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% 1. Introduction

In [5], the author proved that the Gauss map of a nonflat complete

minimal surface immersed in R3 can omit at most four points of the sphere,

and in [7] he revealed some relations between this result and the defect

relation in Nevanlinna theory on value distribution of meromorphic func-

tions. Afterwards, Mo and Osserman obtained an improvement of these

results in their paper [11], which asserts that if the Gauss map of a nonflat

complete minimal surface M immersed in R3 takes on five distinct values

only a finite number of times, then M has finite total curvature. The

author also gave modified defect relations for holomorphic maps of a

Riemann surface with a complete conformal metric into the /z-dimensional

complex protective space Pn(C) and, as its application, he showed that, if

the (generalized) Gauss map G of a complete minimal surface M immersed

in Rm is nondegenerate, namely, the image G(M) is not contained in any

hyperplane in Pm"1(C), then it can omit at most m(m + l)/2 hyperplanes

in general position ([8]). Here, the number m(m + l)/2 is best-possible

for arbitrary odd numbers and some small even numbers m (see [6]).

Recently, Ru showed that the ' 'nondegenerate" assumption of the above

result can be dropped ([13]). In this paper, we shall introduce a new

definition of modified defect and prove a refined Modified defect relation.

As its application, we shall give some improvements of the above-mentioned

results in [5], [7], [8], [11] and [13].

We roughly explain here the modified defect relations given in this

paper. More precise statements are given in § 5. Let M be an open

Riemann surface with a conformal metric ds2 and consider a nondegenerate
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14 HIROTAKA FUJIMOTO

holomorphic map / of M into Pπ(C). We denote by Ωf the pull-back of

Fubini-Study metric on Pn(C) through /, and by f*(H)w the ^-truncated

pull-back of a hyperplane H in Pn(C). In some cases, we regard them as

(1, l)-currents on M.

We define the modified H-defect of H for / by

Df(H): = 1 - i n % > 0; f*(H)w < ηΩf on M - K

for some compact set K).

Here, by Ωί < Ω2 we mean that there are a divisor v and a bounded

real-valued function k with mild singularities such that v > c on the

support \v\ of v for a positive constant c and

Ω, + [v] = β2 + dd clog£ 2

holds as currents, where [v] denotes the current corresponding to v.

We also define the H-order of / by

pf\ = \nί{p > 0; — Ricds2 •< ρΩf on M — K for some compact set K] .

After Chen [2] we say that hyperplanes Hό (1 < j < g) are located in

iV-subgeneral position if Hh Π Π HJN = 0 for all 1 < j0 < < 7V < q,

where g > N>n. Particularly, we say that Hs (1 <j < q) are in general

position if they are in n-subgeneral position.

The modified defect relation proved in this paper is stated as follows:

THEOREM 1.1. Let M be an open Rίemann surface with a complete

conformal metric ds2, and let f be a nondegenerate holomorphic map of M

into Pn(C) For the particular case where M is biholomorphίc with a

compact Rίemann surface M with finitely many points removed, we assume

that f cannot be extended to a holomorphic map of M into PW(C). Then,

for arbitrary hyperplanes HU"-9Hq in PW(C) located in N-subgeneral

position,

(1.2) Σ DjiHj) <(2N~n +
2

Let M be a (connected, oriented) minimal surface immersed in Rm.

We can regard M as an open Riemann surface with a conformal metric.

The set of all oriented 2-planes in Rm can be identified with the quadric

QW-2(C) = {(iiv.. . .: wj; w\ + . + < = 0}(c
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By definition, the Gauss map of M is the map G : M-+ Qm_2(
which maps each p e M to the point in Qm_2(C) corresponding to the
oriented tangent plane of M at p. By the assumption of M, G is a holo-
morphic map of M into P^-^C). We can conclude from Theorem 1.1 the
following:

THEOREM 1.3. Let M be a nonflat complete minimal surface immersed

in Rm with infinite total curvature, and let G be the Gauss map of M.

