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Abstract

Semiconvex sets are objects in the algebraic variety generated by convex subsets of real linear
spaces. It is shown that the fundamental notions of convex geometry may be derived from an
entirely algebraic approach, and that conceptual advantages result from applying notions derived
from algebra, such as ideals, to convex sets. Some structural decomposition results for semiconvex
sets are obtained. An algebraic proof of the algebraic Hahn-Banach theorem is presented.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 52 A 01, 18 C 05.

Introduction

Concepts arising from category theory, enabling the construction of varieties of
equational algebras from their free objects, have led to the discovery of im-
portant new classes. Swirszck (1973) demonstrated that the class of convex
subsets of linear spaces may be given an intrinsic definition as a set provided
with a family of binary operations satisfying three identities, together with a
cancellative axiom. If the restriction implied by the cancellative law is removed,
the resultant algebraic variety has been christened the variety of semiconvex
sets.

The semiconvex sets are those algebras arising from congruence equivalence
relations on ordinary convex sets. In the same way that the study of fields and
integral domains leads naturally to rings, semiconvex sets are the natural
domain for an entirely algebraic approach to the geometry of convex sets.
Previous approaches to convexity from an algebraic or categorical viewpoint
have been hampered by the necessity to embed in a linear space and by an
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inability to form such basic constructions as quotients or tensors. Virtually all
the major notions and theorems of convex geometry have their counterparts in
the extended variety. This concerted approach, containing as it does the semi-
lattices, permits the introduction of logical and choice variables into all the
standard applications of convex geometry, such as linear programming and
economic choice sets.

The critical notion of convexity is "betweenness", or of the segment joining a
pair of points. In our relaxed situation, the segment is shown to be either a real
line segment or a single point, the "infimum" of the pair. In Section 2, the
introduction of the algebraic concept of an ideal, to replace the standard
geometric ideas of interior and support manifold, pays simplifying dividends in
the study of boundaries of convex sets. The affine hull is found to be better
defined as an algebraic equivalence class.

It is shown that semiconvex sets may be embedded in several rather more
comprehensible mathematical objects: in certain semigroups called semicones,
and as subobjects of products of copies of a particular elementary semicone
(-oo, oo]. An analysis of the nearest analogue to a line is performed in Section 3,
which provides a criterion for cancellativeness in terms of lines through a pair of
points. Finally the Hahn-Banach theorem for semiconvex sets is proven, using a
new explicit construction of the separation function.

1. Semicones and semiconvex sets

The first definition is fairly natural.

1.1 DEFINITION. A (convex) semicone is a semimodule over the semiring of
non-negative reals. That is, a semicone is an abelian semigroup X with identity
0, together with a monoidal (left) action of the non-negative reals, such that both
distributive laws are observed, 0 is invariant, and Ox = 0 for all x in X.

A semicone is a group if and only if it a real vector space. As is well known
for semigroups, a semicone can be embedded in a vector space if and only if it is
cancellative; that is, if x + y = x + z, then^ = z, for any x,y, z in A\

Examples of semicones are any convex cone in a vector space with zero as
vertex, or any abelian band with the trivial multiplication rx = x for all r =£ 0.
Two of the more pathological examples of semicones are the reals with ordinary
positive multiplication but with the addition changed;

a) the blocked semicone, with x + y — x for x positive and y negative, but
otherwise addition as normal,
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b) the reversal semicone, with x + (—y) = x + y, for x,y > 0, but otherwise
addition as normal.

1.2 DEFINITION (Swirszck). A semiconvex set is a set X together with a family
of binary operations Px, one for every X in the real interval (0, 1), which satisfy
the identities, for x,y, z in X and 0 < X, p. < 1
(1) (reflexivity) Px (x, x) = x,
(2) (symmetry) Px(x,y) = P0_X)(y, x),

(3) (associativity) Pr (Px(x,y), z) = PrX{x, P^y, z))

for r = fi/(l - X + ty).

x Px{x,y) y

FIGURE 1

Equation (3), in geometric terms, says that two lines from vertices to opposite
sides of a triangle must meet, in a prescribed ratio.

These three axioms are sufficient for our geometry. Sometimes for complete-
ness we also include the binary identity functions Pt and Po, defined as
p\(x,y) = x and P0(x,y) = y. Then (1) and (2) hold for X, n in [0, 1], and (3) if
X(l -y)*\.

