A NON-EXISTENCE THEOREM FOR (v, k, λ)-GRAPHS

W. D. WALLIS

(Received 25 June 1969)

Communicated by E. S. Barnes

A (v, k, λ)-graph is defined in [3] as a graph on v points, each of valency k, and such that for any two points P and Q there are exactly λ points which are joined to both. In other words, if S_{i} is the set of points joined to P_{i}, then

$$
\begin{aligned}
& S_{i} \text { has } k \text { elements for any } i \\
& S_{i} \cap S_{j} \text { has } \lambda \text { elements if } i \neq j
\end{aligned}
$$

The sets S_{i} are the blocks of a (v, k, λ)-configuration, so a necessary condition on v, k, and λ that a graph should exist is that a (v, k, λ) - configuration should exist. Another necessary condition, reported by Bose (see [1]) and others, is that there should be an integer m satisfying

$$
\begin{align*}
& m^{2}=k-\lambda \\
& m \mid \lambda \tag{1}\\
& k m^{-1} \text { and } v-1 \text { have equal parity. }
\end{align*}
$$

We shall prove that these conditions are not sufficient.
Suppose there is a (v, k, λ)-graph with points P_{i} and with S_{i} as defined above. Then

$$
\begin{aligned}
& P_{i} \notin S_{i} \text { for any } i \\
& P_{i} \in S_{j} \Leftrightarrow P_{j} \in S_{i}
\end{aligned}
$$

and the corresponding (v, k, λ) configuration with varieties P_{i} and blocks S_{j} also has this property. Now consider the dual of this configuration [2, p. 250], which is a ($v, v-k, v-2 k+\lambda$)-configuration with varieties P_{i} and blocks T_{j}, defined by

$$
P_{i} \in T_{j} \Leftrightarrow P_{i} \notin S_{j}
$$

This will have the property

$$
\begin{align*}
& P_{i} \in T_{i} \text { for any } i \\
& P_{i} \in T_{j} \Leftrightarrow P_{j} \in T_{i} \tag{2}
\end{align*}
$$

if a configuration exists then its dual exists, so we have proven

Theorem 1. If there is $a(v, k, \lambda)$-graph, then there is $a(v, v-k, v-2 k+\lambda)$ configuration with the property (2).

Theorem 2. There can be no (v, j, μ)-configuration with property (2) and with $\mu=1$.

Proof. Suppose such a configuration existed. By definition $j>\mu$ (the trivial case of a ($1,1,1$)-configuration is normally excluded by definition), so T_{1} has at least two members. P_{1} is one; call the other P_{i}. Then by (2)

$$
\begin{align*}
& P_{i} \in T_{i} \\
& P_{1} \in T_{i} \text { since } P_{i} \in T_{1} \tag{3}
\end{align*}
$$

Therefore

$$
\left\{P_{1}, P_{i}\right\} \subset T_{i} \cap T_{1}
$$

so $T_{i} \cap T_{1}$ has at least two members, in contradiction of $\mu=1$.
Theorems 1 and 2 together tell us that there can be no (v, k, λ) - graph with

$$
v-2 k+\lambda=1
$$

This means that there is no graph with parameters

$$
\left(r^{2}+r+1, r^{2}, r^{2}-r\right)
$$

This is the dual of the triad $\left(r^{2}+r+1, r+1,1\right)$, which corresponds to a projective plane of order r; such a configuration always exists when r is a prime power [2, p. 175], so (taking the dual gain) there is always an $\left(r^{2}+r+1, r^{2}, r^{2}-r\right)$-configuration when r is a prime power. In particular take $r=2^{2 n}$ and $m=2^{n}$. Then these parameters satisfy (1).

COROLLARY. If n is any natural number, there is always a $\left(2^{4 n}+2^{2 n}+1,2^{4 n}\right.$, $\left.2^{4 n}-2^{2 n}\right)$-configuration, and these parameters always satisfy (1), but there is no (v, k, λ)-graph with this v, k and λ. Thus the conditions stated are not suffcient; there are infinitely many counter-examples.

Since $v-2 k+\lambda$ is a non-negative integer, and cannot equal 1 , there are two cases: either it is 0 (in which case we must have the complete graph of order v), or

$$
v-2 k+\lambda \geqq 2
$$

which is equivalent to

$$
(k-\lambda)^{2} \geqq k+\lambda
$$

Thus we can add to (1) the following further necessary condition:
(4) either the graph is complete or

$$
m^{4} \geqq k+\lambda
$$

References

[1] R. W. Ahrens and C. Szekeres, 'On a combinatorial generalization of twenty-seven lines associated with a cubic surface', J. Australian Math. Soc. 10 (1969), 465-492.
[2] Marshall Hall Jr., Combinatorial Theory (Blaisdell, 1967).
[3] W. D. Wallis, 'Certain graphs arising from Hadamard matrices', Bull. Australian Math. Soc. 1 (1969), 325-331.

Department of Mathematics
La Trobe University
Bundoora, Victoria 3083