Then, for arbitrary hyperplanes Hu >>,Hq in Ym~\C) located in general

position,

For a holomorphic map / of an open Riemann surface M into Pn(C)
and a hyperplane H in PW(C) we can show that Df(H) = 1 if f~\H) is
finite. This yields the following improvement of a result of Ru ([13]):

COROLLARY 1.4. Let M be a nonflat complete minimal surface immersed
in Rw with infinite total curvature, and let G be the Gauss map of M. If
G'XHj) are finite for q hyperplanes Hu - , Hq in P^^C) located in general
position, then q < m(m + l)/2.

In the case m = 3, QJC) can be identified with P^C). The Gauss
map G of M is considered as a holomorphic map of M into P^C) with
PG < 2. Theorem 1.1 implies the above-mentioned result given by Mo and
Osserman.

In this paper, we also consider minimal surface with branch points.
We introduce the new notion of branching H-order for minimal surfaces
and give modified defect relations for the Gauss map which relate to this
notion.

The author wishes to thank Professor I. Wakabayashi for his useful
critical comments.

§ 2. Nochka weights for hyperplanes in subgeneral position

For later use, we recall an algebraic theorem given by Nochka in [12]
(cf. [2]).

We consider q hyperplanes H} (1 <j < q) in P"(C) which are given by

H, :(AJtW) = 0 (l<j<q)
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for Aj e Cn + 1 — {0}, where q> N>n and (A, W) means aowo + + anwn

for a vector A = (α0, , an) and homogeneous coordinates W=(ιt;0: : wn).

After Chen ([2]), we give the following definition.

DEFINITION 2.1. We say that hyperplanes Hu ,Hq (or vectors Au

• , Aq) are in N-subgeneral position if, for every 1 < jQ < <jN< q,

AJQ, Ah, - - , AiiV. generate Cw + 1, or equivalently,

We assume that Hu ,Hq are in ΛΓ-subgeneral position in the

following.

Set Q: = {1, 2, , <?}. For each i? c: Q we denote by #J? the number

of elements of R and by d(i?) the dimension of the vector subspace of

Cn + 1 generated by {Â  jfeiϊ}. For convenience sake, we set d(0) = 0.

In [12], Nochka has given the following theorem to prove Cartan's

conjecture.

THEOREM 2.2. Let Hu H2, - , H q be hyperplanes in Pn(C) located in

N-subgeneral position, where q > 2ΛΓ— n + 1. Then there are some constants

ω(l), - , ω(q) and Θ satisfying the following conditions;

( i ) 0 < ω(j) <θ<l (1 < j < q\

(π) Σ ωϋ) = n + 1 + θ(q - 2N + n - 1),

.7 = 1

(iii) +\ + 1
2N-n + l ~ ~ N+l

(iv) if R c Q and 0 < #i? < N + 1, ί/ien £ ω(/) <

For the proof, see [12] or ]2],

DEFINITION 2.3. We call constants ω(j) (l<j<q) and θ with the

properties (i)—(iv) Nochka weights and a Nochka constant for fli, , Hq

respectively.

By definition, H} (1 < j < g) are in general position if and only if they

are in n-subgeneral position. If Hί9 ,Hq are in general position, then

we have necessarily ω(ϊ) = = ω(q) = 6—1.

We give here a property of Wronskians relating to Nochka weights.

Let /0, ,fn be holomorphic functions without common zeros on a domain

D in C. We denote the Wronskian of /0, , fn by

Wo, •••,/«) = det(/£>; 0 ̂  /, m ̂  n).
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Assume that /0, , fn are linearly independent over C, or W(/o> - - ,fn)

=£ 0. Consider q vectors

A, - (σ i0, ajU - , ajn) e Cn + i (1 < j < q)

located in iV-subgeneral position and take Nochka weights ω(j) (1 <j < q),

where q > 2N — n + 1. Set

Fj = α i 0 / 0 + - + ajnfn (l<j<q).

For a nonzero meromorphic function ψ on D we define the map v^ : D-+Z

by

yΨ(ζ): = the order of the meromorphic function ψ at ζ .