Any convex subset of a vector space, or any semicone, is a semiconvex set
under the operations Px{x,y) = Xx + (1 — X)y and will be given this canonical
structure unless otherwise stated. Swirszck (1973) has shown: (i) a semiconvex
set may be embedded as a convex subset of a vector space if and only if it is
cancellative; that is, Pr(x,y) = Pr{x, z) for any x,y, z in X impliesx that_y = z;

(ii) the free semiconvex sets are the simplexes, where a simplex on the set / is
the set of [0, 1]-valued functions/of finite support such that 2,-e//(») = 1.

Identities (1) to (3) are the algebraic theory of convexity: adding the cancella-
tive axiom gives the geometric theory of convexity.

1.3 Examples of non-cancellative semiconvex sets are any meet-semilattice,
with Pr(x,y) = x A y for r in (0, 1), and the blocked space E, which is the
interval [-1, 1] in the blocked semicone, so that Pr(x, z) = Pr(y, z) for any r in
(0, 1), negative x and.y, and positive z.
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1.4 A function/between semiconvex sets is affine if it is an algebra morphism;
that is, Pr(f(x), /(*')) = f(Pr(.x, x')) for all r in (0, 1) and x, x' in the domain of

/•
Any semiconvex set X can be embedded in a semicone K(X); let K(X) be the

set X X R+, where R+ is the non-negative reals, with all points <JC, 0> identi-
fied; define r(x, s} = <x, /•$> and

(x,s) + (y,t) = (Ps/(s + l)(x,y),s + t)

for any r, s, t in (0, 1) and x, y in A".
The embedding x —> <x, 1> is affine and universal (see Semadeni, p. 415 for

the cancellative version). K(X) will be cancellative if X is.

1.5 Some of the following important derivative identities of identities (1) to (3)
may be obtained directly; however, they are more easily verified in semicone.

For any x,y, z, a, b in semiconvex X and r, s, t in (0, 1)

(4) Pr(Ps(x,y),y) = Prs(x,y)

(5) P,{P,(x,y), z) = Prs{x, P(r-rs)/0-rs){y, *))

(6) P,(P,(x, z), P,(y, z)) = P^PXx, y), z) for r, s, tin [0, 1 ]

where ju = Pr(s, t) in R (with the standard semiconvex structure), and v = rs/ p..
Furthermore, /x"1 = P,(s~\ r 1 ) .

Putting x = y, we see that for x, z in X, the function \pxz: [0, 1] —> X defined
by tyxa(r) = Pr(x, z) is affine. Putting s = t, the function <pz: X ^> X, <pz(x) =
Pj(x, z) is affine.

(7) Pr(Ps(a, b), Ps(x,y)) = P,{P,{a, x), Pr(b,y)).

2. Geometry and congruences

2.1 If Pr(x, y) = z in semiconvex X for some r in (0, 1), say z lies between x
and y. Write (x, y) for the set of points between x and y, and [x, >>] where the
endpoints x and >> of the segment are included.

A subset G of X is called semiconvex or a subalgebra of x if it is closed under
convex combinations Pr.

A congruence on a semiconvex set is an equivalence relation — on A" which is
a subalgebra of X X X (it is sufficient that for x ~ y and z in x, Pr(x, z) ~
Pr(y, z) for any r in (0, 1)). The quotient of any semiconvex set by a congruence
is again a semiconvex set.

Any equivalence class for a congruence (or more generally any equalizer) is
called a manifold; a manifold is always a subalgebra.
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2.2 EXAMPLE. A subset / of X is an ideal if for x m X and y in /, (x, y) C /.
Then the union of the diagonal and (/ X / ) c (X X A') is a congruence, so that
I may be shrunk to a single point in the quotient without violating semiconvex-
ity. An ideal is prime if it has semiconvex complement; then the complement is
called a support manifold. If a single point is a support manifold, it is an extreme
point. Each prime ideal in X corresponds to an affine function into the two-point
semilattice {0, 1}.

Any intersection or union of ideals is again an ideal. For A c X, the ideal
{A} generated by A is U {(*, a): a G A, x G X), and is the smallest ideal
containing A.

