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A FAMILY OF CRYSTALLOGRAPHIC GROUPS WITH
2-TORSION IN Ko OF THE RATIONAL GROUP ALGEBRA

by P. H. KROPHOLLER and B. MOSELLE

(Received 15th January 1990)

We calculate Ko of the rational group algebra of a certain crystallographic group, showing that it contains an
element of order 2. We show that this element is the Euler class, and use our calculation to produce a whole
family of groups with Euler class of order 2.

1980 Mathematics subject classification (1985 Revision): 16A54, 18F25, 18F30, 20C07.

1. Let D denote the infinite dihedral group <a,b\a2 = b2 = 1> and n:D->C2 the map
onto the cyclic group of order 2 with infinite cyclic kernel. Then n extends to a map on
the direct product of n copies of D, n": D"->C2 and for n greater than one we define Gn

to be the kernel of n" (so Gn is the orientable subgroup of D").
In this note we show that the Euler class E(QGn) in K0(QGn) (i.e. the class of the

trivial Gn-module Q—see para. 2) of QGn has order two if n is odd, and infinite order if
n is even. So in particular no Gn is of type (FL) over Q. The calculation proceeds as
follows: in paragraph 2 we show that 2£(<QGodd) = 0, and in paragraph 3 that £(QGeven)
has infinite order. Paragraph 4 consists of a more detailed calculation which shows that
£(QG3)#0, and that in fact

/Co(QG3)sZ1 30Z/2Z. (1.1)

Finally (para. 5) we prove a lemma about Ko of direct products Gm x Gn from which it
follows that no Gn is of type (FL), so that E(QGn) has order exactly two for all odd n.

The main calculation (para. 4) can be done using either results due to Quinn [6] or
the work of Waldhausen [7]. Quinn's result enables one to calculate Ko of the rational
group algebra of any virtually polycyclic group, while we follow Farrell [2] in using
Waldhausen's techniques, which apply to groups which are free products with amalga-
mation (in the polycyclic case this amounts to saying they have D as a quotient) and are
known to be valid over any field k of characteristic zero, so that (1.1) is actually true for
K0(kG3). In theory, the same methods could be used to calculate K0(QGn) for all n
because we can regard each Gn as the free product with amalgamation of two copies of

2. Over a field of characteristic zero the group algebra of any polycyclic-by-finite
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group is Noetherian and of finite global dimension. In particular Gn is of type (FP) over
Q and is in fact an orientable P£)"-group over <Q>. The trivial G-module Q admits a finite
projective resolution

2
»P,-»Po-Q-»O, (2.1)

and as always, the group has type (FL) over Q if and only if the Euler class
E = [ P o ] - [ P i ] + " - + ( - 1 ) " [ P J is zero in K0(QGn). We shall show that for n = 3

E can be identified with the element of order 2 in Ko. (2.2)

The fact that 2£ = 0 follows from the following choice of resolution. Let D =
(a,b\a2 = b2 = 1> as before, and let Qo, Q, denote the trivial and non-trivial irreducible
QC2 modules respectively. Then we define two QD-modules as follows

8
(2.3)

and note that Q has a QD-resolution

O - ^ - ^ - ^ Q - O (2.4)

Tensoring together n copies of this we obtain a projective resolution of Q over QD",
and hence by restriction over QGn, as in (2.1), with

p,=e(T£(1)®---®r£(n)) (2.5)

where the direct sum is taken over all functions e:{l,...,«}-»{0,1} taking the value 1 i
times.

