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We conduct a theoretical study of a two-phase fluid–structure interaction problem in which
air is driven at constant volume flux into a liquid-filled Hele-Shaw channel whose upper
boundary is an elastic sheet. A depth-averaged model in the frame of reference of the
advancing air–liquid interface is used to investigate the steady and unsteady interface
propagation modes via numerical simulation. In slightly collapsed channels, the steadily
propagating interface adopts a shape that is similar to the classic Saffman–Taylor finger
in rigid Hele-Shaw cells. As the level of initial collapse increases, the induced gradients
in channel depth alter the morphology of the propagating finger and promote a variety
of instabilities from tip splitting to small-scale fingering on the curved interface, in
qualitative agreement with experiments. The model has a complex solution structure with
a wide range of stable and unstable, steady and time-periodic modes, many of which have
similar driving pressures. We find good quantitative agreement between our model and
the experimental data of Ducloué et al. (J. Fluid Mech., vol. 819, 2017, p. 121) for the
finger width, sheet profile and finger pressure, provided that corrections to account for
the presence of liquid films on the upper and lower walls of the channel are included in
the model.
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1. Introduction

The displacement of an interface between two Newtonian fluids driven through a narrow
gap bounded by elastic walls is a fundamental two-phase fluid–structure interaction that
occurs in many industrial, geophysical and biological processes (Juel, Pihler-Puzović &
Heil 2018). In the absence of fluid inertia, the behaviour of the interface is determined
by the interplay between the interfacial surface tension; the viscosities of the fluids; and
the elastic properties of the wall. Although the inertialess equations governing the bulk
response of the fluids, the Stokes equations, are linear, nonlinearities arise due to the
presence of (i) the interface and (ii) the elastic walls.

Elastic walls are not required to elicit complex behaviour; indeed, the Saffman–Taylor
viscous fingering instability in a rigid Hele-Shaw channel, a channel whose width is much
greater than its height (Saffman & Taylor 1958), is an exemplar of non-trivial interfacial
dynamics. Precisely because of its fundamental nature and the implications for transport
of multi-phase flows and flow in porous media, viscous fingering has been extensively
studied, see Homsy (1987), Couder (2000) and Casademunt (2004) for reviews. Moreover,
the introduction of non-Newtonian effects (Lindner et al. 2002) or fluid inertia (Chevalier
et al. 2006) does not fundamentally change the fingering and can be accommodated by
suitable redefinitions of the control parameter.

More recently, attention has turned to control or suppression of the fingering by varying
the flow rate (Li et al. 2009; Dias, Parisio & Miranda 2010; Dias et al. 2012); adjusting the
viscosity ratio of the two fluids (Bischofberger, Ramachandran & Nagel 2014); introducing
particles (Luo, Chen & Lee 2018); and modifying the channel geometry either statically
(Al-Housseiny, Tsai & Stone 2012; Dias & Miranda 2013; Jackson et al. 2017; Bongrand &
Tsai 2018) or dynamically via the introduction of elastic walls (Pihler-Puzović et al. 2012;
Al-Housseiny, Christov & Stone 2013; Lister, Peng & Neufeld 2013) or via a time-varying
displacement of rigid walls (Zheng, Kim & Stone 2015; Morrow, Moroney & McCue 2019;
Vaquero-Stainer et al. 2019). The majority of these studies have been conducted in radial
geometries in which the average interfacial propagation speed decreases with distance
from the injection point for a constant injected volume flux. In such geometries, a steadily
propagating state is never possible.

In this paper, we replace the upper wall of an otherwise rigid Hele-Shaw channel by
an elastic sheet, see figure 1, to make an elasto-rigid channel. If fluid is injected from
one end of the channel then it is possible for a steadily propagating state to develop. The
propagation of an air finger into a collapsed elasto-rigid channel is a simplified model for
pulmonary airway reopening (Gaver et al. 1996; Hazel & Heil 2003; Heap & Juel 2009;
Ducloué et al. 2017b), but our focus in this paper is primarily on the nonlinear behaviour
of the depth-averaged, elasto-rigid system rather than on any applications to pulmonary
mechanics.

Our study directly complements the experimental investigations of Ducloué et al.
(2017a,b) who observed several different modes of interface propagation in elasto-rigid
channels. Ducloué et al. (2017b) found that, for constant interfacial propagation speed, the
complexity of the propagation modes increases with increasing levels of initial collapse
of the channel. For modest initial collapse, a single air finger reopens the channel as it
propagates steadily and adopts a shape that is reminiscent of a single Saffman–Taylor
finger in a rigid channel. At higher levels of collapse the elastic channel reopens over a
shorter axial length scale, for a fixed interfacial propagation speed, and, consequently, the
interface propagates into a converging gap. In this geometric configuration, the interface is
unstable and the instability leads to the formation of small-scale unsteady fingers. Ducloué
et al. (2017a) conjectured that the small-scale fingers are analogous to those that develop
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Figure 1. The elasto-rigid channel consists of two rigid sidewalls, a rigid lower wall and a deformable upper
wall. The cross-section of the channel has width W∗ and undeformed height b∗

0. The height of the deformed
sheet is b∗(x∗

1, x∗
2). An air finger propagates into the fluid-filled channel along the x∗

1 direction.

during peeling of an adhesive strip (McEwan & Taylor 1966) and those seen in the
printer’s instability on an interface between two rotating rigid cylinders (Couder 2000).
Cuttle, Pihler-Puzović & Juel (2020) investigated the behaviour of a strongly collapsed
elasto-rigid channel experimentally and found a number of different finger morphologies
whose geometric complexity increased with increasing propagation speed from simple
Saffman–Taylor-like fingers to highly disordered interfaces with multiple tips that evolve
continually in time. Cuttle et al. (2020) also identified regions of non-trivial transient
dynamics that suggested the existence of unstable states mediating the transition between
different steadily propagating states.

In contrast to the elasto-rigid system, the experimentally observed two-phase flow in an
equivalent rigid geometry over the same parameter range is relatively simple. If a more
viscous fluid (oil) is displaced by a less viscous one (air) injected from one end of a
rigid Hele-Shaw channel, an initially flat interface can exhibit multiple tips transiently, but
ultimately a single symmetric finger emerges and propagates at constant speed (Saffman
& Taylor 1958). In this geometry, the height of the channel’s cross-section is much
smaller than its width and consequently the flow within the channel can be effectively
described using a depth-averaged theory. The simplest two-phase, depth-averaged model
does not include surface tension because the perturbation to the interface curvature does
not feature at leading order in the expansion in inverse cross-sectional aspect ratio. In the
absence of surface tension, however, the model has continuous families of symmetric and
asymmetric (Taylor & Saffman 1959) solutions at the same flow rate. McLean & Saffman
(1981) showed that the ad hoc introduction of surface tension qualitatively reproduces the
experimental observations by selecting a single finger from the symmetric solution family
at each flow rate. Additional unstable symmetric solutions of the McLean & Saffman
(1981) model were later found by Romero (1982) and Vanden-Broeck (1983) and shown
to correspond to symmetric fingers with multiple tips by Gardiner et al. (2015). Park &
Homsy (1984) showed that quantitative agreement with experiments requires the inclusion
of corrections due to the presence of liquid films that remain on the channel walls after
propagation of the air finger. The necessity of including these liquid-film corrections was
later confirmed by the detailed experiments of Tabeling & Libchaber (1986).

Although the depth-averaged model system describing two-phase flow in a rigid
Hele-Shaw channel has multiple possible solutions only the symmetric, single-tipped
finger is stable (Bensimon, Pelce & Shraiman 1987; Tanveer 1987). Experimental
observations have shown, however, that the finger becomes unstable to tip splitting
(Tabeling, Zocchi & Libchaber 1987) and fluctuations in width (Moore et al. 2003) at high
driving flow rates in channels of sufficiently large cross-sectional aspect ratio. Tabeling
et al. (1987) showed that the flow rate at which instabilities first occur is strongly dependent
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on channel roughness and Couder (2000) suggested that the tip-splitting instability is a
noise-induced subcritical transition to nearby alternative states.

