dimensionless pressure gradient defined as G =
(∂ p̃/∂ ỹ)/(η̃1ŨB/W̃2). Note that, to obtain a rectilinear 1-D flow distribution, the pressure
drop in both phases must be equal, otherwise it will lead to a pressure gradient in the
lateral direction of the flow resulting in a secondary motion. Solutions to (6.1)–(6.2) for
1-D channel flows may be presented as follows:

U1,2D = 1
2 Gx2

1 + C1x1 + C2, (6.3)

U2,2D = 1
2

G
K

x2
1 + C3x1 + C4, (6.4)

and similarly for rectangular 2-D ducts as

U1,2D =
n=∞∑
n=1

(
A1cosh

(nπx1

Λ

)
+ A2sinh

(nπx1

Λ
x
)

+ 2G(1 − (−1)n)

n3π3

)
sin(nπz1),

(6.5)

U2,2D =
n=∞∑
n=1

(
A3cosh

(nπx1

Λ

)
+ A4sinh

(nπx
Λ

x1

)
+ 2G(1 − (−1)n)

Kn3π3

)
sin(nπz1),

(6.6)

where x1 and z1 are the dimensionless variables in the rectangular coordinate system (i.e.
x = x̃/W̃ and z = z̃/ΛW̃). Equations (6.3)– (6.6) should be solved subject to continuity of
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tangential velocity and shear stress at the interface i.e. x = h̃/w̃ = h as

U1|x1=h = U2|x1=h, (6.7)

dU1

dx1
|x1=h = K

dU2

dx1
|x1=h, (6.8)

and the no-slip boundary condition at the walls. For 1-D channel flows, solving these
equations with respect to the previously mentioned boundary condition leads to

C1 = C3 = 3(Kh2 − h2 + 1)

h2(Kh2 − h2 − 2h + 3)
,

C2 = 0, C4 = − 3(Kh − k − h + 1)

h2(Kh2 − h2 − 2h + 3)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.9)

and for 2-D rectangular channels, assuming a flat interface (i.e. Ca = 0), leads to

A1 = 2(−1 + (−1)n)

(
cosh

(
1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπ

)2

− (K − 1)

(
sinh

(
1
Λ

nπh
)

sinh
(

1
Λ

nπ

)
+ cosh

(
1
Λ

nπ

))
cosh

(
1
Λ

nπh
)

+ sinh
(

1
Λ

nπ

)
(K − 1)sinh

(
1
Λ

nπh
)

+ cosh
(

1
Λ

nπ

)
− 1

)
G
/(

π3

(
sinh

(
1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)2

− sinh
(

1
Λ

nπh
)

cosh
(

1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)

− Ksinh
(

1
Λ

nπ

))
n3
)

, (6.10)

A2 = 2G(−1 + (−1)n)/(n3π3), (6.11)

A3 = 2

(
(K − 1)cosh

(
1
Λ

nπh
)2

− cosh
(

1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)

+ K
(

cosh(
1
Λ

nπ) − 1
))

(−1 + (−1)n)

G

/(
π3

(
sinh

(
1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)2

− sinh
(

1
Λ

nπh
)

cosh
(

1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)

− Ksinh
(

1
Λ

nπ

))
n3K

)
,

(6.12)
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A4 = −2(−1 + (−1)n)

(
(K − 1)

(
sinh

(
1
Λ

nπh
)

− sinh
(

1
Λ

nπ

))
cosh

(
1
Λ

nπh
)

+ Ksinh
(

1
Λ

nπ

))
G
/(

π3

(
sinh

(
1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)2

− sinh
(

1
Λ

nπh
)

cosh
(

1
Λ

nπ

)
(K − 1)cosh

(
1
Λ

nπh
)

− Ksinh
(

1
Λ

nπ

))
n3K

)
. (6.13)

One should note that, along with the unknown constants (C1 − C4 and A1 − A4 in 1-D
and 2-D problems, respectively), values of G and h are also unknown but they can be
calculated by setting the flow rate of each fluid to be equal. In the 1-D problem we consider
the flow rate in each phase to be equal to ŨBW̃/2 (or in our dimensionless form equal to
0.5). Using the flow rate constraint for fluid-1, one can calculate the unknown pressure
gradient G for the 1-D problem as

G = − 6(Kh − h + 1)

h2(Kh2 − h2 − 2h + 3)
, (6.14)

which is equal in both fluids. Setting the flow rate to the value of 0.5 for fluid-2, leads to
the following constraint for the variable h

0.5 + (0.5 − 0.5K2)h4 + (4K − 2)h3 + (3 − 6K)h2 + (2K − 2)h
h2K(3 + (K − 1)h2 − 2h)

= 0. (6.15)

For the 1-D problem, the unknown value of h can be obtained, now, by solving (6.15)
numerically. In this work, a bisection method has been used to solve this (Chapra & Canale
2010). A similar approach can be used to calculate the unknown values of G and h in the
2-D problem, which, due to the series form of the problem and large size of the equations,
are not presented here.