Now D has an outer automorphism (j> defined by a<p = b, b<t> = a, which extends
diagonally to an automorphism of D" and then restricts to an automorphism of Gn, also
to be denoted by </>. Given any Gn-module M one can form a new module M</>, and one
can check that Pf^Pn_i as Gn-modules. Twisting the resolution (2.1) by <p we therefore
obtain a new projective resolution

0 - P o - » P , - P 2 - » " — P B - Q - 0 (2.6)

Applying Schanuel's lemma to (2.1) and (2.3) shows that for n = 2m+ 1

(2.7)
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and in particular 2£ = 0. The fact that £ is non-zero shows that P0®P2

P i © P 3 © •©/>2m+i a r e n o t even stably isomorphic.
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3. The example also shows that Remark 5 of [5] is not quite true as stated. The
remark which is true, and which Moody apparently intended, asserts that if P and F
are projective modules (over any polycyclic group algebra kV, k of characteristic zero)
with rank functions r and r' then r = r' if and only if [P] — [ F ] is a torsion element of
Ko. The rank functions can be regarded as elements of the free abelian group on the
conjugacy classes of F, and cannot detect torsion in Ko. Thus, for example, the modules
(Po® "®P2m) a n d (Pi®'"®P2m+i) °f paragraph 2 have the same rank functions. In
fact this is clear from a result of K. S. Brown. In [1] he proves the following formula:

rr{E)(s) = rZis)(E)(\) ifs has finite order
0 if s has infinite order

(3.1)

where E denotes the Euler class of F on the left, and of Z(s) = Zp(s), the centraliser of s in
F, on the right hand side.

Now for F polycyclic-by-finite and non-trivial it is easy to show that ?>(£)( l) = 0 if
and only if F is infinte. So for the 'total Euler characteristic' r(£) to vanish it is
necessary and sufficient for every element to have infinite centraliser, and this is satisfied
by our groups Gn if and only if n is odd. It follows that £(QGeven) is of infinite order as
claimed.

4. To describe how K0(QG3) may be calculated we note as above that for n ^ 2 we
can regard Gn as the free product with amalgamation of two copies of D"~l over Gn_j.
Moreover D"~l can in turn be regarded as the amalgamation of two copies of
D"~2 xC2 over D"~2 x 1, where C2 denotes a cyclic group of order 2. For the groups D"
this is exactly the point of view taken by Farrell [2], and Ko can be computed from the
general formula

(4.1) Let F = H*K be an amalgamated free product, with the group algebra QL regular
coherent. Then the pushout square in the category of groups

L > H

K
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induces one in the category of albelian groups

K0(QL) • K0(QH)

a*

P*

K0(QK) -» KO(QG)

As stated (4.1) is a very special case of Waldhausen's work [7].
One also needs the simple observation, already used to similar effect by Farrell [2],

that for any group T, K0(Q[T x C2]) = K0(Qr)©/C0(Qr). Plainly, provided one keeps
careful track of the induction maps, it is possible to compute Ko for the groups D",
which has effectively been done by Farrell, and the Gn, which is our purpose here. The
calculations themselves are not illuminating, and here we simply summarize the results.
For each of the groups Ko has a presentation as the free abelian group on certain
idempotents of the group ring modulo certain relations. By including specific idempo-
tents in this way, it is straightforward to follow the induction maps.

To obtain the Euler classes we exploit another simple observation, that an amalgam
HiK acts on a tree with vertex stabilisers H, K and edge stabiliser L. It follows that the
augmented simplicial chain complex of the tree has the form

0->Q ®QLQG-*(Q ®OHQG)©(Q ®QK QG)->Q->0

so that

£(G) = i(H.G).

Writing D = C2*C2 and applying (4.1) we obtain

(4.2)

(4.3)

(4.4)

where e ^ l + a J A c2 = ( l-a)/2, e3 = (l+b)/2, e4 = (l-b)/2. The Euler class E(D) is
represented by e^ — e4.

Writing G2 as an amalgam of two copies of D over Cx we obtain

\ . (4.5)

With the presentation G2 = (ql,q2,v\q1q1 = q2qu v2=l, q"i=qrls>, the idempotents
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eu...ea are
(\ — vq2ql)/2. The Euler class £(G2) is represented by el—eA+es-e8.