Rather than relying on uncontrolled perturbations to provoke instability, further studies
introduced well-defined perturbations into either the depth-averaged model system or the
geometry of the Hele-Shaw channel; see the review by Couder (2000). These perturbed
systems exhibit symmetry breaking and tip splitting, as well as periodic and complex
time-dependent behaviour. More recently, Thompson, Juel & Hazel (2014) introduced a
prescribed depth perturbation (a longitudinal ridge) into the model of McLean & Saffman
(1981) and showed that this leads to interaction between solutions of the unperturbed
system. For example, the symmetric finger exchanges stability with an asymmetric finger
at a critical flow rate via a symmetry-breaking bifurcation. The solution structure and
sequence of symmetry-breaking and Hopf bifurcations agreed qualitatively with previous
experimental observations in channels with cross-sections designed to mimic collapsed
elastic tubes (de Lózar et al. 2009; Pailha et al. 2012). Quantitative agreement between the
depth-averaged model and experimental measurements of finger widths for the multiple
solutions was subsequently obtained for these depth-perturbed channels with sufficiently
large cross-sectional aspect ratios (Franco-Gómez et al. 2016). Thus, in perturbed rigid
channels the multiple solutions of the depth-averaged model can be directly related to the
complex behaviour observed in experiments.

Having established that depth-averaged models can be used to describe the observed
two-phase flow phenomena in perturbed rigid Hele-Shaw channels, our aims in the present
study are twofold: (i) to develop an accurate, depth-averaged model for the elasto-rigid
system; and (ii) to use the model to examine the connection between the multiple modes
of finger propagation observed by Ducloué et al. (2017b) and the known multiple solutions
in depth-averaged models of two-phase flow in perturbed rigid Hele-Shaw channels
(Franco-Gómez et al. 2016).

The rest of this paper is divided into three parts. In § 2, we describe the depth-averaged
model used to describe the propagating finger and the reopening of the channel as well
as its numerical solution using finite element methods. In § 3 we demonstrate the good
quantitative agreement between the model and the experimental data of Ducloué et al.
(2017b) and present illustrative results showing the qualitative behaviour of the model.
Finally, in § 4 we summarise our findings and describe a dynamic scenario consistent with
our results.

2. Model

We consider the constant-volume-flux propagation of an air finger, modelled as an inviscid
fluid at uniform pressure, into an elasto-rigid channel containing an incompressible,
Newtonian viscous fluid, see figure 2. The channel geometry is identical to that used in
the experiments of Ducloué et al. (2017a,b) and consists of a rigid base, rigid sidewalls
and a compliant elastic sheet as the upper boundary. The channel has a width W∗ and
undeformed height b∗

0, with (undeformed) aspect ratio α ≡ W∗/b∗
0 � 1. The elastic sheet

has Young’s modulus E∗, Poisson’s ratio ν and thickness h∗. The fluid has a dynamic
viscosity μ∗ and the constant air–liquid surface tension is given by γ ∗. Throughout the
paper an asterisk is used to distinguish dimensional quantities from their non-dimensional
equivalents. The initial level of collapse of the channel, quantified by the channel’s
cross-sectional area A∗∞, is set by adjusting the transmural (internal minus external)
pressure, see § 3.1. We choose the external pressure to be our reference pressure and set it
to zero.
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x1 = –xup

x1

x2

x1

x3

x1 = –xup

p
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s

λ pb

⇀m
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x1 = xdown x1 = xdown

Ωf luid

Ωf luid

Ωair Ωair

x1 = 0 x1 = 0

x2 = –0.5

x2 = 0.5

(a) (b)

(1–f1(Ca))b

Figure 2. (a) Numerical domain in the frame of reference moving with the finger tip: x2 = −0.5 and x2 = 0.5
are the rigid sidewalls; x1 = −xup is the upstream end of the domain and x1 = xdown is the downstream end of
the domain. (b) Sketch of the thin layers of viscous fluid left behind of the advancing interface, at x2 = 0. The
total thickness of the film layers is f1(Ca)b. The thickness of the air finger is (1 − f1(Ca))b.

The modelling framework follows that developed and validated in studies of radial finger
propagation in elastic-walled, Hele-Shaw cells (Pihler-Puzović et al. 2013; Pihler-Puzović,
Juel & Heil 2014; Peng et al. 2015; Pihler-Puzović et al. 2015; Pihler-Puzović et al.
2018). The fluid mechanics is described using depth-averaged, lubrication equations and
the elastic sheet is modelled using Föppl–von Kármán plate theory, a moderate rotation
theory that includes the in-plane stress contributions to the total force balance. The new
features in the present model, compared to that described by Pihler-Puzović et al. (2018),
are: (i) the channel geometry means that the equations are most naturally formulated in
Cartesian, rather than cylindrical polar coordinates; (ii) the equations are presented in a
frame that moves with the tip of the air finger so that steady states correspond to steadily
propagating (travelling-wave) solutions; and (iii) the elastic sheet is horizontally clamped
to the sidewalls of the channel and is subject to an in-plane pre-stress.

Cartesian coordinates are defined in the frame moving with the instantaneous axial
speed of the finger, u∗

f (t), such that the coordinate x∗
1 is aligned with the channel axis, x∗

2
spans the channel width and x∗

3 is the out-of-plane coordinate (see figure 2). The notional
flow domain is −∞ < x∗

1 < ∞, −W∗/2 ≤ x∗
2 ≤ W∗/2 and 0 ≤ x∗

3 ≤ b∗(x∗
1, x∗

2), where b∗
is the distance between the sheet and the bottom wall.

We non-dimensionalise the in-plane coordinates using the channel width, x∗
1,2 =

W∗x1,2, and out-of-plane coordinate using the undeformed channel height, x∗
3 = b∗

0 x3. All
three components of the displacement of the elastic sheet are non-dimensionalised using
the channel width W∗, (v∗

1 , v∗
2 , w∗) = W∗(v1, v2, w). The flow is driven by the injection

of air at a constant flow rate Q∗, and we non-dimensionalise the fluid velocity using the
in-plane velocity scale V∗ = Q∗/(W∗b∗

0). The natural time scale is thus T ∗ = W∗/V∗ and
the fluid pressure is non-dimensionalised using P∗ = 12μ∗α2/T ∗.

After applying the Reynolds lubrication approximation, the governing equation for the
fluid pressure, p in the frame moving with instantaneous speed uf (t) = u∗

f /V∗ is

∂b
∂t

− uf
∂b
∂x1

= b3 ∂2p
∂xβ∂xβ

, (2.1)

where we use the Einstein summation convention with Greek indices taking the values
β = 1, 2. We determine the unknown speed uf (t) by insisting that the finger tip, defined
to be the maximum x1 coordinate on the interface, is located at zero, which removes
the translational invariance of the system. The axial coordinate corresponding to a fixed
laboratory frame is given by X1 = x1 + ∫ t

0 uf (s) ds. The local height of the channel is given
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by
b(x1, x2, t) = 1 + αw, (2.2)

where w is the dimensionless displacement of the sheet in the x3 direction; and the
displacement is determined from the Föppl–von Kármán equations (Landau & Lifshitz
1970) in the moving frame(

∂2

∂xξ ∂xξ

)(
∂2

∂xβ∂xβ

)
w − η

∂

∂xβ

(
σξβ

∂w
∂xξ

)
= P,

∂σξβ

∂xβ

= 0, (2.3a,b)

where P is the pressure load on the sheet, non-dimensionalised using the bending
stiffness (E∗/12(1 − ν2))(h∗/W∗)3 and the parameter η = 12(1 − ν2)(W∗/h∗)2 describes
the relative importance of the in-plane and bending stresses. The components of the
in-plane stress tensor, σξβ are

σ11 = σ
(0)
11 + (ε11 + νε22)

1 − ν2 , σ22 = σ
(0)
22 + (ε22 + νε11)

1 − ν2 , σ12 = σ21 = σ
(0)
12 + ε12

1 + ν
,

(2.4a–c)

where σ
(0)
ξβ is the in-plane pre-stress and the in-plane strain is

εξβ = 1
2

(
∂vξ

∂xβ

+ ∂vβ

∂xξ

)
+ 1

2
∂w
∂xξ

∂w
∂xβ

. (2.5)

The equations governing the fluid mechanics (2.1) and solid mechanics (2.3a,b) are
coupled via (i) the displacement of the elastic sheet w, which affects the channel height b
through (2.2); and (ii) the fluid pressure load on the sheet, given by

P = Ipb in Ωair, P = Ip in Ωfluid. (2.6a,b)

The fluid–structure interaction parameter,

I = 144μ∗V∗W∗2(1 − ν2)

α2E∗h∗3 , (2.7)

measures the ratio between typical viscous stresses in the fluid and the stiffness of the
elastic sheet. As I → 0 the sheet becomes rigid and stops interacting with the fluid.