7. Results and discussion

In this section, results obtained using the analytical solutions, numerical simulations and
some supporting experiments for two-phase flows of both Newtonian and viscoelastic
fluids in the cross-slot geometry are presented.

7.1. Newtonian fluids
To better understand the effect of the various parameters playing a role in this problem, a
discussion on the location and shape of the interface of two Newtonian fluids in the fully
developed section of the outlet arms is first carried out. This discussion will then be used
to qualitatively investigate the effect of these parameters on the important kinematics of
the flow field near the corners of the cross-slot geometry, which are known to be regions
driving the instability for the viscoelastic case (Davoodi et al. 2019). Similar to the idea
used by Davoodi et al. (2018) for normalization of the aspect ratio, here, a modified form
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of the viscosity ratio parameter is defined as

K∗ = K
K + 1

. (7.1)

Using this definition, when the viscosity ratio K changes from zero to infinity, the modified
form of the viscosity ratio K∗ varies from zero to one, respectively. For the 1-D problem,
using (6.15), one can say that, by changing the viscosity ratio parameter, the term h(1 − h)

should show two roots at K∗ = 0 and K∗ = 1. So, in the limits of K → 0 and K → ∞,
the h parameter tends toward one and zero, respectively. Similarly, for K = 1 (K∗ = 0.5)
(i.e. fluids in each phase have identical properties), one can easily show analytically that
h = 0.5.

Knowing that experiments are necessarily carried out in finite cross-section aspect
ratio domains, in figure 3 we analyse the variation of the position of the boundary
between the two fluids, represented here via use of h(1 − h) plotted against the normalized
viscosity ratio parameter K∗ using both 2-D and 3-D numerical solutions for four
different aspect ratios (the corresponding analytical solutions are simply one-dimensional
and two-dimensional as there is no variation in the flow direction due to the fully
developed assumption). The analytical results are shown to be in good agreement with the
experimental and numerical results. Note that at Ca = ∞, i.e. when interfacial tension is
zero, due to the jump of normal forces at the interface the flow may be unstable (Yih 1967)
and one might need to use large interfacial tension to avoid such instability (Hooper &
Boyd 1983; Barmak et al. 2016). Considering the fact that it is impossible to obtain Ca =
0, i.e. interfacial tension equal to infinity, the numerical results for 0 < K∗ < 0.5 presented
in figure 3 were carried out at a high value of the interfacial tension (Ca = 0.005) and the
h(1 − h) parameter is calculated downstream of the central cross such that the flow is fully
developed. A series of complimentary simulations with Ca = ∞ were also carried out
for 0.5 < K∗ < 1. As was also previously reported initially by Yih (1967), our numerical
simulations suggest that, in the absence of interfacial tension, the flow may be unstable and
the interface in the neutral direction is no longer flat (figure 4). In these cases, the value of
h obtained numerically and experimentally is taken at the central plane z = 0.5. Knowing
that this instability is observed due to the nonlinear nature of the convection terms in
the Navier–Stokes equation, one may expect that, by reducing the Reynolds number, the
size of the disturbance along the interface should reduce and eventually, at Re = 0, the
flow, and consequently the interface of the two fluids, should obtain a steady-state form.
Interestingly, in both the numerical simulations and experimental procedure, the location
of the interface of the two fluids is shown to be quasi-static, in agreement with the results
of Bonhomme et al. (2011) using similar systems (water and glycerol solutions), which is
related to the very small value of the Reynolds number (Re ≈ 10−3) in these cases (Yih
1967). Thus, it should be recognized that, outside of our 2-D simulations, the experiments
and numerical simulations (with high Ca) may not be truly steady state, although, as the
interface remains essentially constant in time, we will treat them as so. For all aspect
ratios, the effect of the normalized viscosity ratio parameter is exactly symmetric about
K∗ = 0.5 (i.e. K = 1), highlighting the inherent symmetry in the problem. From the results
presented in figure 3, it is clear that by increasing the viscosity of one of the two fluids,
considering that the pressure drop should be equal in both phases, to retain a rectilinear
flow, the average velocity of the more viscous fluid reduces, and so the area required to
satisfy the constant flow rate constraint increases. Our analytical and experimental results
suggest that this effect is magnified as the aspect ratio is reduced.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.05