Consider a function

φ =

and set

where W = VF(/0, •••,/„).

LEMMA 2.4. //i ί/ie αboz e situation, we have

Σ ωθ")min(i^, n) > 0 .
.7 = 1

Proof. It suffices to show that

(2.5) ^ > Σ ^

where x+ means max(x, 0) for a real number x. In fact, since

., n) + (vFj - n)+ = vF.

we can conclude from (2.5)

Σ ω(/)min(iv Λ) = v - Σ ^0> + Σ
j0

iv , Λ) = vjr - Σ ^ 0 > F / + Σ ω(j)min(vF, n)
j 1 j l

q

Σ
ii

., n) - i^) = 0 .

To prove (2.5), take a point ζ e D, and set Q: = {1, 2, , g} and
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We may assume that S Φ 0 . Then, #S < N. For, otherwise, by iV-sub-

generality of A/s there are n + 1 distinct jQ9 ,jne S such that A jo, ,

Ajn are linearly independent. So, /0, , /Λ are represented as linear

combinations of F(Hjo), , F(Hjn), whence /0, ••-,/« have a common zero

at ζ. We now consider the sets SΓ (0 < τ < t) such that

and for each j e St — ST_ι vFj(ζ) equals some constant mτ, where mι > m2 >

• > rnt > n + 1. Let V(R) be the vector space generated by {Aj'Je R}

for each R c Q. Then,

(S) V(S2) c . . . c

For each τ take a subset Tr of Sτ such that ϊ7,.! c Tτ and {A;;; e Tτ} gives

a basis of V(St). We then have #(Γr - Tτ.x) = d(Sr) - (/(S^). For brevity,

we set mf: = mt — n. By the use of Theorem 2.2, (iv) we obtain

Σ "COG*, ~ ̂ )+ - Σ ωθ")(^y - nY = Σ Σ ωθ")m*
3=1 jβS r = l ieSr-^r-i

Σ
SS

= Σ
= (m* - mf) Σ ω(j) + (jnf - mf) Σ ω(j) + + m* Σ ω(Λ

ye-Si iG^2 ies«

< d(SMmf - mf) + d(S2)(mf - m3*) + + ^(S^mf

- dίSOmf + (d(S2) - diS^m* + + (d(^) - d(St^))mf

+ tt(Γ2 - ΓOm* + +

Set 7̂  = {/o, ,yfc}, where k <n. Since Aj0, , Ajlύ are linearly inde-

pendent, after a suitable nonsingular linear transformation of homogeneous

coordinates, we may assume that f0 = Fjo, , fk = Fjιc. Then, by the

Laplace' expansion theorem of determinants, W is expanded as the sum

of the products of some minors of degree n — k and some minors of

degree k + 1 whose components consist of the < n-th. derivatives of Fjo,

• , Fjle. This implies that

MO > Σ MO - n).
jeτt

Since vFj(ζ) = mt for every j eTτ — Tτ_x this quantit}' coincides with the

last term of the above inequalities. This completes the proof of Lemma

2.4.
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§ 3. Some properties of the contact functions for derived curves

We recall some known results on the derived curves for a holomorphic

map of an open Riemann surface M into Pn(C).

Let f:M—>Pn(C) be a nondegenerate holomorphic map. Take a

reduced representation / = (/0 : : fn) on M with holomorphic functions

fi on M having no common zeros. Set ||/|| = CCo<j<w|/i I2)1/2 a n d F =

(/o> > fn)- For each p e M, taking a holomorphic local coordinate on

some neighborhood U of p, we set F{1) = (f{

o

ι\ ,/£°) for each I = 0, 1,

• , and define the map

Ffe : = Fω> Λ F ( 1 ) Λ Λ F ( f c ) : U >7\ c " + 1 (0 < ^ < ^ - 1),

where Fo = ^ ( 0 ; : = F. Let TΓ : Λfc+1 Cn + 1 - {0} -> P V Λ ( C ) denote the canonical

projection, where iVfc: = ί j? ~J_ ^ \ — 1. By definition, the Ẑ -th derived curve

of / is the map fk — π-Fki which does not depend on the choice of a

holomorphic local coordinate and so is well-defined on the totality of M.