We impose non-penetration of the fluid on the channel sidewalls and apply clamped
boundary conditions to the elastic sheet

∂p
∂x2

= 0, vβ = 0, w = 0,
∂w
∂x2

= 0, at x2 = ±0.5. (2.8a–d)

All disturbances should decay far away from the finger tip, as x1 → ±∞. Here, we
truncate the computational domain at finite distances behind (x1 = −xup) and ahead
(x1 = xdown) of the finger, see figure 2. We choose xup = 10 and xdown = 15, but we have
confirmed that increasing the length of the domain beyond these values does not alter the
results to graphical accuracy. Following Hazel & Heil (2003), we impose

vβ = 0,
∂w
∂x1

= 0,
∂3w

∂x3
1

= 0,
∂p
∂x1

= 0 at x1 = −xup,

vβ = 0,
∂w
∂x1

= 0,
∂3w

∂x3
1

= 0,
∂p
∂x1

= G at x1 = xdown,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

and determine the unknown pressure gradient G by imposing the condition that the fluid
flux at the truncated downstream boundary is consistent with the level of collapse of the
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channel far ahead of the finger
∫ 1/2

− 1
2

(−b3G − buf )|x1=xdown dx2 = −A∞uf . (2.10)

Here, A∞ = A∗∞/(W∗b∗
0) specifies the dimensionless initial level of collapse of the

channel. The unknown finger pressure, pb is determined via global conservation of volume
in the moving frame, assuming incompressibility of the air

∫ xdown

−xup

∫ 1/2

−1/2

∂b
∂t

dx2 dx1 = 1 + uf A∞ − uf

∫ 1/2

−1/2
b|x=−xup dx2. (2.11)

For a steadily propagating state ∂b/∂t = 0 and the influx is entirely accommodated by the
change in cross-sectional area between the two ends of the channel.

Finally, for the boundary conditions on the air–liquid interface, we use the same
modelling assumptions as Peng et al. (2015) and Pihler-Puzović et al. (2018), and
incorporate the presence of the liquid films into the kinematic and dynamic boundary
conditions. The kinematic condition is

(1 − f1(Ca))

[
∂R
∂t

+ uf e1

]
· n = −b2 ∂p

∂xβ

nβ on ∂Ωair, (2.12)

where R(s, t) is the position of the advancing air–fluid interface in the moving frame,
parameterised by the coordinate s, and n is the in-plane outer unit normal vector to the
interface, see figure 2. The dynamic condition is

�p = p|∂Ωair − pb = − uf

12α2Ca

(
κ + α

2
b

f2(Ca)

)
, (2.13)

where κ is the in-plane curvature of the interface and the capillary number Ca = μ∗u∗
f /γ

∗
is based on the instantaneous velocity of the finger tip u∗

f .
The functions f1(Ca) and f2(Ca) model the effects of the deposited liquid films which

are directly related to the propagation speed of the finger, rather than the flow rate.
Following Aussillous & Quéré (2000), Pihler-Puzović et al. (2015) and Peng et al. (2015)
we take

f1(Ca) = Ca2/3

0.76 + 2.16 Ca2/3 , f2(Ca) = 1 + Ca2/3

0.26 + 1.48 Ca2/3 + 1.59 Ca, (2.14a,b)

which Peng et al. (2015) found by fitting the results of two-dimensional numerical
calculations to simple functional forms consistent with scaling arguments and asymptotic
limits. The effects of the liquid films can be neglected by taking f1(Ca) = 0 and
f2(Ca) = 1.

The governing equations (2.1)–(2.3a,b) and boundary conditions (2.8a–d)–(2.13) were
solved using a Galerkin finite element method, implemented in the finite element library,
oomph-lib (Heil & Hazel 2006). We used six-noded triangular elements for piecewise
quadratic interpolation of the fluid pressure, p, and each of the Cartesian components of
the membrane displacement, (v1, v2, w). A mixed method is used to solve the Föppl–von
Kármán equations, meaning that ∇2w is also interpolated quadratically over each element.

We find steadily propagating states by setting all time derivatives to zero in the governing
equations. Branches of steadily propagating solutions are found via parameter and
arclength continuation. We perform a linear stability analysis of the steadily propagating
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Figure 3. Time evolution of interface at Ca = 0.47 and A∞ = 0.5 illustrating the remeshing as the interface
morphology changes. The snapshots are taken from the simulation shown in figure 13(d).

solutions at a fixed flow rate Q∗, as opposed to fixed capillary number Ca, for consistency
with the experiments. In this analysis, we find the eigenvalues, λ, of the linearised system
of equations derived by posing a solution of the form U = U ss(x) + ε eλtÛ(x) and
retaining only terms of O(ε) where ε 	 1. Here, U ss is the steadily propagating solution
and Û is the associated eigenfunction. Finally, we investigate the nonlinear stability of
the steadily propagating solutions by conducting time simulations of the full system of
governing equations.

The interface and interior of the fluid domain are remeshed at regular intervals
in response to a spatial error measure to improve accuracy, and to prevent excessive
mesh distortion, see figure 3. We use the unstructured mesh generator Triangle
(Shewchuk 1996), which ensures high-quality elements; and a ZZ error estimator
(Zienkiewicz & Zhu 1992) based on the continuity of u = −b2∇p − uf between the bulk
elements.

In time simulations, the time derivatives were discretised using a second-order adaptive
backward differentiation formula (BDF) scheme, where the temporal error was based
on the error estimate for the position of the air–liquid interface. The resulting set of
discrete equations was solved by Newton’s method, using the sparse direct solver SuperLU
(Demmel, Gilbert & Li 1999) as a linear solver. The number of elements and unknowns
varied throughout the simulations, reaching maxima of 15 000 and 200 000, respectively.
For linear stability analysis of the steady states, the solution of the discrete generalised
eigenproblem was obtained via the Anasazi solver from Trilinos (Heroux et al. 2005).
Further details of the implementation can be found in Pihler-Puzović et al. (2014),
Thompson et al. (2014), Pihler-Puzović et al. (2015) and more verification details are
provided in appendix B.

3. Results

We simulate our system using parameters that correspond to the experiments performed by
Ducloué et al. (2017b) in which the channel had width W∗ = 30 mm, undeformed height
b∗

0 = 1.05 mm and length L∗ = 60 cm. The elastic sheet had thickness h∗ = 0.34 mm,
Young’s modulus E∗ = 1.44 MPa and Poisson ratio ν = 0.5. The working fluid was
silicone oil with density ρ∗ = 973 kg m−3, dynamic viscosity μ∗ = 0.099 Pa s and surface
tension γ ∗ = 21 mN m−1. The non-dimensional parameters α ≈ 28.6, η ≈ 70 000 remain
fixed, but Ca and I will vary with the imposed flow rate and A∞ is adjusted to examine
the influence of the level of collapse.
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Figure 4. Variation of the transmural pressure as a function of the level of collapse, which provides a
constitutive relation for the channel (the channel law). The red circles indicate the experiments of Ducloué
et al. (2017b), while the black line is the numerical solution of the Föppl–von Kármán equation (2.3a,b)
for experimental parameters and a pre-stress σ

(0)∗
22 = 30 kPa and A∞ > 0.36, the point of near-opposite wall

contact.