0.10

0.15

0.20

0.25
h(

1
–

h)
Numerical 1D
Analytical 1D
Analytical 2D (Λ = 1000)
Numerical 2D (Λ = 1)
Analytical 2D (Λ = 1)
Analytical 2D (Λ = 0.29)
Analytical 2D (Λ = 0.22)
Numerical 2D (Λ = 1)
Experimental (Λ = 0.83)
Experimental (Λ = 0.29)
Experimental (Λ = 0.22)
Numerical 2D (Λ = 0.83)
Numerical 2D (Λ = 0.29)
Numerical 2D (Λ = 0.22)

K∗

Figure 3. Variation of the height of the interface between two fluids with viscosity ratio for Newtonian fluids.
The values of the numerical simulations presented in the ranges 0 < K∗ < 0.5 and 0.5 < K∗ < 1 are taken in
the outlet arms for y = 5W̃ with Ca = 0.005 and Ca = ∞, respectively.

(a)
(i)

(ii)

(iii)

(b) (c)

Figure 4. Visualization of the interface between two Newtonian fluids in the fully developed region of
the outlet arm with Ca → ∞ and viscosity ratios (a) K = 1, (b) K = 0.16, (c) K = 0.03 (where the fluid
shown in dark grey is the most viscous one) using Λ = 0.83 (i) in the experiment and (ii–iii) in numerical
simulations. Figures (i) and (ii) are presented in (x, y) plane centred at z = 0 for 1.5 < y < 2 while (iii) show a
cross-sectional view of the channel ((x, z) plane) at y = 1.

Figure 4(i) shows the interface of two fluids in the fully developed region of the outlet
arm (1 < y < 1.4) observed in our experiments. As also shown in figure 3, if the viscosity
of the two fluids is identical (i.e. K = 1 or K∗ = 0.5), the interface is located at the
mid-distance between the two walls, as the K parameter exhibits a non-unity value the
more viscous fluid moves the interface such that the average velocity decreases in this
phase and increases for the less viscous phase. By changing K, one can clearly see the
appearance of a ‘shadow’ region at the interface. The presence of this shadow region
suggests that, when K exhibits a non-unity value, the interface location is varying along
the depth of the cross-section. It should be noted that, in our experiments, Re is low and
the Péclet number (Pe), i.e. the relative importance of advection to diffusion, is large
(in excess of 1000), suggesting that, here, the two miscible fluids flow side by side without
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(a)

(i)

(ii)

(b)

Figure 5. Effect of viscosity ratio with Ca = ∞ and (a) K = 1, (b) K = 0.03 for Λ = 0.83 in (i) the
experiment and (ii) in numerical simulations, where the most viscous fluid (fluid-1) is on the left-hand side.

mixing (Petitjeans & Maxworthy 1996; d’Olce et al. 2009; Bonhomme et al. 2011). To
investigate this shape of the interface in more detail, a series of 3-D numerical simulations
for aspect ratio Λ = 0.83 with different values of K was simulated (figure 4ii,iii) in the
limit of Ca = ∞ (by setting the interfacial tension equal to zero). Note that, to portray
the ‘shadow’ influence of the interface in the numerical simulations, the opacity of the
two fluids is reduced to 50 % while the opacity of the interface (i.e. the iso-contour with
C = 0.5) is kept at 100 %.

In figure 5, results related to the effect of the viscosity ratio parameter K on the central
region of the cross-slot geometry are presented. As can be seen, by increasing the viscosity
of fluid-1 (the fluid injected from the ‘left’ inlet), the interface of the two fluids shifts
towards ‘the right’ and a ‘dimple’ starts to grow near the stagnation point. The mechanism
responsible for the shift of the interface of the two fluids is identical to the one previously
discussed in the fully developed regions of the outlet arms. By increasing the viscosity
of fluid-1, the pressure gradient required to ensure a constant average flow velocity is
increased, so the fluid requires more space to satisfy the constant flow rate constraint.
As is well known, in two-phase flow problems, a jump of normal forces appears at the
interface of the two fluids that is balanced by the effect of interfacial tension as follows
(Rybczynski 1911; Taylor & Acrivos 1964):

τ̃ 1,xx − τ̃ 2,xx − p̃1 + p̃2 = σ̃
1

R̃ , (7.2)

where in the Newtonian problem τ̃i,xx = 2η̃i(∂Ũi,x/∂ x̃). One can show that, at the
stagnation point, because ∂U/∂x = ∂U1,x/∂x = ∂U2,x/∂x = const., if η̃2 < η̃1 then
τ̃2,xx < τ̃1,xx, that can potentially lead to the presence of a positive curvature at the
interface. In the inlet arms, a higher pressure is required to flow the fluid with higher
viscosity and consequently a pressure difference at the two inlet arms appears. Due to this
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(a)
(i)