We locally define

Σ

By definition, the pull-back Qk of the Fubini-Study metric on P**(C) by

fk is locally given by

Ωk = ddclog\Fk\\

where dc = (\Λ—ΐ/4τr)(3 — 3). Take a hyperplane

H:(A,W) = 0,

where A — (aQ, , αn) is a unit vector. Set

I j? (TT\v _ | 7 ? \ / 4 | 2 . _ v I V π W(f f . . . f \\2

\-Γli\ri)\ — \Γ k V J\\ . — 2-i I LΛ ajVV\/j> Jiii iίik)\ •>
0<ii< "<ik<n jφii. ' ,ik

where V denotes the interior product as in [14]. We define the contact

functions

„ (H)(z). _ \_FjtMM

which are well-defined on the totality of M and do not vanish identically.

For ft = 0, we have F0(H) = F(H): = (A, F) and φ,(H) = |F(F)| 2/| |/ | | 2.

We now give the following so-called sums into products estimates.
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THEOREM 3.1. Let Hu , Hq be hyperplanes in P"(C) located in N~

subgeneral position and ω(j) (1 <j < q) be Nochka weights for these hyper-

planes. For an arbitrarily given a > 1 and 0 < k < n — 1 set

Then, there exists a positive constant Ck depending only on k and H3 such

that

(3.2)

on M- \Jx^{z\ ψ*{Hs)(z) = 0}.

For the case where H5 are in general position, this is classical (cf.,

e.g., [4] or [14]). For the general case, the proof is given by similar

arguments by the use of Theorem 2.2 (cf., [2]). Since the description of

Chen is lengthy, we give here a shorter proof.

For the proof, we use the following elementary inequality.

^3.3) For all positive number xί9 , xn and au . an,

α Λ + + anxn > (a, + + αn)(αΐ». .χj»y/<«i+ + «»> .

Proof of Theorem 3.1. Let

where we choose Aj with \Aά\ = 1 for each j .

We consider the set 0lk of all subsets R of Q: = {1, 2, , q} such that

d(R) < n — k. For each P e G(n, k) we take a nonzero decomposable

(k + 1)-vector E such that P = { X e C B + 1 ; £ Λ I = 0 } and set

\Ef

which depends only on P. We regard ψk as a function on the Grassmann

manifold G(n, k). For each nonzero vector E = EQ Λ Λ Ek we set

JD. _ r p O' E \/ A — (ft

Since E V A, = 0 means that A i is contained in the orthogonal comple-

ment of the vector space generated by Eo, , Ete, we see d(iϊ) < n — k,

namely, R e 0tH. This yields that ψfc is positive everywhere on G(n, k).
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Since ψk is continuous on the compact space G(n, h), it has a positive

lower bound δ on G(n, h).

Take a point z with Fk(z) Φ 0. Since Fk(z) determines a point P e

G(π, k), there is a set R in ^ f c such that ψk{Hj) = |JS V Aj|2/|JE|2 = ψfc(P)

> <5 for all 7 g i?. Therefore, we can choose a finite positive constant K

depending only on H/s such that Φjk(z) < K for all j £ R. Set S =

{7; Φ^ > K}. We may assume S Φ 0 . In fact, otherwise, we have

«»0')/iθ\

where /0: = Σ%x ω(j). We see S^R and so d(S) < n - k. Then, i: =

Σ>jes<»(j) <n — k by Theorem 2.2, (iv) and %S < N by the assumption.

By the help of (3.3) we obtain

Σ o>(j)Φjk > Σ co(j)φjk > KI π (®jΔ
i = i yes jes\ K /

k

for some constant C. Eventually, we can find a positive constant C}

satisfying (3.2), which depends only on k and Hu -,Hq. This gives

Theorem 3.1.