3.1. Initial channel collapse
We first assess how accurately the Föppl–von Kármán equations capture the deformation
of the elastic sheet in the experimental channel studied by Ducloué et al. (2017b). Figure 4
shows the variation of the transmural pressure (difference between the pressure inside the
channel and the atmospheric pressure) as a function of A∞, which represents a constitutive
relation similar to the so-called tube laws used to model flows in collapsible tubes (Shapiro
1977). We shall refer to the relationship for our system as the channel law. The symbols
correspond to the measurements of Ducloué et al. (2017b). When the transmural pressure
is zero, A∞ = 1 and the elastic sheet is undeformed. Inset sheet profiles for A∞ < 1 and for
A∞ > 1 provide examples of collapsed and inflated channel cross-sections, respectively.
For A∞ ≤ 0.36, the deformation of the elastic sheet is sufficient for the sheet to come
into contact with the bottom boundary of the empty channel. In this paper, we shall not
address the contact problem and instead focus on moderately collapsed/inflated channel
cross-sections in the range 0.4 ≤ A∞ ≤ 1.2.

In the experiment, a non-zero pre-stress, σ
(0)∗
22 , was imposed by hanging evenly

distributed weights from one long edge of the elastic sheet prior to clamping it to the
channel wall. The exact pre-stress imposed was influenced by details of the clamping
procedure and was difficult to determine accurately. Hence, in the model we treat the
pre-stress as a fitting parameter chosen to achieve the best quantitative match to
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Figure 5. Membrane height along the centreline of the channel (x2 = 0) for decreasing values of A∞. The red
circles indicate the experiments of Ducloué et al. (2017b), while black lines indicate steady numerical solutions
of the fully coupled fluid–structure interaction model. The tip of the air finger is located at x1 = 0.

the experimental results for 0.4 ≤ A∞ ≤ 1. The solid line in figure 4 corresponds to
the numerical solution of the Föppl–von Kármán equations at best fit – a pre-stress of
σ

(0)∗
22 = 30 kPa, σ

(0)∗
11 = 0 and σ

(0)∗
12 = 0.

The quantitative agreement between model and experiment over this parameter range
extends to the sheet profiles shown as insets in figure 4 for A∞ = 0.7 and 1.3, respectively.
The sensitivity of the channel law to variations in pre-stress was assessed by varying σ

(0)∗
22

by ±2 kPa (6.6 %), which resulted in a variation in the transmural pressure of ±5.7 % at
A∞ = 0.6.

Under perfect clamping conditions the system will be up–down symmetric in the sense
that the same deflection would result from the same transmural pressure magnitude
irrespective of direction. Imperfections in the experimental clamping procedure break the
up–down symmetry, but are not included in the theoretical model. We choose to match
the experimental and numerical channel laws for collapsed channels (0.4 < A∞ ≤ 1)
rather than for inflated channels (A∞ > 1) to ensure that the transmural pressures required
to set a given level of initial collapse are the same in the experiments and the model.
Moreover, the reopening dynamics in the fully coupled system occur near the tip of the
propagating finger, where the channel is typically collapsed. We will show in § 3.2.1 that
the remaining discrepancy between experimental and numerical channel laws leads to a
modest underestimation of the inflation far behind the finger tip (see figure 5), but does
not appear to affect any of the other dynamics.

3.2. Steady finger propagation

3.2.1. Comparison with the experiments of Ducloué et al. (2017b)
We examine finger propagation for different levels of initial collapse and a fixed
propagation speed corresponding to Ca = 0.47. We present direct comparisons between
the steady numerical solutions and the experimental results presented in Ducloué et al.
(2017b). In the experiments, steadily propagating fingers were only observed when A∞ >

0.7. For lower values of A∞, we compare the calculated steadily propagating fingers with
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Figure 6. Finger shapes delimited by the air–liquid interface for decreasing values for A∞. The red circles
indicate the experiments of Ducloué et al. (2017b), while black lines show steady numerical solutions of
the fully coupled fluid–structure interaction model. The experimental fingers shown in (c–e) are snapshots
of unsteady modes of propagation where small-scale fingers are continually formed near the tip and advected
around the curved front.

snapshots of the unsteady fingers found in the experiments. Profiles of the elastic sheet
measured along the centreline of the channel at x2 = 0 are shown in figure 5 and finger
shapes viewed from above are shown in figure 6. Experimental measurements are plotted
with red symbols, while black lines denote the numerical results. The finger tip is located at
x1 = 0 in all the plots shown and was used as the reference point to align the experimental
and numerical results.

Figure 5 shows that as A∞ decreases (i.e. the initial level of collapse increases), the
profile steepens in the reopening region and the finger tip (x1 = 0) is displaced towards
the most collapsed region so that the volume of fluid ahead of the interface is reduced to
a small wedge. These changes in the channel geometry near the finger tip are associated
with a gradual reduction of the importance of viscous stresses relative to elastic stresses
resulting in the development of an elastic peeling mode (Gaver, Samsel & Solway 1990;
Gaver et al. 1996) as A∞ decreases, see also Peng et al. (2015), Peng & Lister (2019) and
Cuttle et al. (2020).

Figure 6 shows that when A∞ = 1.01, corresponding to a slightly inflated sheet, the
finger propagates steadily and is symmetric about the centreline x2 = 0, resembling the
classical Saffman–Taylor finger in a rigid Hele-Shaw channel.

As the initial level of collapse of the channel is increased, the finger widens and the
in-plane curvature of the finger tip decreases. Ducloué et al. (2017b) found that the finger
width increases linearly with decreasing A∞, which they explained using a simple mass
conservation argument. In all cases, the width of the finger behind the tip predicted by the
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6

Figure 7. Finger pressure pb = p∗
b/(γ

∗/b∗
0) on the capillary scale as a function of the initial level of collapse

A∞ for a fixed capillary number of Ca = 0.47. The experimental data from Ducloué et al. (2017b) are shown
with red circles and the error bars correspond to the standard deviations of three experiments. The black lines
show steady solutions of the model, and blue lines are the corresponding solutions without any liquid-film
corrections.

model agrees with the experimental results and, therefore, obeys the same linear scaling
with A∞.

At A∞ = 0.87, the computed finger shape has lost its symmetry about the centreline
x2 = 0 to a finger with a slightly asymmetric tip. This asymmetry is enhanced for
A∞ = 0.7, where it can also be seen in the experimental finger shape and remains at
A∞ = 0.54 and A∞ = 0.43. The relatively modest changes of the tip shape for these
asymmetric fingers means that their existence could not be convincingly established from
the experimental data alone and hence they were not identified by Ducloué et al. (2017b,a).

For A∞ ≤ 0.7, the overall shapes of the finger in the experimental snapshots are very
similar to the shapes obtained in our steady numerical simulations. The similarity suggests
that, as conjectured by Ducloué et al. (2017b), fingering instabilities develop on unstable
steadily propagating base states for A∞ ≤ 0.7. We shall discuss these instabilities further
when we present unsteady numerical solutions in § 3.3.

In figure 7, we present a global measure of the system behaviour by plotting the finger
pressure as a function of A∞ at Ca = 0.47. The experimental data of Ducloué et al.
(2017b) are shown with red symbols and the error bars denote the standard deviations
of three experiments conducted for the same level of initial collapse and the same flow
rate. The black lines in figure 7 are steadily propagating solutions of the theoretical
model. As in rigid channels, we find that the model has a complex solution structure
with multiple steady solution branches connected via bifurcations, which we describe
in § 3.2.2. The experimental measurements are all close, usually to within experimental
error, to branches of steadily propagating numerical solutions. Thus, the model provides a
reasonable prediction of the finger pressure observed in the experiment for 0.4 < A∞ < 1.