(ii)

(b)

Figure 6. Effect of interfacial tension for K = 44.78 with (a) Ca = 5.90 × 10−1, (b) Ca = 7.08 × 10−4 for (i)
Λ = 0.83 in the experiment and (ii) 2-D numerical simulations. In the experiments, the oil is injected through
inlet-1 and the aqueous solution through inlet-2.

reasoning, by increasing the viscosity of fluid-1, one may expect a jump of the normal
force at the interface of the two fluids leading to the appearance of a dimple with a
positive curvature at the interface of the two fluids (i.e. the left-hand side terms in (7.2)
find a positive value that balances with the interfacial stress, interfacial tension times
by the curvature of interface, on the right-hand side). From (7.2), one can realize that,
by increasing the interfacial tension, to balance a constant jump in the normal force, a
smaller curvature is required. As shown in figure 6, by increasing the interfacial tension
(i.e. reducing Ca) the curvature appearing at the interface of the two fluids reduces and
eventually leads to a flat interface below a critical value of Ca (see figure 6b). Further
experiments, using geometries with different aspect ratios, shown in figure 7, reveal that
the size of this dimple dh (defined in figure 7b) is also a function of the aspect ratio. As
the aspect ratio parameter is reduced, the influence of the shear stress at the walls and
consequently on the pressure gradient at the inlet arms becomes more important leading
to a more pronounced curvature at the interface of the two fluids. A more quantitative
investigation on the effect of aspect ratio and viscosity ratio parameter on the dimple size
is presented in figure 8 using experimental results and 3-D numerical simulation.

Figure 9 shows the effect of the viscosity ratio on the flow patterns, showing good
qualitative agreement between the numerical simulation (where the streamlines are
superimposed on contour plots of the magnitude of the non-dimensional velocity gradient)
and the experimental results. As also shown in figure 3, by increasing the viscosity of
fluid-1, the h parameter increases leading to a reduction in the associated area which fluid-2
requires to pass in the outlet arms. To satisfy the constant flow rate constraint in the outlet
arms, the mean value of velocity in fluid-2 increases which also leads to a higher shear
rate near the corners of the cross-slot geometry.
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(a) (b)

dh

Figure 7. Effect of aspect ratio for K = 0.03 with (a) Λ = 0.83, (b) Λ = 0.22 including definition of dimple
size d̃h. The most viscous fluid (fluid-1) is on the left-hand side.

10 20 30 40 50 60 70 80 90 100

1/K
0

0.05

0.10

0.15

0.20

dh

Experimental (Λ = 0.83)
Experimental (Λ = 0.29)
Experimental (Λ = 0.22)
Numerical (Λ = 0.22)
Numerical (Λ = 0.29)
Numerical (Λ = 0.83)
Numerical (Λ = 0.83, M2)

Figure 8. The variation of normalised dimple size with the viscosity ratio for different aspect ratios. Dimple
size dh is defined in figure 7.

(a)
(i)

(ii)

(b) (c)

0 30
|∇U|

Figure 9. Streamlines obtained using (i) numerical method superimposed on the magnitude of the
non-dimensional velocity gradient with Λ = 0.83 and Ca = ∞ and (ii) experimental results with Λ = 0.83
for (a) K = 1, (b) K = 0.16, (c) K = 0.03, where the most viscous fluid enters through inlet-1 (on the left-hand
side).
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7.2. Viscoelastic fluids

7.2.1. Effect of elasticity on the symmetry-breaking instability
In Figures 10 and 11 the effects of the elasticity on the symmetry-breaking instability
for Ca = ∞ is illustrated. In figure 10, 2-D simulation results, corresponding to cases in
which the fluids in the inlet arms have the same elastic properties, are presented. It is
shown that, beyond a critical value of the Weissenberg number, even in the absence of
any significant inertia, elasticity can break the symmetry of the flow field leading to a
steady-state purely elastic instability, as seen in previous works with 2-D cross-slot flows
with a single viscoelastic fluid (e.g. Poole et al. 2007). Imposing a zero value of interfacial
tension (i.e. σ̃ = 0), the body force applied on the interface is set to zero (the F̃ term
in (3.6)). In this case, by setting the rheological properties of the two fluids to be equal,
one can expect the conservation of momentum ((3.6) for the two-phase flow problem) to
reduce to its equivalent equation in a single-phase problem. In figure 11(a), a comparison
between the results obtained using the rheoFoam and rheoInterFoam solvers for cases
with Wi1 = Wi2 is presented with red diamond and circles, respectively, showing both
good qualitative and quantitative agreement. The rheoFoam solver is a single-phase flow
solver and rheoInterFoam is a two-phase flow solver implemented in the rheoTool package
in OpenFOAM (Pimenta & Alves 2017). Both solvers predict a supercritical growth of
the asymmetry parameter AP near the critical value of the Weissenberg number Wicr =
0.511, which is in good agreement with previously reported studies for the same model
and parameters (Cruz et al. 2016). The present results give us confidence in the correct
implementation of the viscoelastic constitutive equation in the two-phase flow solver.