Now, we give the following improvement of [8, Proposition 3.5],

THEOREM 3.4. Let Hu-,Hq be hyperplanes in Pn(C) located in N-

subgeneral position and let ω(j)(l <j<q) and θ be Nochka weights and

a Nochka constant for these hyperplanes, where q > 2N — n + 1. For

every ε > 0 there exist some positive numbers α ( > l ) and C depending only

on ε and Hj (1 <j< q) such that

ddc\og-

(3.5)
-•> pi 1-PQI q +n \Fn\ \ n w+ J~H\dz Λ

Proof. The proof is similar to that for the case where H5 are in

general position. We state here only its outline. As is proved in [4, p. 129]

(or [14, p. 122]), for each positive e there exists a constant a0 depending

only on ε such that for every hyperplane H in Pn(C) and a > α0

dd° log i > ΐa+ΛEίl Ωk - ±.
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where Z0 = Σ?-iωO") a n ( * ®k = ddclog\Fkf. Choosing some a > aOy we

denote the left hand side of (3.5) by A. According to Theorem 3.1 and

(3.3) we get

± ( *Ufh) *\Ω> eΣΩk + ± ω(j)Σ( , *'Ufh) _ *\
*=° i=i fe=o\^fc(^)log2(α/^fc(^)) IJ

n-l / q \ n-l / q \l/(π-fc)

= Σ 2 ( Σ ωOΊΦiήΩ, > c, Σ (Π Φj£Λ) β
n-l / q \ 2 / ( n ( w + l ) )

—• 2 1 1 1 1 1 jk Λk I * / \ <C

for some positive constants Cx and C2, where Ωk = λ\*J — \dz A dz. Observe

ΌP tf 1

and
w - l

1 1 A k
k = 0

as in the previous paper [8, p. 373], We obtain

A > C I ——-—y. ^ y τ , . 1O „ „ , Ί —rr~~ —7TTTTΓT77Γ ) v — l w ^ Λ O0 .

Since lQ — n — 1 = θ(q — 2N + n — 1) by Theorem 2.2, (ii), we can con-

clude Theorem 3.4.

§ 4. Metrics with negative curvature

Let M be an open Riemann surface. We consider a function u on

M possibly with singularities in a discrete subset of M.

DEFINITION 4.1. We call u a function with mild singularities on an

open subset D of M if u is a C°° function on D except a discrete subset

E oΐ D and for every ae D we can write

(4.2) |M(2)| = \z\* Πι l l o g l ^ z ) ^ ) ! ! - ^ )

around α with real numbers <? and τu positive C°° functions u*9 vt and some

nonzero holomorphic functions gt(z) satisfying the condition ^(0) = 0,

λvhere z is a holomorphic local coordinate with z(a) — 0 around α. We

mean by a continuous function on D with mild singularities a function

with mild singularities which is complex-valued and continuous on the

totality of D.
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Let u be a function with mild singularities on D. We define a map

vu of D into R by

vu(a): = the number σ with the property (4.2) for some τ and u*

for each a e D, which does not depend on a choice of a holomorphic local

coordinate z. By a divisor on M we mean a map v of M into R such

that the support |v|: = {p; y(p) =£ 0} has no accumulation point in M.

The above vu is a divisor on Z), which we call the divisor of u. The

divisor of a nonzero meromorphic function ψ is nothing but the divisor

vΨ stated in § 2.

DEFINITION 4.3. We call ds2 a (conformal) pseudo-metric on Λf if for

each ae M we may write ds2 = ^ |dε | 2 around α with a nonnegative function

Λε with mild singularities and a holomorphic local coordinate z. For a

pseudo-metric dz2 = ^ |dε | 2 we define the divisor of ds2 by vds = vh. A

continuous pseudo-metric ds2 means a pseudo-metric such that λz is con-

tinuous.