In addition, the blue lines in figure 7 show the results of the model without the
liquid-film corrections. The finger shapes and profiles of the elastic sheet without the
liquid-film corrections are shown in appendix A. The necessity for the liquid-film
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Figure 8. Steady numerical solutions with liquid-film corrections shown in terms of the variation of the finger
pressure pb as a function of the initial level of collapse A∞, for a fixed capillary number of Ca = 0.47. The
results are similar to those shown in figure 7, but here, each solution branch is shown with a different colour
and the finger morphologies for different parameter values are illustrated with inset images. Solutions that
are symmetric about the channel’s centreline are represented as black or green lines; asymmetric solutions
are shown as blue lines; P1 and P2 denote pitchfork bifurcations, H1 and H2 the locus of Hopf bifurcations
and L1 is a limit point. The number of positive eigenvalues are indicated by the pair of numbers in the inset
images, where the first number counts the real positive eigenvalues and the second one the number of complex
eigenvalues with positive real part; these occur in complex conjugate pairs.

corrections to achieve quantitative agreement with experiments in rigid Hele-Shaw cells
(Tabeling et al. 1987) and elastic cells (Peng et al. 2015; Pihler-Puzović et al. 2015) has
been previously established for individual solutions. If the liquid films are ignored, both
the finger widths and pressure jumps over the air–liquid interface are underpredicted by
the model. We are unaware of studies that have investigated the influence of the liquid films
in situations where there are multiple solutions. Over the range of A∞ shown in figure 7,
although the fundamental solution structure is the same with and without liquid-film
corrections (a symmetric branch with a limit point connected to an asymmetric branch
via a symmetry-breaking bifurcation, see § 3.2.2), we find that the inclusion of liquid-film
corrections dramatically shifts the structure. Consequently, the number of solutions at
a given value of A∞ differs between the two models for most of the range shown and
although both models have a single solution when 0.78 < A∞ < 0.93 the solutions have
different symmetries: the solution in the absence of liquid-film corrections is symmetric
about the channel’s centreline, whereas it is asymmetric when liquid films are included,
see figure 8. We conclude that the liquid-film corrections are required for both quantitative
and qualitative agreement with experimental data.

3.2.2. Stability analysis and steadily propagating solution structure
In figure 8, we replot the data for the steady numerical solutions previously shown in
figure 7, but add information about linear stability of the solutions and the location
of bifurcations. We use a different colour for each solution branch: solutions that are
symmetric about the channel’s centreline are shown in black or green and asymmetric
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solutions are shown in blue. The points P1 and P2 indicate pitchfork bifurcations at
which the symmetric solution exchanges stability with a pair of asymmetric solutions.
The points H1 and H2 are Hopf bifurcations at which the steadily propagating solutions
become unstable to oscillatory solutions, in the moving frame, and L1 is a limit point.
Finger morphologies corresponding to each branch are illustrated with inset images. The
structure becomes increasingly intricate for decreasing values of A∞, corresponding to
increasing levels of collapse.

The steady solutions in figures 7 and 8 are shown at fixed Ca for comparison with the
experimental data. In any given experiment, however, the flow rate, Q∗, is fixed and the
finger speed, represented by Ca, is free to vary. Hence, we fix the flow rate in our stability
analysis, as described in § 2. The linear stability of the solution branches shown in figure 8
is indicated by the pair (i, j), where i and j denote the number of positive (unstable) real
eigenvalues and complex eigenvalues with a positive real part, respectively. We note that
solutions which co-exist at the same Ca will not have the same flow rates, in general,
meaning that the steady states shown in figures 8 will not necessarily occur in the same
experiment.

For A∞ > 1, there is a single stable solution (black branch), that is steady and similar
to a Saffman–Taylor finger in a rigid channel, as previously discussed in § 3.2.1. This
symmetric finger persists as A∞ decreases until it exchanges stability with a stable
asymmetric finger (blue branch) at a supercritical pitchfork bifurcation P1 (A∞(P1) =
0.93). The resulting unstable symmetric finger has a nearby limit point L1 (A∞(L1) =
0.927), beyond which the solution becomes doubly unstable. The finger then develops a
region of negative curvature at its tip as A∞ is increased. The resulting finger morphology
is reminiscent of the first family of Romero–Vanden-Broeck (RVB) solutions in a rigid
Hele-Shaw channel (Romero 1982; Vanden-Broeck 1983; Gardiner et al. 2015; Green,
Lustri & McCue 2017). The same solution structure has been observed in rigid channels
with depth perturbations (Franco-Gómez et al. 2016), in which case the first family of
RVB solutions was shown to connect to the Saffman–Taylor finger as the height of the
perturbation increased.

As A∞ decreases from A∞(P1) = 0.93, the stable steady mode of finger propagation is
asymmetric about the centreline x2 = 0 (blue branch), consistent with the experiments
shown in § 3.2.1. This finger loses stability to a time-periodic solution at a Hopf
bifurcation H1 (A∞(H1) = 0.912), which we show to be subcritical in § 3.3. A
second Hopf bifurcation occurs on the asymmetric branch at (A∞(H2) = 0.69).
We shall discuss the oscillatory modes that emerge from these Hopf bifurcations
in § 3.3.

As the level of collapse increases yet further, the steadily propagating asymmetric
finger (blue branch) regains symmetry about the centreline of the channel at a second
pitchfork bifurcation P2 (A∞(P2) = 0.61). A linear stability analysis of the branches at
some distance from P2 is consistent with the local structure being identical to that near P1.
In other words, we expect there to be a limit point and a Hopf bifurcation in the vicinity of
P2, but the details of this region are difficult to resolve.

The symmetric green branch is not connected to any other branches in the parameter
regions that we have examined, despite the fact that it has the same finger pressure as
other solutions for particular values of A∞. The finger morphology on the green branch is
reminiscent of the second family of RVB solutions (triple tipped) for values of A∞ � 0.8,
which are disconnected from the Saffman–Taylor solution branch in a rigid Hele-Shaw
channel containing a centred obstacle (Franco-Gómez et al. 2016). For high levels of
collapse, the distinction between the different branches is primarily in the shape of the
tip; the finger widths and finger pressures are approximately the same on all branches.
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Figure 9. The dimensional flow rates, Q∗, corresponding to the computed steadily propagating solutions
shown in figure 8 as a function of the initial level of collapse A∞. All solutions correspond to a fixed capillary
number of Ca = 0.47. The colour coding for the solution branches is the same as in figure 8.

It is, therefore, very difficult to distinguish between different solutions in this region and
we suspect that there may be other solutions that we have not identified. For this reason, the
details of the region where the blue, black and green branches appear to meet at A∞ ≈ 0.6
have not been resolved.

Figure 9 shows the dimensional flow rates corresponding to the steadily propagating
fingers shown in figure 8. The finger propagation speed is fixed and so changes in flow rate
correspond to changes in the cross-sectional area of the air finger far behind the finger tip.
For the same level of collapse a wider finger therefore corresponds to a higher flow rate.
As the level of collapse increases, there are smaller differences in flow rate between the
co-existing solutions.

3.3. Unsteady finger propagation
In this section we replicate individual experiments by performing time-dependent
simulations at fixed flow rates. We complement the linear stability analysis presented
in § 3.2.2 by assessing the sensitivity of the steadily propagating solutions to general
perturbations for increasing levels of collapse, A∞ = 1, 0.92, 0.8, 0.66, 0.5 and 0.44.
According to the bifurcation diagram shown in figure 8, the system should exhibit different
dynamics at each of the chosen levels of collapse. Note that these levels of collapse do not
correspond directly to the experimental levels of collapse chosen by Ducloué et al. (2017b).
Although perturbing a steadily propagating state is not the same as initiating the system
from rest by suddenly imposing a gas flux, we expect the transient dynamics in both cases
to be broadly similar.