To investigate the effect of different viscoelastic properties of each fluid in our two-phase
flow problem, in figure 11(a) the ratio of the relaxation times of each fluid injected in
the inlet arms are varied. As can be seen, in agreement with the single phase results,
the instabilities in all cases exhibit supercritical growth beyond the critical Weissenberg
number: this is a well-known signature of the symmetry-breaking purely elastic instability
in cross-slot geometries for single-phase fluids.

Our numerical results show that, when a fluid with a lower relaxation time is injected
from one inlet (here, inlet-2), the critical condition based on the properties of the more
elastic fluid (i.e. inlet-1) is shifted to a higher value of Weissenberg number. As such,
injection of a less elastic fluid in one arm is seen to be stabilizing overall in the sense that
the more elastic arm remains steady and symmetric at values of the Weissenberg number
well beyond which it would when flowing as a single-phase fluid.

The variation of this critical Weissenberg number vs the ratio of inlet arm Weissenberg
numbers is presented in figure 11(b). We can see that, for small differences between
the elasticities of the two inlets, 0.75 < Wi2/Wi1 < 1, an average Weissenberg number
(i.e. 0.5(Wi1 + Wi2)) exhibits an approximately constant critical value but, for greater
differences, the stabilization effect becomes significantly more pronounced. In fact, in
the limit that a Newtonian fluid is injected from one of the inlets, no symmetry-breaking
instability was observed for the range of Weissenberg number investigated in this work
(tested up to Wi1 ≈ 5). As we have already stated, one should note that, once the elasticity
of the two fluids is different, the presence of a jump in normal stresses across the
interface means the flow becomes potentially unstable to a time-dependent instability of
the type previously reported by Wilson & Rallison (1997). However, for the values of
parameters shown here, we do not observe an instability of this type. We note figure 11(b)
suggests that, in the limit that the elasticity of one of the inlets goes to zero (i.e.
Newtonian), the critical Weissenberg for the other inlet stream becomes singular and the
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Figure 10. Effect of viscoelasticity on the 2-D steady symmetry-breaking instability of two fluids with
K = 1, Ca = ∞ for (a) Wii = 0.4, (b) Wii = 0.515, (c) Wii = 0.55, (d) Wii = 1, and i = {1, 2}.
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Figure 11. (a) The stability diagram for symmetry-breaking instability and (b) the variation of critical
Weissenberg number with the ratio of Weissenberg numbers for two-phase flow problems with Ca = ∞ and
K = 1.

flow should be stable. However, it is likely that, in this limit, other, possibly time-dependent
instabilities, will arise – such as those observed by Wilson & Rallison (1997) – and
therefore very careful studies of this region are suggested. Indeed, our own preliminary

922 A12-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.473


M. Davoodi and others

0 2.1

M

(a) (b)

(c) (d )

Figure 12. The local distribution of the M parameter before the onset of the instability at (a) Wi1 = 0.51, (b)
Wi1 = 0.58, (c) Wi1 = 0.735 and (d) Wi1 = 1.18 for (a) Wi2/Wi1 = 1, (b) Wi2/Wi1 = 0.75, (c) Wi2/Wi1 = 0.5
and (d) Wi2/Wi1 = 0.25 with Ca = ∞ and K = 1. The white circles indicate the location where M reaches a
critical value of ≈ 1 in fluid 2.

simulations in this region do suggest that a new time-dependent instability arises which is
possibly subcritical and very sensitive to initial conditions, time step and mesh.

In our recent work (Davoodi et al. 2019), using a modified form of the cross-slot with
a cylinder placed at the geometric centre, we have shown that the symmetry-breaking
instability observed in the ‘standard’ cross-slot geometry for single-phase fluids is more
than likely related to streamline curvature and the high deformation rates as the flow
rounds the corner of the geometry. In addition, we were able to show that the so-called
Pakdel–McKinley (McKinley et al. 1996) criterion ( the ‘M’ parameter given in (1.1)) can
be used successfully to predict the scaling of this instability (for example how the diameter
of the cylinder used changes the critical flow rate).