2.3 EXAMPLE. The map x -» <x> taking semiconvex X into its semilattice of
ideals under intersection is affine, because (Pr(x,y)} = <x> n (y} for any x,y
in X and r in (0, 1). In fact, if z G <x> n <>>>, choose a, b in X and s in (0, 1)
using identity (4), so that Ps(x, a) = Ps(y, b) = z. Then Ps(Pr(x, y), Pr(a, b)) =
Pr(Ps{x, a), Ps(y, b)) = z by identities (7) and (1), so that z is in (Pr(x,y)), with
the other inclusion obvious. Accordingly, (x ~y if <x> = (,y}) defines a
congruence on X, and the quotient is a reflection of X into the category of
semilattices.

2.4 EXAMPLE. If G is a subalgebra of semiconvex X, say x —Gy if P,(x, 8i) =

Pr(y, gz) f°r some r and g,, g2 in G. Then —G is a congruence, called the affine
congruence generated by G. The equivalence class of G is the affine hull of G, and
is denoted H(G). So H(G) = {x G A'Kx, g) meets G for some g in G}.

2.5 EXAMPLE. The ideals in a semicone are the semigroup ideals closed under
multiplication. Any (semiconvex) congruence on a semicone is a congruence for
the variety of semicones. If C is any cone, the affine congruence generated by
the diagonal in C X C has as quotient a vector space L(C), and the embedding

is universal (see Semadeni (1971), p.415. This is the standard construction of a
group reflection for abelian semigroups). The embedding is injective if and only
if C is cancellative.

If X is semiconvex, the composite X —> C(X) —> L(C(X)) will be a universal
arrow from X to the category of real linear spaces. The composite functor LC is
a reflection from the variety of semiconvex sets to the variety of real linear
spaces.

Being able to partition X into disjoint semiconvex sets is important.
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2.6 PROPOSITION, (i) / / G is a subalgebra of semiconvex X, and H is a
subalgebra of X maximal with respect to exclusion of G, the complement of H is
semiconvex;

(ii) the ideal maximal with respect to exclusion of G is prime;
(iii) any ideal is an intersection of prime ideals.

PROOF, (i) If x is not in H, the set Uhe#[*> h] is a subalgebra containing H
which must meet G. So for x,y not in H, there are hlt h2 in H such that Ps(x, /?,)
and P,(y, hj are in G, and 0 < s, t < 1.

From the identity

(8) P,{Pr{x,y), Pm{hx, h2)) = Pn(Ps(x, hx), Pt{y, h2))

where

/ = st/ (s - sr + rt), m = rt{\ - s)/ (s - sr + rt - st),

n = rt/ (s - sr + rt)
we see that for any r there is h3 = Pm(hx, h^ such that [Pr(x,y), h3] meets G
(since G is semiconvex). Then Pr(

x> y) is m the complement of H, which must be
semiconvex.

(ii) The ideal P maximal with respect to exclusion of G is {x: <x> n G = 0 } ,
so for x, y not in P, there are a,, a2 in X such that [x, ax] and [y, a2] meet G. As
in (i), the complement of P is semiconvex.

(iii) If / is an ideal and x is not in / , the ideal maximal with respect to
disjunction from {x} contains / and is prime, by (ii), so that / is an intersection
of primes.

Returning to 2.3, an extension theorem which contains the standard result
(Semadeni (1971), Theorem 23.1.3) holds.

2.7 PROPOSITION. Any affine function f: S -» L from a semiconvex subset S of
semiconvex X to a vector space L has a unique affine extension to the affine hull
H(S) of S in X.

PROOF. If a e H(S), there is sv s2 in S and r in (0, 1) such that Pr(a, st) = s2.
Define

If \j/ is any affine extension of / , / ( j j ) = np(a) + (1 — /•)/(.?,), so \p = <p. If there
is v in (0, 1) and s3, s4 in S such that Pc(a, s3) = s4, then, using identities (3) and
(2),

\Pr/(r+v-rv))\S2> Sl) = ^v/(r + v- rv)\S2' Sl)
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so that rf(s2) + (v — rv)f(st) = vf(s2) + (r — rv)f(s3), since/is affine, and divid-
ing by rv

7/W + (1 - 7

so <p is well defined.
To show q> affine, for b in H(S) and P,(b, s5) = s6, for J5, s6 in S, assume

without loss of generality that r < t, then Pr(b, s5) = s7, where s7 = Pr/t(s6, s5),
by identity (4). For q in (0, 1)

P,(Pq(a, b), Pq(Sl, s5)) = Pq{s2, s7), by identity (7)

so

<p(Pq(a, b)) =

3. Lines and interiors

Of critical importance is the need to establish a counterpart to the line
through a pair of points, by this means introducing a geometric flavour. The
notion of the interior of a semiconvex set turns out to be tractable, from either
an algebraic or a geometric viewpoint (3.7, 3.14). Each semiconvex set is
represented as a subalgebra of a product of copies of an elementary algebra in
3.10.