We apply a localised asymmetric perturbation to the pressure jump across the interface
in (2.13) of the form

δp = −δp0 e−(t/tp)2
e−((x2−y)/λp)

2
, (3.1)

where δp0 is the amplitude of the perturbation; λp = 0.035 is the width of the perturbation;
y = 0.005 is the offset from the centreline; and the time scale tp = 0.015. We choose
the pressure perturbations to be fractions of pb, usually δp0 = 0.15pb and δp0 = 0.30pb,
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Figure 10. Finger propagation in a stationary (laboratory) frame of reference for an initially uncollapsed
channel, A∞ = 1. Unsteady numerical simulations were initialised with a steady solution at Ca = 0.47. The
time increment between the interfaces is δt = 0.2. During the time evolution, the interface is subject to a
transient local pressure perturbation in the form of (3.1). The amplitude of the perturbation is (a) δp0 = 0.15pb
and (b) δp0 = 0.30pb. The interfaces at the time tp are highlighted in red. The deformation on the interface
quickly decays and a steadily propagating symmetric finger is established.

to ensure that we apply comparable perturbations for different levels of collapse. The
perturbation leads to the formation of a controlled dimple at the interface as indicated
by the finger outlines highlighted in red in figure 10, which correspond to the interface
shapes at time tp.

For A∞ = 1, figure 10, the initially deformed finger rapidly relaxes to the linearly stable,
symmetric, steady state identified in figure 8 (stable black branch) for both amplitudes
of perturbation, consistent with the experimental observations discussed in § 3.2.1. For
δp0 = 0.15pb and 0.30pb, the finger reaches the steady state within less than one channel
width, making it easily observable within the experimental channel.

Figure 11 shows the time evolution of the finger for A∞ = 0.92, after the pitchfork
bifurcation P1, but before the Hopf bifurcation H1, which means that there are two
linearly stable steady asymmetric solutions, each being the reflection of the other about the
channel’s centreline. If one of these steadily propagating, asymmetric fingers is subject to
a small pressure perturbation δp0 = 0.10p0, figure 11(a), then the finger initially exhibits
small-amplitude asymmetric oscillations, but these decay and the finger returns to the
steadily propagating state. The asymmetric oscillations are consistent with the shape of
eigenmode associated with the least-stable eigenvalue, but because the perturbation excites
a number of eigenmodes the oscillation frequency does not match that of the least-stable
eigenmode. In fact, the linear stability analysis shows that there are a large number of
near-neutral oscillatory modes for A∞ < 0.93 and their presence leads to a non-trivial
oscillatory response to general perturbations.

For a larger perturbation amplitude, δp0 = 0.20p0, figure 11(b), the finger does not
return to the steadily propagating state but instead exhibits periodic oscillations. The
finger tip advances alternately on either side of the channel and the periodic state
has a spatio-temporal ‘shift and reflect’ symmetry: it is invariant under reflection
about the channel’s centreline combined with temporal shift by half a period. A
complete period of the final periodic state is shown in figure 11(d). For an even larger
perturbation amplitude, δp0 = 0.30p0, figure 11(c), the finger adopts the alternative
steadily propagating asymmetric state: the final finger shape in figure 11(c) is the same as
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Figure 11. Finger propagation in a stationary (laboratory) frame of reference for an initially slightly collapsed
channel, A∞ = 0.92 and fixed flow rate. Unsteady numerical simulations were initialised with a steady solution
at Ca = 0.47. The time increment between the interfaces is δt = 0.1. During the time evolution, the interface
is subject to a transient local pressure perturbation given by (3.1). The amplitude of the perturbation is (a)
δp0 = 0.10pb; (b) δp0 = 0.20pb and (c) δp0 = 0.30pb. The interfaces at the time tp are highlighted in red.
For the smallest-amplitude perturbation the interface quickly returns to the linearly stable steadily propagating
asymmetric state. For the intermediate-amplitude perturbation the finger evolves towards a periodic solution,
shown in (d). The first and last interfacial positions of one complete oscillation are highlighted in pink and
the period T = 3.5. For the largest-amplitude perturbation, the finger evolves towards the alternative steadily
propagating asymmetric state, in which the asymmetric finger has been reflected about the channel’s centreline.

that in figure 11(a) after reflection about the channel’s centreline. Thus there are, at least,
three possible stable states at this level of collapse. The periodic state can be continued
to values of A∞ above and below A∞ = 0.92 by smoothly changing A∞ during the time
simulation and waiting until the system settles into a new periodic state. The periodic state
appears to persist for increasing values of A∞ until the limit point at A∞ = 0.927 with
little change in period.

As the initial level of collapse is reduced further to A∞ = 0.8, figure 12, the steadily
propagating asymmetric states become linearly unstable to a complex conjugate pair of
eigenvalues through the Hopf bifurcation H1. When the asymmetric finger is perturbed
the localised dimple initially applied to the interface increases in length as the finger
advances and is advected to the side of the finger. The dimple decays rapidly for the smaller
perturbation amplitude and the finger relaxes to the time-periodic state first observed
at A∞ = 0.92. These results together with those for A∞ = 0.92 indicate that the Hopf
bifurcation is subcritical, but the relationship between the associated unstable asymmetric
limit cycles and the observed stable symmetric limit cycle was not investigated. For the
larger perturbation amplitude, a localised cleft develops and is advected to the side of
the finger. The cleft increases in length as the finger propagates and narrows as it grows,
forming a neck region. We discontinued the numerical simulations when the two faces of
the cleft made contact in the neck region.

Although there is evidence of small-amplitude, transient oscillations in the experiments,
the length of the observation window available to Ducloué et al. (2017b), approximately
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Figure 12. Finger propagation in a stationary (laboratory) frame of reference for a moderately collapsed
channel, A∞ = 0.8. Unsteady numerical simulations were initialised with a steady solution at Ca = 0.47. The
time increment between the interfaces is δt = 0.27. During the time evolution, the interface is subject to a
transient local pressure perturbation in the form of (3.1). The amplitude of the perturbation is δp0 = 0.15pb (a)
and δp0 = 0.30pb (b). The interfaces at the time tp are highlighted in red and the deformation on the interface is
advected to the narrower side of the asymmetric finger and decreases in amplitude. In (a), the finger tip rapidly
develops an oscillatory motion. The first and last interfacial positions of one oscillation are highlighted in pink.
The period and wavelength of the oscillation are T = 2.7 and L = 2.7 channel widths, respectively. In order to
aid the visualisation of the oscillations, we are only plotting the interfaces for 1.5 channel widths behind the
finger tip. In (b), the interface develops a deep cleft and we terminate the simulation when the sides of the cleft
intersect.

eight channel widths, was insufficient for reliable detection of the large-amplitude periodic
state. Nevertheless, the system exhibits a similar response to perturbations: a localised cleft
can be seen on the upper side of the snapshot of the experimental finger in figure 6(c) for
A∞ = 0.70 that is similar to the cleft that develops as the dimple is advected to the side of
the finger in the simulations with the smaller perturbation amplitude.

At A∞ = 0.66, figure 13(a,b), the asymmetric finger is unstable to two oscillatory
eigenmodes because the second Hopf bifurcation point H2 has been crossed. Both
amplitudes of perturbation now result in the formation of a narrower dimple than in figures
12(a,b) and the development of a single cleft. The simulations are again terminated when
the two sides of the cleft come into contact.

The pitchfork point P2 has been crossed by A∞ = 0.5 (figure 13c,d) so that the unstable,
steady state is now symmetric (unstable black branch in figure 8). The initial perturbation
whose width is of the order of the depth of the fluid layer now evolves into several clefts.
The narrowest cleft is close to the channel centreline and its size remains close to the length
scale of the initial perturbation. Moreover, the clefts emerge on both sides of the centreline
in contrast with A∞ = 0.66. The clefts are advected around the tip of the finger until
the numerical simulation had to be discontinued due to contact between the faces of the
narrowest, most centred cleft. A similar evolution is found in figure 13(e, f ) for A∞ = 0.44,
where the formation of four small clefts results in a pattern of five small-scale stubby
fingers on the propagating front before the numerical simulation had to be discontinued.
This pattern is qualitatively similar to that observed experimentally in figure 6(e).