In figure 12 the local distribution of the Pakdel–McKinley M parameter is shown just
prior to instability onset at Wi1 = 0.51, 0.58, 0.735 and 1.18 for Wi2/Wi1 = 1, 0.75, 0.5
and 0.25 respectively. As can be seen, the location of the maximum M value appears at the
corners of the more elastic fluid stream (the left-hand inlet in all cases) with the maximum
value not appearing to be a constant but depending on the ratio of Wi2/Wi1. In fact, as the
Pakdel–McKinley parameter is singular for flow around a sharp corner (as discussed in
the Appendix), simply looking at the maximum value of M in the cross-slot domain when
a sharp corner is present is unhelpful. Instead, we probed the differences between these
contour distributions near critical conditions to identify critical regions in the flow outside
of the domain of influence of the singularity from the corner. In so doing, we identified
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Figure 13. Effect of interfacial tension on the symmetry-breaking instability of two fluids for (a) Ca = ∞,
(b) Ca = 1, (c) Ca = 0.1, (d) Ca = 0.05, with Wii = 0.6, i = {1, 2} and K = 1.

a repeating pattern where the M value reaches a critical value of ≈ 1 in each case just
immediately prior to instability onset. This location is highlighted by the white circles in
each panel in figure 12 and is consistent with regions in the flow which were associated
with the instability in Poole et al. (2007). It appears that instability occurs only once a
critical value of M is exceeded in this region in both inlet streams. Thus, in combination
with the singularity induced by the sharp corner, simply looking at the maximum value of
M in the whole cross-slot domain does not predict instability onset.

7.2.2. Effect of interfacial tension on the symmetry-breaking instability
As is well known, the interfacial tension acts along a surface which suggests that, by
increasing the interfacial tension, the interface of two fluids should become flatter (as
was also discussed in the Newtonian creeping-flow problem). In figure 13, this stabilizing
effect of the interfacial tension on the flow of viscoelastic fluids in a cross-slot is illustrated.
The results suggest that at fixed values of Wi1 = Wi2, once the instability is triggered, by
increasing the interfacial tension (i.e. reducing Ca) the interface of the two fluids becomes
flatter, having a stabilizing effect. The variation of the AP parameter with Wii, i = 1, 2, is
plotted in figure 14, showing that the fundamental supercritical nature of this instability is
unchanged as is also observed in the single-phase case (figure 11).
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Figure 14. Effect of Wii with i = {1, 2} on the steady symmetry-breaking instability for K = 1 and different
capillary numbers.

In a single-phase flow problem in the cross-slot geometry the curvature parameter can
be estimated using the width of the channel as 1/R̃ = 1/(aW̃) in (1.1) where a is an
unknown constant which scales this reference length. In the two-phase problem, due to the
presence of the normal-stress jump in (7.2), an additional curvature modification appears
with a contribution from the interfacial tension. Assuming a constant jump of the normal
stress b̃ at the interface of the two fluids (i.e. considering the left-hand side of (7.2) to be
equal to a constant b̃), the radius of the interfacial curvature can be scaled as R̃ = σ̃/b̃.
Strictly speaking, the normal-stress jump at the interface is a weak function of the capillary
number. Here, for the sake of an approximate scaling analysis, the stress jump is assumed to
be a constant in order to make progress. Later, a comparison between the results predicted
using this assumption and the results in the 2-D numerical simulations will be carried out
to show that the jump of normal stress at the interface of two fluids is only a weak function
of Ca and this assumption is therefore a valid approximation in this analysis.

An initial analysis suggests that neither σ̃/b̃ nor aW̃ provides a good approximation of
the characteristic curvature of the streamlines in the two-phase cross-slot flow problem
and in fact this characteristic length scale is influenced by both of these parameters.
Introducing the modifying effect of the interfacial tension on the curvature radius of the
flow using a linear combination, the reference curvature may be estimated as

1

R̃ = 1

aW̃ + σ̃/b̃
. (7.3)

Assuming the modification applied to the streamline curvature due to the interfacial
tension is small (i.e. aW̃ 
 σ̃/b̃), using a Taylor expansion one can rewrite (7.3) as

1

R̃ = 1

aW̃
− σ̃

b̃a2W̃2
. (7.4)