Now writing D2 as an amalgam of two copies of D x C2 over D gives

j , ; = 0,4,8,12; fj
; = 1,2,3,4). (4.6)

In fact Ko is free abelian of rank 9.
Using the presentation

the idempotents ft are given by:

1. ( l+t 2 ) ( l+ f l ) /4 9. (l + tjKl + M i ) ^
2. (1-^(1+0/4 10. (l-t2)(l+tlJCl)/4
3. (l + t2*2)(l+ti)/4 11. (l + t2x2)(l + ti*i)/4
4. (l-t2*2)(l+ti)/4 12. (l-tjXjKl+t^)^
5. (l+r2)(l-fl)/4 13. (l + tjKl-Mj/4
6. (l-t2)(l-t,)/4 14. ( l- t jKl-Mi)^
7. (l + t2x2)(l-tl)/4 15. (l + t2x2)(l-Mi)/4
8. {\-t2x2)(\-tl)IA 16. (l-t2x2)(l-tlXl)/4

The Euler class £(QD2) is represented by f^— / 4 — /
Finally regarding G3 as the pushout D2 • C2D

2 we obtain the exact sequence

0-»<g1, . . . ,e8 | . . .>-a=^</1 , . . . , / 1 6 | . . .>©</1 7 , . . . , /32 | . . .>-»fo(QG3)-»0 (4.7)

By following the idempotents it is easy to calculate the maps a*, /?*. In fact a* takes
eu...,e8 to j\+f6, f2 + fs, U + AA, /10 + /13. /a+Zs. /* + /?. fn+fie, fu + fis, and
/?* is essentially the same map—just add 16 to the indices of <x*(e,) to get /?*(e,-).

The Euler class is represented by (A-f*-fi3 + fl6)+{f 11-/20-

Now elementary matrix algebra gives the results as stated—K0(QG3) has rank 13 and
an unique torsion element, the Euler class, of order 2.

5. We now use Quinn's work [6] to investigate Ko of a direct product, and deduce
that none of the groups Gn are of type of (FL). Because K_t vanishes on a regular ring,
it is a consequence of his Corollary 1.5 that for G polycyclic-by-finite

(5.1)
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where the colimit is taken over the Frobenius category <D(G) of finite subgroups of G,
with morphisms the inclusions and conjugations. This has not yet been proved over an
arbitrary field of characteristic zero, although surjectivity of the map follows from the
more general result of Moody [5], as does rational equivalence (see Lorenz [3]).

Now suppose that H, G are polycyclic-by-finite groups such that all their finite
subgroups are totally reducible over Q. Then it follows from classical representation
theory that

^ colim K0{QF) (5.2)

where the right hand colimit is taken, as indicated, over the product category
<t>(H) x <D(G). This product is clearly a subcategory of <D(H x G), and it is in fact a final
subcategory (see Maclane [4]), so that the right hand colimit is actually isomorphic to
the colimit over <t)(H x G). To see that it is final just note that if nH, nG denote the
projections of H x G onto H, G respectively then every finite subgroup F of H x G is
contained in nH{F) x nG(F). Putting this together with (5.1) and (5.2) it follows that for
H, G as above

K0(QH)®K0(QG)sK0(Q[/fxG]). (5.3)

Moreover, since the isomorphism is induced by taking tensor products over Q, and
since the tensor product of a QH-resolution of Q with a QG one gives a Q[/ /xG]-
resolution of <Q, it follows that the map takes the product of Euler classes E(H)®E(G)
to E(H x G).

Finally we note that all the groups we have considered have finite subgroups which
are elementary abelian 2-groups, hence completely reducible over Q. We can thus apply
(4.3) and the last remark to the results of our calculations above to deduce that none of
the groups G3 x G™ is of type (FL) over Q. Since each G2m+ 3 contains one of these as a
subgroup of finite index, it follows that no Godd can itself be of type (FL) over Q. In fact
the same argument with G™ instead of G3 x G" gives another proof that no Gcven is of
type (FL) over Q.
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