3.1 A line interval is a semiconvex set L such that for any three points in L,
one lies between the other two.

A line interval can have at most two extreme points, the endpoints of the
interval, and all other points lie in the interior of the interval. By induction, any
finite number of points in an interval may be contained in a segment [a, b].

3.2 LEMMA. All non-trivial congruences on the real interval [0, 1], or on any line
interval, must equivalence all points of the interior of the interval.

PROOF. Suppose a ~ b for 0 < a < b in [0, 1]. Then

a = Pa/b(b, 0) ~ Pa/b(a, 0) = Pa2/b2(b, 0) P{a/b)<a, 0)

so that a ~ (a/b)"a for all integers n. Because the manifold containing a and b
is semiconvex, every point of the segment (0, b] is equivalent. A similar argu-
ment shows every point of [a, 1) is equivalent.
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b in L, and [c, d] is any segmentNow if L is any line interval with a
containing [a, b], the affine map

^ : [0, 1 ] ->[ c, d] defined by ^d{r) = /»,(c, d)

in identity (6) induces a congruence on [0, 1], by r ~ 5 if Pr{c, d) ~ /^(c, d).
Since (0, 1) is then equivalent, every point of (c, d) is equivalent. Every point of
the interior of L is contained in some (c, d), with [c, d] containing a and b, and
so it is equivalent to a and b.

3.3 PROPOSITION. Any line interval L which is not cancellative has at most three
points. Any cancellative line interval is isomorphic to a real interval.

PROOF. If Pr{x, z) = Pr(y, z) for x ¥=y and z in L and r in (0, 1) then if a, b
are points in L such that x, y, z are in [a, b], the morphism ipab: [0, 1] —> [a, b]
cannot be an isomorphism. Since every point of (0, 1) is equivalenced by \j/ab,
[a, b] has at most three points, and it follows that L itself has two or three
points.

If L is cancellative, \j/ab is an isomorphism, for distinct a, b in L, and its
inverse may be extended to a map <p: L -» R, by Proposition 2.7, which must be
one-to-one by Lemma 3.2.

There are in fact seven distinct nonisomorphic cancellative line intervals
(including the one-point set), depending on whether one or two ends are
bounded or unbounded, open or closed.

3.4 Suppose Pr(x, z) = Pr(y, z) = a, for x, y, z in semiconvex X and r in
(0, 1). Then if s < r, Ps(x, z) = Pl/r(Pr(x, z), z) = Ps(y, z), by identity (4), and
P2m(x, z) = Pm(x, Pr(x, z)) = Pm(x, Pr(y, z)) = Pm(y, Pr(x, z)) = P2m(y, z)
where m = r/(\ + r), giving 2m > r.

Iterating, Ps(x, z) = Ps(y, z) for 1 - 5 arbitrarily small and Ps(x, z) = Ps(?, z)
for all s in (0, 1).
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Say x andy are z-equivalent in this case.
If c e <z>, so that c = Pv(z, a) for a in X, v in (0, 1), then

/>„(*, P,(z, a)) = Pm(Pn(x, z), a) = Pm(Pn(y, z), a) = /»„(>>, />,(z, a))

for any ji and suitable m, n, so that x andj> are c-equivalent.
Note that any non-cancellative space contains a non-trivial image of the

blocked space of 1.3, taking - 1 to x, 0 to y and 1 to z, where x and y are
z-equivalent.

If Pr(
x> z) — z for some r, then putting y = z above, or using Lemma 3.3,

(x, z] = z. Say x adheres to z; if this is the case, Pr(x, a) = Pr{z, a) for every a
in <z>, as JC, z are a-equivalent.

So x adheres to itself.

EXAMPLE. In the reversal cone of 1.3, every negative number -a adheres to its
corresponding positive number a.

If every segment in X is cancellative, say X is semicancellative. The blocked
space is semicancellative but not cancellative. If no segment in X is cancellative,
then X is a semilattice; x adheres io y if x > y.