DEFINITION 4.4. For a pseudo-metric ds2 = ^|G?2|2 on M we define the

J?£cci form by

Ricds2 = - ddc log ^

as a current, which is well-defined on the totality of M because it does

not depend on the choice of holomorphic local coordinate z. We define

also the total curvature C(M) of M by C(M) = — Ricd6.2 for a conformal
J M

metric ds2 on M.
The Gaussian curvature JΓd s 2 of ds2 is defined by

only on the set where ds2 Φ 0. The curvature ^dS2 is said to be strictly

negative if there exists a positive constant C such that Ricds2 < — CΩds2

on M as currents, where Ωds2 denotes the area element with respect to

the metric ds2. As is well-known, if the universal covering surface of M

is biholomorphic with the unit disc in C, then M has the complete con-

formal metric with constant curvature — 1 which is called the Poincare

metric of M and denoted by da\ in the following.

Let y be a divisor on M. We denote by [v] the current which cor-

responds to v, namely the map of S into C defined by
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M(ψ) = f i
J M

Σ

where ^ denotes the space of all C°° diίferentiable functions on M with

compact supports. In some cases, a (1, l)-form Ω on M is regarded as a

current on Λf by defining Ω(φ): = >̂β for each φe@.
J M

For two (1, l)-currents β l 5 β2 on some open set U and a positive

constant c, by the notation Ωx <CΩ2 we mean that there are divisor v and

a continuous real-valued bounded function k with mild singularities on

U such that v(z) > c for each ze\v\ and

fit + M = flϊ + ddc log &2

on t/. For brevity, we mean by Ωi < Ω2 or Ω2 > Ωx that Ωx <CΩ2 for some

positive number c.

Obviously, we have the following:

PROPOSITION 4.5. (i) // Ω1<CΩ2 and Ω2<CΩ% for a constant c > 0,

then Ω1 <c β3.

(ii) // βj -< β2, then aΩx + Ω < αβ2 + Ω for every Ω and a > 0.

The purpose of this section is to prove the following:

THEOREM 4.6. Let M be an open Riemann surface with a complete

continuous pseudo-metric ds2 and let dτ1 be a continuous pseudo-metric on

M whose curvature is strictly negative outside a compact set K. Assume

that there exists a constant p with 0 < p < 1 such that

- Ric d s 2 <i-pp(— Ricd r 2)

on M — K. Then M is of finite type, namely M is biholomorphic with a

compact Riemann surface from which finitely many points have been removed.

For the proof of Theorem 4.6, we recall the following generalization

of Schwarz lemma.

LEMMA 4.7. Let dτ2 be a continuous pseudo-metric on ΔR\ = {w; \w\

< R} whose curvature is strictly negative. Then, for some positive constant

dτ2 < Cΰdσ]R .

For the proof, see [1, pp. 12—14].

We need also the following result given by A. Huber.
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THEOREM 4.8. For an open Rίemann surface M, if there is a complete

conformal metric ds2 on M such that

J M
max( — Xds*, 0)Ωds, < + oo ,

then M is of finite type, where β d s 2 is the area element with respect to ds2.

The proof is omitted. For the details, refer to [10, Theorem 13, p. 61,

Theorem 15, p. 71], [16, Theorem 1, p. 316] and [3].

Proof of Theorem 4.6. By assumption, there are a divisor ι> and a

continuous real-valued bounded function k on M—K with mild singularities

such that v(z) > 1 — p for every ze\v\ and

- Ricdi>2 + [p] = p{- Ricdί2) + ddc log k2.

Here, we may assume that the divisor v and the continuous function k

with mild singularities are defined on the totality of M and 0 < k < 1.

Take a nowhere zero holomorphic 1-form ω and write

where λ, η are continuous functions with mild singularities on M. Set

u : .
λ

T h e n , v: = log u is h a r m o n i c o n M — (K U \v\), vu > 1 — p on \v\ — K a n d

(4.9) λ = e~Όkηp < e~vf .