Overall, figure 13 indicates that the widths and depths of the features that develop
on the interface are reduced as the level of collapse is increased from A∞ = 0.66 to
0.44 in qualitative agreement with the experimental images shown in figure 6. The
observed features form on the approximate length scale of the depth of the layer as
shown by Ducloué et al. (2017a) and their characteristic size is reduced as A∞ decreases
because the depth of the layer in the centre of the channel decreases accordingly. In the
experiments of Ducloué et al. (2017b), the interfacial patterns form continuously at the
propagating front and are advected around the tip of the finger where they decay. Because
our numerical simulations had to be discontinued when the interface self-intersects
within the clefts, we were unable to determine whether the tip instabilities driven by the
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Figure 13. For caption see next page.
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Figure 13 (cntd). Finger propagation in a stationary (laboratory) frame of reference for high levels of collapse,
A∞ < A∞(H2) = 0.69. For each value of A∞, unsteady numerical simulations were initialised with a steady
solution at Ca = 0.47. The time increment between the interfaces is δt. During the time evolution, the interface
is subject to the same pressure perturbation used in figure 10. The amplitude of the perturbation is δp0 = 0.15pb
(a,c,e) and δp0 = 0.30pb (b,d, f ). The interfaces at the time tp are highlighted in red. The insets magnify the
regions of the fingering instabilities and include a scale bar to indicate the height, h, of the reopening membrane
at the centreline of the channel at the x1 position of the finger tip. The latter interfaces are plotted in a colour
gradient to aid visualisation. For A∞ = 0.66 in (a,b) where δt = 0.15 and h = 0.051, the deformation on the
interface is advected to the narrower side of the asymmetric finger and evolves to a deep indentation. For
A∞ = 0.50 in (c,d) where δt = 0.15 and h = 0.029, the initial localised deformation destabilises the interface
and multiple small-scale fingers emerge. For A∞ = 0.44 in (e, f ) where δt = 0.10 and h = 0.013, the evolution
is similar to (c,d) but with an even smaller typical wavelength of the fingering pattern. We stop the time
evolution of the fingers presented in this figure when the interface is about to self-intersect.

initially imposed perturbation would eventually decay or whether they would be sustained
as in the experiments. The linear stability analysis showed, however, that there are a
large number of near-neutral oscillatory modes that could interact nonlinearly to yield
non-trivial transients. Thus, although the unsteady simulations of the numerical model
exhibit many of the same features as the experiments, we do not yet have a detailed
understanding of how the complex solution structure leads to the development of the
observed small-scale fingers.

4. Discussion and conclusion

In this paper we have presented a depth-averaged model to describe the propagation of
an air finger into a collapsed elasto-rigid channel filled with viscous liquid and driven
at constant volume flux. We find that the model is in excellent qualitative and quantitative
agreement with the experiments of Ducloué et al. (2017b). The model predicts a non-trivial
solution structure with multiple co-existing steady and oscillatory modes of propagation
for the same level of initial collapse and finger propagation speed.

In line with the experiments, the complexity of the solution structure increases with
the level of collapse (Ducloué et al. 2017b) for a fixed finger propagation speed. At
low levels of collapse, the interface propagates steadily with a morphology similar to
a Saffman–Taylor finger in a rigid channel. The model predicts the existence of an
alternative, unstable, double-tipped, steadily propagating finger analogous to the first RVB
solution in rigid channel (Romero 1982; Vanden-Broeck 1983; Gardiner et al. 2015), which
requires a greater finger pressure and higher flow rate to propagate at the same speed as
the Saffman–Taylor-like finger.

For 0.93 > A∞ > 0.61 there are two steadily propagating fingers each with an
asymmetric tip arising through a symmetry-breaking bifurcation from the Saffman–Taylor
solution and related by reflection about the centreline of the channel. The asymmetric
fingers are only stable for a very small range of A∞ and lose stability to asymmetric
oscillatory modes through a Hopf bifurcation at A∞ = 0.912. The close proximity of
the limit point, pitchfork and Hopf bifurcations suggests that they may arise from the
perturbation of a bifurcation of higher co-dimension. An analogous solution structure has
been found in two-phase flow through a uniformly curved rigid tube (Hazel et al. 2012)
in which case it could be shown to arise directly from a perturbed fold-Hopf bifurcation
(Kuznetsov 1998).

Time-dependent simulations at fixed flow rate showed that for values of A∞ lower
than 0.912 if the unstable steadily propagating finger is perturbed it will eventually
settle on an oscillatory mode of propagation in which the finger tip meanders from side.
Irregular meandering of the finger tip has been seen in large-aspect-ratio, rigid, Hele-Shaw
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G

Figure 14. A sketch of the proposed bifurcation scenario in the region 0.9 < A∞ < 0.95 at fixed Ca = 0.47. A
symmetric steadily propagating finger state (black line) undergoes a symmetry-breaking pitchfork bifurcation
at A∞ = 0.93 followed by a limit point at A∞ = 0.927. The two steadily propagating asymmetric states that
arise from the pitchfork bifurcation (blue line) each undergo a subcritical Hopf bifurcation at A∞ = 0.912.
Two unstable limit cycles emanate from the Hopf bifurcation on each asymmetric branch for A∞ > 0.912.
We conjecture that these unstable limit cycles become a symmetric limit cycle via a gluing bifurcation on the
symmetric branch in the region between the limit point and the pitchfork bifurcation, 0.927 > A∞ > 0.93. The
symmetric limit cycle is likely to be stabilised through a limit point (not shown).

cells (Moore et al. 2003). We have found that this stable oscillatory mode persists for
values of A∞ > 0.912 indicating that the Hopf bifurcation is subcritical. We also find that
the oscillatory mode can be reached by applying a suitable nonlinear perturbation to the
stable steadily propagating asymmetric finger when 0.927 > A∞ > 0.912.

The observed oscillations have a spatio-temporal symmetry being identical under
reflection about the channel’s centreline after a time shift of half a period. Hence, the
periodic state cannot arise directly from the Hopf bifurcation because at the bifurcation
two unstable, asymmetric limit cycles will emanate from the two asymmetric steadily
propagating solution branches. Instead, the observed periodic state must be a consequence
of another bifurcation that we have not identified. The simplest possibility is that the two
asymmetric limit cycles merge to create the symmetric limit cycle, a process known as
a gluing bifurcation (Kuznetsov 1998), see figure 14. An unstable symmetric steady state
is involved in a standard gluing bifurcation, which means that the symmetric periodic
solution cannot be created until A∞ is greater that the limit point L1 on the symmetric
branch. The existence of a stable symmetric limit cycle for A∞ < 0.927 suggests that a
limit point of periodic states must also exist either for the symmetric cycle after gluing or
for the two asymmetric cycles before gluing. A sketch of the former scenario is shown in
figure 14 and is consistent with a perturbed Takens–Bogdanov bifurcation with underlying
Z2 symmetry, see for example figure 2 in Rucklidge et al. (1993). This co-dimension
two bifurcation has been identified as the organising centre for complex dynamics in
other scenarios, such as double-diffusive convection (Knobloch & Proctor 1981) and
magnetoconvection (Rucklidge et al. 1993).

At increased levels of collapse, the asymmetric fingers are further destabilised through
a second Hopf bifurcation at A∞ = 0.69 and rather than settling into a periodic state
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the interface exhibits a more complex response to perturbations. In the least collapsed
channels, a single cleft develops in the interface, which resembles the early stages of
tip-splitting instabilities in rigid Hele-Shaw cells. As the level of collapse increases further,
the number of clefts increases and the morphology resembles a small-scale fingering
instability of the tip. Instability of the finger tip to small-scale fingers was observed in
the experiments by Ducloué et al. (2017b) for A∞ < 0.7. The typical length scale of the
smaller fingers decreases with increasing levels of collapse in both the experiments and
predictions of the model. The length scale of the small-scale fingers is comparable to
the height of the channel, which means that the interface configuration violates one of the
assumptions of the model: variations in the transverse direction should occur over a greater
length scale than the channel height. In the model, the interface eventually self-intersects,
forcing us to terminate the computations at these points. Hence, it is not possible to
determine whether these small-scale fingering patterns are transient or self-sustaining. A
further complication is the presence of a large number of near-neutral oscillatory modes
in the model that are likely to lead to complex transient dynamics. Near contact of the
interface was not observed in experiments, implying that effects not included in the model
may prevent self-intersection and providing further evidence that the results of the model
in which the interface has transverse variations over small length scales should be treated
with caution.

