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1. Introduction. If F is a discrete Mobius group acting on the upper half-plane dK of
the complex plane, the quotient space $f/F is a Riemann surface 01 and the automorphic
functions on F correspond to meromorphic functions on Stl. If F is a nondiscrete Mobius
group acting on $?, then $f/F is no longer a Riemann surface, and it is obvious that in this
case there are no nonconstant automorphic functions on F. The situation for automorphic
forms is quite different. Automorphic forms of integral dimension for a discrete group F
correspond to meromorphic differentials on Sfc, but even if F is nondiscrete it may still
support nontrivial automorphic forms. The problem of classifying those nondiscrete
Mobius groups which act on 3€ and which support nonconstant automorphic forms of
arbitrary real dimension was raised and solved (rather indirectly) in [2] where, roughly
speaking, function-theoretic methods are used to analyse all possible polynomial
automorphic forms of integral dimension, and the results obtained then used to analyse
the more general situation.

The purpose of this paper is to show how one can obtain stronger, more transparent
results, with simpler, shorter, and more direct, proofs by analysing the groups rather than
the forms. The pivotal step is the observation that each automorphic form on a group F
extends to an automorphic form on the closure of F in SL(2, R). If F is not discrete, then
its closure contains a one-parameter subgroup and it is easy to see that the one-parameter
subgroups are the only nondiscrete groups that support nonconstant forms; this is the
content of [2] (although not stated in these terms), but beyond this we also provide
explicit descriptions of all possible automorphic forms.

2. Automorphic forms. Each element y of SL(2, U) induces a Mobius map
the rule

and in most situations one can change freely between y and gy. However, this freedom is
not always available when considering automorphic forms or arbitrary real dimension for
such forms have multipliers and, as pointed out by Rankin ([5], p. 72), a multiplier cannot
always be transmitted from a matrix group to the corresponding Mobius group.
Nevertheless, we shall continue to use the same symbol for both the matrix and the
mapping (it is tiresome to do otherwise) but, as a consequence, we are obliged to
maintain a clear distinction between matrices and maps. In particular, when we write
y(z), y(w),.. • ,y denotes a Mobius map (and not a matrix).

With the matrix y given by (2.1), the function

on 5L(2, U) x $? satisfies the following elementary properties:
(a) /i(o/3, z) = /i(«. 0(*))M(0.*) (the Chain Rule);
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(b)
(c) ) ( ) ) )

We shall need to consider /i(y, z)k for any real k. For each nonzero w, we define wk by

wk = exp(log w),

where log(w) is the unique choice of the logarithm with -n< arg w^n. Note that
(d) for all w, and w2, \(wiw2)

k\ = \wk\. \wk\, and
(e) for each real k, /x(y, z)k is meromorphic on %€.
A function/is an automorphic form on F, of weight k and multiplier system u:F-»C

if
(1) / i s meromorphic on $f, and
(2) for all z in %, and all y in F, \v(y)\ = 1 and

f(y(z)) = v(y)n(y,zmz). (2.2)

For an account of automorphic forms, see [3], [4] and [5]. We are using the terminology
weight as in [5]; in [2] the same form/has dimension —k.

There are various consistency conditions which must be satisfied by an automorphic
form (which are sometimes needlessly included in the definition). Applying (2.2) to the
matrices y, TJ and yrj, and assuming that/is not identically zero, we obtain

, z)k = v(yM7,)M(y, i?(z))V(»?, *)*• (2.3)

Putting y = I = Tj, we find that v(I) = 1. If -I e F, we can also put y = - / in (2.2) and,
because f(z) =/((--0(z)), w e s e e t n a t v(~0 = exp(-jjtw). This shows that v(-I) ^v(I)
(unless k is an even integer), so that for automorphic forms of nonintegral weight, the
multiplier system v on any F that includes -I does not project to a function on the quotient
group F/{±/}. This is why we must distinguish carefully between matrices and Mobius
maps.

By (a) and (d) above,

so that by (e), the meromorphic function

(r(a,/3)= £—^ (2.4)

is of unit modulus and so is independent of z- The expression (r(a, /3) measures both the
extent to which the Chain Rule fails for /c-th powers of fi, and also the extent to which v
fails to be a homomorphism for, rewriting (2.3) in terms of <r, we obtain

We remark that (2.3) and (2.4) are (16) and (17) in [2]. Moreover, (2.5) can be used to
give a very simple .proof of Lemma 4 in [2].

It is well known that an automorphic form on F induces a form of the same weight on
the conjugate group 4>~lT<$> (see, for example, Lemma 3, [3], p. 276, and [4], p. 379).
Briefly, with F, / and v as above, we define
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Then, by straightforward computation (which we omit), we see that /* is an automorphic
form, of weight k and multiplier system v*, on the group T*. In fact, where necessary we
may replace 4> by -<f>; then ( /*)*=/so that the correspondence / • -»/* is a bijection
between the forms for the two groups.

We end this section with the following crucial result already mentioned in §1.

LEMMA 2.1. An automorphic form on a subgroup F of SL(2, U), of weight k and
multiplier system v, extends to an automorphic form on the closure P ofT.