3.5 PROPOSITION. / / G is a subalgebra of semiconvex X, then H(H(G)) =
H(G), where H(G) is the affine hull of G.

PROOF. Let <p: X —> X/ ~ G be the quotient map connected with the con-
gruence —G of Example 2.4. Then <p(x) and <p(y) are g-equivalent by definition
if and only if x~cy, where g is the equivalence class of H(G). If x is in
H(H(G)), then <p(x) adheres to g, so <p(x) = g and x e H(G).

3.6 LEMMA. Suppose Pr(x, z) = Ps(y, z) /or 0 < r < 5 < 1 and x, y, z in
semiconvex x. Then y adheres to Pr/s(x, z).

PROOF. Pm(y, Pr/s(x, z)) = Pn(x, {y, z)\ (where n = (r - W ) / ( J - rs), m =
/•)) = ,Pn(x, />r(*, z)) = />r/i(x, z).

3.7 DEFINITION. The interior of a semiconvex set A\ denoted X', is the
intersection of all non-empty ideals in X. The points of the interior are internal
points. The interior may be empty, or it may be all of X; in the latter case X is
open. The interior of X is open.

If p is any point of X', then </>> = X'.

3.8 PROPOSITION. Any open semiconvex set is cancellative.
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PROOF. By 3.4, the set of points z in semiconvex X such that x and y are
z-equivalent, for any x and y in X, is an ideal, so if X is open, x and y are in the
ideal, and

x = Pr(x, x) = Pr(y, x) = Pr{y,y) = y.

Therefore A' is cancellative.

3.9 PROPOSITION. If x and y are two points in semiconvex X, the interior I of the
affine hull H = H([x, y]) is a line interval. If (x, y) is not cancellative, I has one
point.

If p is any point of I, then I = H n </> > •
/ / z is any point of H not adherent to p, H = H([z, p]).

PROOF. If h is any point of H, the ideal </i> taken in H must contain a point /
of (JC,y). Since </> in H contains (x,y), (x,y) c </i>, and (x,y) is contained in
the interior /.

If (x,y) is not cancellative, so that it is a single point c, with x andy adherent
to c, then if c =£ x or y, x or y is not in <c>. Therefore if z G H, either z is
adherent to x or y, or c is in [z, x] or [z,y]. In either case, z is adherent to c. So
/ = ( c ) = {c}, the one-point set.

If (x,y) is cancellative, / is a cancellative semiconvex set which is the affine
hull in / of the segment (x, y), and must itself be a line interval, since the inverse
of \(/xy. (0, 1)—>(x,y) may be extended to an injection from / to R, as in
Proposition 3.3.

For;? in /, and q ¥=p in </?>, there is z, in X such that q is in (z,,/>). So if q is
in H, z, is in H(H) = H, and q & I. Therefore / = </>> n # .

If z in if does not adhere to p, so that (x, y) is cancellative, (z, />) c /, and
//([z, />]) contains every point of the interval /, by Lemma 3.2, including (x, y).
Then //([z,/>]) contains x and>>, and H([z,p]) = H.

The open line interval / will be called the line interior through (x, y).
A semiconvex set is simple if it admits no non-trivial congruences, and

subdirectly irreducible if the intersection of the non-trivial congruences is not the
diagonal, i.e. if there is a minimal non-trivial congruence.

Let (-oo, oo] be the semicone R u {<x>}, where s + oo = oo for real 5 and
r • oo = oo for positive r. Then as a semiconvex set, every point in (-oo, oo] is
attached to oo.

3.10 THEOREM. The simple semiconvex sets are the open line intervals and the
two-point interval. The subdirectly irreducible semiconvex sets are the subalgebras
of (-oo, oo]. Every semiconvex set may be embedded in a product of copies of
(-oo, oo].
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PROOF. If semiconvex 5 is simple and has a prime ideal, it must have only two
points. Otherwise, S is open by Proposition 2.6ii. For two points x, y in S, the
hull H([x,y]) = S = 5', and by Proposition 3.9, S is an open line interval. Any
open line interval is simple, by Lemma 3.2.

If L is subdirectly irreducible but not simple, suppose x and y in L are
equivalent under the smallest non-trivial congruence. Then any ideal in L has
either a single point or it contains both x andy. So either x and_y are internal, or
the interior of L has one point, oo_ say, and every point of L is attached to <x_.
Also (x,y) must be cancellative, since <_y> = <x>.