We chose to apply the liquid-film corrections using an effective capillary number based
on the interfacial velocity at the tip instead of using a local capillary number based on
the velocity at each point of the interface. For a steadily propagating interface, every point
must move with the same velocity so all local capillary numbers will be the same. In
time-dependent simulations, however, particularly for the unstable fingers, the velocity can
vary significantly along the interface leading to variations in the local capillary number.
In physical terms, basing the liquid-film corrections on the tip velocity means that in the
model the total thickness of the liquid films relative to the local channel height is assumed
to be constant and that there are no pressure gradients within the films. In reality the
liquid films will vary in thickness around the finger. The good quantitative agreement
between the model predictions and experimental data suggests that these fine details do
not influence the finger width far behind the tip nor the finger pressure. The liquid-film
modelling assumptions are likely to have a significant impact on the development of the
small-scale fingers, however.

As far as we are aware, all previous studies of the influence of liquid-film corrections in
Hele-Shaw cells have been for cases in which there is only one solution. In these cases
the purpose of the correction is to achieve improved quantitative agreement between
the model and experiments (Tabeling & Libchaber 1986), but the qualitative features
are unchanged. In the present study, we have found a non-trivial solution structure with
multiple co-existing states. If liquid-film corrections are not applied in our system then
the results are both qualitatively and quantitatively wrong: the number and nature of the
solutions changes.

We conclude that the relatively simple depth-averaged model appears to capture
the majority of the features observed in experiments and, moreover, that the steadily
propagating solutions present in the depth-averaged model of rigid Hele-Shaw channels
are also present in the elastic-walled channel. The presence of the elastic wall can lead to
interaction between solution branches that are isolated in the rigid channel, altering their
stability and leading to complex dynamics in elasto-rigid channels at higher levels of initial
collapse. The model can readily be extended to include variable basal topography, but it
remains to be seen whether it can predict the myriad of exotic fingering patterns found in
partially occluded, elasto-rigid channels (Ducloué et al. 2017a).
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Figure 15. Finger shapes for decreasing values of A∞. The red circles indicate the experiments of Ducloué
et al. (2017b), while solid lines show steady numerical solutions of the fully coupled fluid–structure interaction
problem in the presence (black) and absence (blue) of the liquid films on the upper and lower walls. The
experimental fingers shown in (c–e) are snapshots of unsteady modes of propagation where small-scale fingers
are continually formed near the tip and advected around the curved front.
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Appendix A. Absence of liquid films

The influence of the liquid films that are deposited on the upper and lower walls of
the channel on the finger morphologies and membrane profiles is shown in figures 15
and 16, respectively. As previously described (Tabeling & Libchaber 1986), in the
absence of liquid films the model predicts narrower fingers because the air volume is
incorrectly assumed to span the entire height of the channel. For higher levels of collapse
A∞ ≤ 0.61 (i.e. below the location of the pitchfork bifurcation P2), the model without
liquid films predicts that the underlying steadily propagating fingers are asymmetric, in
qualitative disagreement with the experiments. For the steadily propagating fingers, the
cross-sectional area of liquid deposited behind the finger tip is fixed at A∞. In the absence
of liquid films, the membrane must inflate further in order to accommodate the liquid that
is no longer in the films above and below the finger. The difference in membrane profiles
increases with the level of collapse.
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Figure 16. Membrane height along the centreline of the channel (x2 = 0) for decreasing values of A∞. The red
circles indicate the experiments of Ducloué et al. (2017b), while solid lines indicate steady numerical solutions
of the fully coupled fluid–structure interaction problem in the presence (black) and absence (blue) of the liquid
films on the upper and lower walls. The tip of the air finger is located at x1 = 0.

–0.4

–0.4 –0.2 0 0.2 0.4 0.6 0.8

–0.2

0

0.2 Amax = 0.05

3616
elements

Amax = 0.03

9015
elements

0.4

x1

–0.4 –0.2 0 0.2 0.4 0.6 0.8
x1

x2

–0.4

–0.2

0

0.2

0.4
(b)(a)

Figure 17. Steadily propagating asymmetric fingers for A∞ = 0.8, Ca = 0.47 at two different mesh
resolutions (a) Amax = 0.05, (b) Amax0.03.
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Figure 18. Finger pressure at Ca = 0.47 as a function of the initial level of collapse for different mesh
resolutions. The results are indistinguishable for Amax ≤ 0.03.
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Appendix B. Numerical verification

We verified that our results were unchanged under increases in mesh resolution by
adjusting the error tolerances, which can be interpreted in terms of the maximum allowed
area of each triangular element, Amax. Figure 17 shows the region near the tip for a steadily
propagating asymmetric finger at two different mesh resolutions. The finger shapes are
nearly indistinguishable. Figure 18 shows the finger pressure as a function of the initial
level of collapse at four different mesh resolutions.
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DUCLOUÉ, L., HAZEL, A.L., PIHLER-PUZOVIĆ, D. & JUEL, A. 2017a Viscous fingering and dendritic
growth under an elastic membrane. J. Fluid Mech. 826, R2.

DUCLOUÉ, L., HAZEL, A.L., THOMPSON, A.B. & JUEL, A. 2017b Reopening modes of a collapsed
elasto-rigid channel. J. Fluid Mech. 819, 121–146.

FRANCO-GÓMEZ, A., THOMPSON, A.B., HAZEL, A.L. & JUEL, A. 2016 Sensitivity of Saffman–Taylor
fingers to channel-depth perturbations. J. Fluid Mech. 794, 343–368.

GARDINER, P.J., MCCUE, S.W., LUSTRI, C.J. & MORONEY, T.J. 2015 Discrete families of Saffman–Taylor
fingers with exotic shapes. Res. Phys. 5, 103–104.

GAVER, D.P. III, Halpern, D., Jensen, O.E. & Grotberg, J.B. 1996 The steady motion of a semi-infinite bubble
through a flexible-walled channel. J. Fluid Mech. 319, 25–65.

GAVER, D.P. III, Samsel, R.W. & Solway, J. 1990 Effects of surface tension and viscosity on airway reopening.
J. Appl. Physiol. 369, 74–85.

GREEN, C.C., LUSTRI, C.J. & MCCUE, S.W. 2017 The effect of surface tension on steadily translating
bubbles in an unbounded Hele-Shaw cell. Proc. R. Soc. A 473 (2201), 20170050.

HAZEL, A.L. & HEIL, M. 2003 Three-dimensional airway reopening: the steady propagation of a semi-infinite
bubble into a buckled elastic tube. J. Fluid Mech. 478, 47–70.

HAZEL, A.L., HEIL, M., WATERS, S.L. & OLIVER, J.M. 2012 On the liquid lining in fluid-conveying curved
tubes. J. Fluid Mech. 705, 213–233.

HEAP, A. & JUEL, A. 2009 Bubble transitions in strongly collapsed elastic tubes. J. Fluid Mech. 633, 485–507.

916 A27-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

21
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.219


J.V. Fontana, A. Juel, N. Bergemann, M. Heil, and A.L. Hazel

HEIL, M. & HAZEL, A.L. 2006 oomph-lib – an object-oriented multi-physics finite-element library. In
Fluid–Structure Interaction (ed. H.J. Bungartz & M. Schäfer), pp. 19–49. Springer.

HEROUX, M.A., et al. 2005 An overview of the Trilinos project. ACM Trans. Math. Softw. 31 (3), 397–423.
HOMSY, G.M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271–311.
JACKSON, S.J., POWER, H., GIDDINGS, D. & STEVENS, D. 2017 The stability of immiscible viscous

fingering in Hele-Shaw cells with spatially varying permeability. Comput. Meth. Appl. Mech. Engng 320,
606–632.
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