Proof. Let / b e an automorphic form on T, of weight k and with multiplier system v.
Consider any y in Tc and select yn in T converging to y; then

«*-» - -to

We now define

..,.,_ /(rOO)

= lim \v(yn)\ = 1. (2.7)

where the right hand side is a meromorphic function of z. By (2.7), |v(y)| = 1, so that
v(y) is independent of z, and we see now that / is an automorphic form on Tc with
multiplier v.

3. Automorphic forms on one-parameter subgroups of SL(2, U). We begin by
examining automorphic forms on the one-parameter group

consisting of all parabolic matrices with positive trace in SL(2, U) that fix °°. Suppose that
/ i s an automorphic form on &„. As /i(y,, z) = 1, (2.2) and (2.3) imply that

f(yj+f) = "(ysT/) = v(ys)v(y,), f(z + t) = v(y,)f(z),

and these two facts imply that t t-+v(y,) is a continuous homomorphism of U into S\ It is
well known (and easy to show) that this implies that v(y,) = exp(/pf) for some real
number p. We deduce that f(z +t) = e\p(ipt)f(z); thus

r=0

so that f(z) = A exp(j'pz) for some real constant A. It is immediate that this function is an
automorphic form of weight k (for any k) on 0U and this proves the following result.

PROPOSITION 3.1. A function f is an automorphic form on {?„, with multiplier system v,
if and only if, for some real numbers A and p,

f(z) = A exp(ipz), v(y,) = exp(ipf). (3.1)

By appealing to the relation (2.6) between automorphic forms on conjugate groups,
we obtain the following extension of Proposition 3.1.
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PROPOSITION 3.2. Suppose that y is given by (2.1), and that c # 0 . / / / is an
automorphic form on y'^^y, of weight k with some multiplier system v, then there are
real numbers A and p such that

Propositions 3.1 and 3.2 imply, for example, that if G is a subgroup of SL(2, U)
whose closure contains 0U and also some element y with y(°°) T4 °°, then G cannot
support a nonconstant automorphic form / Indeed, such an / would have to be
simultaneously of the forms (3.1) and (3.2) and this is impossible. It is this observation
that lies at the heart of our classification of the nondiscrete groups that support
automorphic forms.

A similar argument applies to the group

consisting of all hyperbolic matrices with positive trace in SL(2, U) that fix 0 and °°. In this
case, if / is an automorphic form on $fo,», then

/*(%, z)k = lit", v(ysl) = v(ysJt) = v(y>(%), f(th) = v(y,)f(z).

The map x^expx followed by t*-*v(y,) is a continuous homomorphism of IR into S1 so
that, for some real number p, v(yt) = exp(/p log f). We deduce that f'(z) = ipf(z)/2z and
this yields the next result.

PROPOSITION 3.3. A function f is an automorphic form on % „ , with multiplier system
v, if and only if, for some real numbers A and A,

f(z) = A exp(iA logz), v(y,) = exp(ip log t). (3.3)

Clearly, this result extends to a result (analogous to Proposition 3.2) which gives the
automorphic forms on the groups conjugate to %^^\ we omit the details.

Finally, the group % of elliptic matrices in SL(2, R) that fix / and -i is conjugate to
the group of matrices % corresponding to Euclidean rotations of the unit disc (the group
% is a subgroup of 5L(2, C), and this conjugacy is in SL(2, C), but this does not affect the
analysis). The method used above shows that any automorphic form / on % satisfies
\f(e2"z)\ = |/(z)| for all real t. As / i s meromorphic near the origin, there is an integer /
such that F(z) = z~'f(z) is analytic near the origin with F(0)¥=0, and as \F(z)\ = \F(w)\
whenever |z| = |w|, the Maximum Modulus Theorem implies that \F\ has a local nonzero
minimum at the origin. We deduce that F must be constant; thus, for some constant A,
f(z) = Az'. This result can now be rewritten in terms of the original group %, or in terms
of any group conjugate to this, but again we leave the details to the reader.

4. Automorphic forms on closed connected subgroups of 5L(2, IR). It is now an
easy matter to complete our discussion and we only give the main steps in the argument.
First, the results in §3, together with the way automorphic forms on one group correspond
to automorphic forms on a conjugate group, show that a function cannot be an
automorphic form for two distinct one-parameter subgroups of 5L(2, IR).
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Suppose now that F is a nondiscrete subgroup of SL(2, R) that supports a
nonconstant automorphic form / The form / extends to a form on the closure Fc of F, and
this then restricts to a form on the component Fo of Fc that contains /. It is well known
(from Lie group theory) that as F is nondiscrete, Fo contains a one-parameter group (see,
for example, [1], p. 17, Lemma 2.28); thus, by the remarks in the previous paragraph, Fo is
itself a one-parameter group, and by the results in §3, this determines the most general
automorphic form on F.

We end with a geometric statement of our result.

THEOREM. Suppose that G is a nondiscrete subgroup ofSL(2, R) and that G supports a
nonconstant automorphic form with some multiplier system. Then G {when viewed as a
Mbbius group) is an elementary group in the sense of Kleinian groups.
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