If 2 T̂  oo is in L, then <z> contains x. So x is internal to H([z, x]), which
must contain y by hypothesis, and z is in H = H([x, y]), by Proposition 3.9. So
L = H u {oo}.

If (p: / / -> R is the affine extension of the inverse of i/-x>y: [0, 1]-*[*,>']>
extend <p affinely, if necessary,<p: L —> (-00, 00], by putting <p(oo) = 00. Then <p
is injective, since <p(x) ¥= <p(y).

Any simple semiconvex set may also be embedded in (-00, 00]. Conversely,
any subalgebra S of (-00, 00] is subdirectly irreducible, with minimum con-
gruence, the congruence identifying the points of the interior of the interval
5 - { 0 0 } .

The last statement follows from Birkhoff's theorem (Gratzer (1968), p. 164).
It follows that (-00, 00] is a cogenerator in the variety.

3.11 DEFINITION. A line in semiconvex A' is a maximal subalgebra which is a
line interval.

If S is any line interval in X, then since 5 C H([x, y]) for any two distinct
points x, y in S, H(S) = H([x, y]) by Proposition 3.5.

3.12 PROPOSITION. If L is any line in semiconvex X, then either the interior of L
is equal to the interior I of H(L), or some endpoint of L adheres to a point in I, and
V = L n /.

PROOF. Assume L cancellative, otherwise / has a single point and I = L'.
Suppose x is in / but not in L. Choose distinct points a, b in L' such that
a G (x, b). Since V C <a>, L' C / by Proposition 3.9. So L has at most two
points not in /. For one of these points z, we must have a e (z, b\ otherwise
L u (x, b) is a line interval strictly containing L (both are contained in the
interval /, except for perhaps one point of L). Choosing x, in H(L) so that
x G (x,, b), (*!, b) and (z, b) meet in a but are not equal. By Lemma 3.6, z
adheres to a point in (x,, a).

The maximality of L ensures that no endpoint of L can be in /, so V = L n
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For any pair of points x,y in semiconvex X, a line containing x and_y may be
constructed by adding a suitable pair of endpoints (if necessary) to a suitable
subset of the line interior through (x, y).

The lines with two endpoints in the reversal cone are the sets {-a} u (a, b) u
{-&}, fora, b > 0.

Uniqueness properties of the lines through a given pair of points give a
criterion for cancellativeness.

3.13 COROLLARY. If semiconvex X is semicancellative, every line through a given
pair of points has the same interior. If X is not an interval, it is cancellative if and
only if there is a unique line through each pair of points in X.

PROOF. If x and y are points in semicancellative X, and L is a line through x
and>>, by Proposition 3.12, V = H([x,y])'. If z,, z2 are two points in H(\x, y])
not in its interior, both on the same side of [x,y], then Pr(zx,y) = Pr{z2,y) = x,
for some r > 0 (keeping in mind Lemma 3.6), and (zvy) = (z2, y) by 3.4. So if
H([x,y\) is cancellative, z, = z2, and H([x,y]) is a line segment, which must be
the unique line through x and>>.

Conversely, if Pr(x, z) = PA)>> z) f°r distinct x, y, z in X and r in (0, 1),
distinct lines through (x, z) = (y, z) may be obtained by adding to the interior
of H([x, z]), x and y respectively, together with a suitable endpoint at the other
end, if necessary.

The interior of a semiconvex set coincides with the intuitive definition of
interior.

3.14 PROPOSITION. The interior of semiconvex X is the set of points in the
interior of every line containing them.

PROOF. If x is an internal point of X, and L is a line containing x, then for
any z ^ x in L, by Proposition 3.9, x G H([z, x])' = H{L)', and x G V.

Conversely, if z is any point of X, then if x is in the interior of any (hence all)
lines containing x and z, x G <z>. So if x is in the interior of all lines, it is
internal.

4. The Hahn-Banach theorem

The formulation of Bourbaki (1953) Chapter 11.3, may be followed with
modifications.
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4.1 DEFINITION. If G is a subalgebra of semiconvex X, x is an algebraic interior
point of G if for any line L in X containing x, x is in the interior of the segment
inc.

4.2. PROPOSITION. For G a subalgebra of X, x is an algebraic interior point of G
if and only if x is an internal point of G and H(G) = X.

PROOF. If x is an algebraic interior point of G and y is in X, a line L in X
containing^ and x has x as an interior point of L n G, so x &(y, g) for some g
in G andy G H(G). If y is in G, x G <>>> (where the ideal is formed in G) and x
is internal to G.