Here, a and b̃ are undetermined constants. Assuming a steady-state purely shear flow for
an Oldroyd-B fluid (which the sPTT model approaches in the α → 0 limit), one may scale
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Figure 15. Variation of critical values of Weissenberg number against capillary number for K = 1. Analytical
fit 1/Wii,cr = −(0.0185/Ca) + 1.938 shown by solid line for i = {1, 2}.

the normal-stress component in (1.1) as

τ̃11 = 2λ̃η̃p ˜̇γ 2. (7.5)

Here, using Ũb and R̃ as reference scales for the velocity field and the length, respectively,
the reference shear rate may be expressed as ˜̇γ = Ũb/R̃. Substitution of these estimates
into the dimensionless M criterion ((1.1)), results in the following condition for the onset
criterion of a purely elastic instability in the two-phase cross-slot flow problem:

Mc =
√
λ̃Ũb

W̃

(
a′ − b′

Ca

)
2(1 − β)

λ̃Ũb

W̃

(
a′ − b′

Ca

)
, (7.6)

where a
′ = 1/a, b

′ = η̃tŨB/b̃a2W̃ and Mc are unknown constants. However, factoring out
the quantity (λ̃Ũb/W̃)2 and, after some rearrangement, one can simplify the equation into

1
Wicr

= ā − b̄
Ca

, (7.7)

where, ā = (a
′√

2(1 − β))/Mc and b̄ = b
′√

2(1 − β)/Mc are unknown constants.
Figure 15 shows good agreement between the fit obtained based on (7.7) and the results
of 2-D numerical simulations. This simple correlation allows the prediction of the onset
of a purely elastic instability in the two-phase cross-slot flow as a function of the capillary
number and captures the stabilizing effect of interfacial tension.

The effect of the total viscosity ratio parameter K is briefly depicted in figures 16–18.
As shown in figure 16, reducing the K parameter pushes the interface of the two fluids
towards the ‘right’, in agreement with the Newtonian results having an initial stabilizing
effect. However, the simulations show that a further reduction of K below a critical value
triggers a time-dependent instability (cf. figure 17). There are a number of plausible
mechanisms which could drive this instability: an increase in the shear rate of fluid-2 near
the corner (i.e. an increase in the local value of the Weissenberg number in this region), the
stratification of viscosity (Yih 1967), a jump of elastic normal stresses across the interface
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Figure 16. Effect of the viscosity ratio parameter on the symmetry-breaking instability of two fluids for
(a) K = 1, (b) K = 0.25, (c) K = 0.5, (d) K = 0.1, with Wii = 1, i = {1, 2} and Ca = 0.005.

(Wilson & Rallison 1997) or a combination of these. The results presented in figure 17
show the time-dependent nature of this instability at two different instances in time. By
computing the variation of the root-mean-square (r.m.s.) of the asymmetry parameter (i.e.
APr.m.s.) with the Weissenberg number, such as those shown in figure 18, we quantify this
instability for both increasing and decreasing Weissenberg number ramps. It can be seen
that a hysteresis exists at the critical conditions for the instability between the two ramps
considered. The APr.m.s. parameter is defined as follows:

APr.m.s. =
n=N∑
n=1

√
(〈AP〉 − APn)2

N
, (7.8)

where APn is the value of asymmetry parameter at time t and 〈AP〉 indicates an average of
the asymmetry parameter in the defined period of interest from n = 1 to n = N.

Here, the critical Weissenberg number for the decreasing ramp is found to be 0.745
while for the increasing ramp it is 0.815. As is well known, the level of hysteresis observed
in such instabilities depends on the level of noise and therefore on many factors including
the numerical solver, numerical method and mesh. Therefore, aside from demonstrating
that this new instability is clearly sub-critical we do not probe this further here.
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Figure 17. Onset of the new time-dependent symmetry-breaking instability in two different time instances for
K = 0.001, Wii = 1, i = {1, 2} and Ca = 0.005.
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Figure 18. The variation of r.m.s. of the asymmetry parameter for the time-dependent symmetry-breaking
instability with K = 0.001 and Ca = 0.005 using an increasing Wii ramp (open) and decreasing ramp (closed
symbols) for i = {1, 2}.