Conversely, suppose L is a line in X containing x, supposey ¥= x £ L; then if
H(G) = X, there are g,, g2 in (7 such that g, G (.y, gj). Choose g in (g,, gj). If x
is internal, we have g3 such that x G (g, g3).

FIGURE 3

Then there is x, in (g2, g3) such that x G (x,,_y), and x2 in (g p g3) such that
x2 G (*,,>>) and x G (*,, x2). If (xx,y) is not contained in L, an endpoint of L
adheres to a point in (x,, x) by Proposition 3.12, and x is in the interior of
inc.

4.3 DEFINITION. If C is a subalgebra of semiconvex X, define

C = {x G X: By G C such that (x,.y) C C}.

The points of C are the/JO/nte adherent to C.
If (x, j>) C C and (x ' , / ) C C, the segment (Pr(x, x'), Pr(y,yD is contained

in C, using identity (7), so that C is semiconvex.

4.4 LEMMA. (C2)' = Cfor any subalgebra C of semiconvex X.

PROOF. If y G C, then (>>> n C is a non-empty ideal in C, which must
contain C", so (Ca)' 2 C . If (c, y) C C for some c in C, and x is in C, choose z
in C" such that x S (2, c).
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FIGURE 4

Then (x, y) C C, since each (z, a) is, for a in (c,y) and C is an ideal in C", so
C = (C)1.

Say G and (?', subsets of semiconvex X, are separated by a function/ if/(G)
does not meet/(G')-

4.5 THEOREM. Let C be a subalgebra of semiconvex X which contains an
algebraic interior point, and suppose C is a subalgebra of X containing no internal
point of C. Then C and C are separated by a prime ideal or a real-valued affine
function.

PROOF. By Zorn's Lemma, find a subalgebra of X containing C", maximal
with respect to exclusion of C. Then its complement will be semiconvex, by
Proposition 2.6(i), and we may assume that C is the complement of C.

If C" contains no internal point of X, there is a prime ideal in X not meeting
C", by Proposition 2.6(ii), and C" C A" C P, by Propositions 4.2 and 3.14, so P
separates C and C".

Let H - C n C". If a G C" and c' G C, a is in the interior of L n C for
any line L in X containing c' and a, so a is not in H. In fact, a is not in / /(/ /) ,
since <a> = (C)1 in C , by Lemma 4.4, and ( C ) ' does not meet H. Therefore,
for any x in C'a, there is unique r such that Pr(x, a) G / / (take r =
sup{*: P,(x, a) E C}).

Define a real function/on C'a by/(x) = 1 - r~\ So / < 0, and/ = 0 on # .
If for x' in C", Ps(x', a) G H, then for all / in (0, 1)

P^P.ix, x% a) = Pv(PXx, a), Ps(x, a)) G H,

where ju"1 = P,(r~\ s~l), by identity (6), and f(P,(x, x')) = 1 - fi~l =
^,(1 - /•-', 1 - j"1), so that/is affine.

If c in C" is in A"1', there is 6 in A so that c G (a, b). Then b e C, b & H,
f(b) < 0, and for any.y in X, (y, c) meets C". So V/(C") = A. Extend/to all of A
by Proposition 2.7. If </ is in C", (rf, 6) meets H, so 0 G /((rf, 6)) and/(rf) > 0.
Therefore / separates C" and C .

If A is open, this is the standard Hahn-Banach result.

https://doi.org/10.1017/S1446788700017973 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017973


510 Joe Flood 11 s 1

References

N. Bourbaki (1953), Elements de mathematique, Livre 5, Espaces vectoriels topologiques Vol. 1 (Act.
Sci. et Ind.).

G. Gratzer (1968), Universal algebra (Van Nostrand, Princeton, N. J.).
S. Mac Lane (1971), Categories for the working mathematician (Graduate Texts in Mathematics, 5,

Springer-Verlag, Berlin).
Z. Semadeni (1971), Banach spaces of continuous functions I (Monografie Matematyczne, 55.

Warsaw).
T. Swirszck (1973), Monadic functors and categories of convex sets, Preprint No. 70. (Proc. Inst. Math.

Pol. Acad. Sci., Warsaw).

CSIRO Division of Building Research
P.O. Box 56
Highett, Victoria 3190
Australia

https://doi.org/10.1017/S1446788700017973 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017973