8. Conclusions

In this paper, a series of 2-D numerical simulations with supporting 3-D cases and
experiments were carried out to investigate the effects of two-phase flows of Newtonian
and/or viscoelastic fluids on the flow characteristics and onset of a well-known purely
elastic instability in the cross-slot geometry. Simulations for creeping Newtonian flows,
with significant interfacial tension (Ca = 0.005), suggest that, by reducing K, the interface
of the two fluids is displaced to a new location. It is worth mentioning that the effect of
the viscosity ratio on the location of the interface of two fluids in microfluidic devices has
been previously studied and used in rheometry for the measurement of the shear viscosity
(Guillot et al. 2006; Gachelin et al. 2013). To study the effect of this phenomenon, an
analytical solution for the creeping fully developed flow of two fluids with a flat interface
in between two infinite parallel plates (1-D channel flow) was obtained and compared
with our experimental results in the fully developed regions of the outlet channels of the
cross-slot. Our results have shown that, by increasing the viscosity of one of the fluids,
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the pressure drop changes and so the average velocity of the fluid with higher viscosity
reduces. To satisfy a constant flow rate constraint in both fluids the area required for the
higher viscosity fluid to flow needs to increase resulting in a relocation of the interface. The
mechanism behind the relocation of the interface in the fully developed region downstream
of the cross-slot is similar to the one discussed analytically in a planar channel. Using both
numerical simulations and experimental results it is also shown that, when K exhibits
a non-unitary value, a ‘dimple’ appears at the interface of the two fluids in the central
region of the cross-slot stagnation point, which is related to the jump of the viscous normal
stresses at the interface of the two fluids. The results suggest the size of this dimple is a
function of the channel aspect ratio and interfacial tension, with the interface becoming
flatter as interfacial tension is increased. This change in the shape of the interface is related
to a balance between interfacial stress and the jump of the viscous normal stress.

For the viscoelastic simulations, injecting two fluids with different elastic properties
from each inlet arm is shown to have a significant stabilizing effect on the purely elastic
instability, based on the properties of the fluid with the larger relaxation time. The results
also show that the Pakdel–McKinley criterion needs to obtain large values on both sides
of the cross-slot before instability will occur. This result suggests a simple method that
could be used experimentally to delay the onset of this symmetry-breaking instability
practically. Also, for the cases where both fluids have similar viscoelastic properties, at a
constant capillary number, by increasing the Weissenberg number beyond a critical value
such that a purely elastic instability arises, the flow distribution and consequently the
interface of the two fluids becomes asymmetric yet remains steady in most cases. Once
the instability is triggered, by reducing the capillary number (i.e. increasing the interfacial
tension) at a constant Weissenberg number the interface of the two fluids becomes flatter
and eventually regains symmetry. Finally, the modification of the interfacial stress on the
streamline curvature is introduced in the onset criterion for instability using the so-called
Pakdel–McKinley criterion ((1.1)). An approximate analytical expression was obtained
that can be successfully used to predict how the critical Weissenberg number scales with
the capillary number. Excellent qualitative agreement is found between this approximation
analysis and the full nonlinear simulations. Finally, at high interfacial tension (i.e. low Ca)
a new time-dependent viscoelastic instability is shown to occur.
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Appendix. Analysis of the Pakdel–McKinley parameter around sharp corners

Following the classic asymptotic analysis carried out by Hinch (1993) for the flow of an
Oldroyd-B fluid around a re-entrant corner, one can show that, close to the corners of a
cross-slot geometry, the velocity vanishes like r5/9 and so the shear rate is singular like
r−4/9, τ̃11 is singular like r−2/3 and 1/R̃ is singular like r−1 (simply because u and v scale
in the same manner). Note that an analytical solution for the stream function is presented
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in Hinch (1993) so, alternatively, one can calculate the curvature of the streamlines using
the formulation presented in Cruz et al. (2016) to obtain the same result. Including all
these scaling estimates in (1.1), M2 should be singular like r−2/3.

Alternatively if the second term in (1.1), is estimated simply as τ̃11/τ̃12, as these stresses
scale in the same way as you approach the corner, M2 will scale in this case as |ũ|/R̃,
which again gives a singular behaviour like r−4/9. One thing that should be noted here
is that the study of Hinch (1993) is based on the assumption that the flow rounds the
corner and stays attached (while, in reality, at higher rates the flow field can also develop a
so-called lip vortex). Thus, this analysis cannot strictly be used while outside the so-called
‘elastic core’. Note that in all the numerical simulations and, particularly the results
presented in figure 12, a no-slip boundary condition for the velocity field at the wall is
applied (so the velocity has an exact value of zero here), but the stress value at the wall is
always extrapolated from the nearby cell and, therefore, has a necessarily finite value. As a
consequence, M is always zero at the wall once this extrapolation approach is used, and in
fact the maximum value of M always occurs in the first computational cell away from the
corner and not exactly at the corner itself. In such situations, as the mesh is continuously
refined, one would notice that M will exhibit larger and larger values here so the maximum
value of the M is always mesh dependent (i.e. M is singular at the corners for any non-zero
value of the Weissenberg number).
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