Define a new pseudo-metric

on M and set M^ = {a e M; ^^(α) > 0}. Then, dp2 is a metric on Mj

which is flat on Mλ—K and vdp<— 1 on M— (ϋΓUilίi) because v M > l — p

on I vw I — K. For the proof of Theorem 4.6, it suffices to prove that

(4.10) The surface Mx is complete with respect to the metric dp2.

In fact, if (4.10) is true, then Mt is of finite type by Theorem 4.8,

because

max(— XAp*> 0 ) β d o 2 = max(—
J Mi J K
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This implies that M is also of finite type.

Assume that (4.10) is not true. Then

dQ: = distdp(K, dMx) < + oo ,

where distdp(K, dMx) denotes the distance between K and the boundary

dMi of Mi. So, for a sufficiently small positive number δ there is a

rectifiable curve γQ(t)(O < t < 1) such that γo(O) e K, γo(t) tends to dMx as

t —> 1 and Ldp(γ0) < dQ + δ, where Ldp(γ0) denotes the length of the curve

f0 with respect to the metric dp2. If we take some t0 sufficiently near to

1, the point pQ: = γQ(tQ) satisfies the inequalities

distd,(iΓ, A ) > - $ - , LdP(ϊo I [to, !))<-$-,

where γ \ [αy β) denotes the part of γ from t = α to t = β.

Since dp2 is flat on Mt — if, there is an isometry Φ of a disc ΔR: =

{M; e C | w \ < R} with the standard metric onto an open neighborhood of

p0 in M1 — K with the metric dp2 such that Φ(0) = p0. We take the largest

R ( < + °°) such that there is a local isometry Φ of J Λ onto some open

set in M. — K with Φ(0)=pQ. Then, we see easily R <Ldp(γ0\ [tQi 1))< dj2.

By the definition of R, we can find a point α0 in dΔR such that, for the

line segment

Γ :w = tα0 (0 < t < 1),

the image p: = Φ(Γ) tends to the boundary of M^ — K as £ tends to 1.

Then, γ cannot tend to the set K nor M — (K{JMX). In fact, if γ tends

to K, then we have an absurd conclusion

R>distdp(K,p0)>dJ2

and, if γ tends to the set M — (K U ilίi), then R = Ld/0(^) = + oo because

vdi0 < — 1 on M — (if U Mi). Therefore, γ tends to the boundary of M.

Now, we shall estimate the length of γ with respect to the metric ds2.

To this end, we define a function ή with mild singularities by dτ = ήdp.

Then, since

dτ = 7]\ω\ = 7)e-υnl-p)\ω\,

we have
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By the use of (4.9), the length of γ with respect to ds2 is estimated by

Lds(γ) < ί e~vηp\ω\ < f e-ψe-*vnί-p>\ω\ = ί ff dp
J r J 7 J r

On the other hand, by the assumption of dτ the curvature of Φ*(dτ) is

strictly negative on ΔR. It follows from Lemma 4.7 that

for a positive constant Co. Since the Poincare metric dσ]R is given by

for some positive constant d , we see

where each Ct denotes some constant. This contradicts the completeness

of M with respect to ds2. Therefore, we have (4.10) and so the proof of

Theorem 4.6 is completed.

§ 5. Modified defect relations

Let / be a nondegenerate holomorphic map of M into Pn(C) and let

H:(A, W) = 0

be a hyperplane in PW(C), where A is a unit vector. Take a reduced

representation / == (f0: : fn) on M and set F = (/0, , fn), where /0, ••-,/«

are holomorphic functions without common zeros. We consider the divisor

v(f, H) = vF{H) for the function F(H): = (A, F). The ra-truncated pull-back

f*(H)w of the divisor corresponding to H stated in § 1 is defined by

f*(H)ίnl =

We have always

(5.1) / * ( # ) M •<

In fact, if we take a nonzero holomorphic function g with vg = πάn(v(/, iϊ), n),

for A: = |F(ίO|/||/Ί| and M: = \F(H)/g\ we see 0 < k < 1 and
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/ * ( f θ w + ddc log u2 = ddc log ||/f + ddc log k2.

As ddc log u2 = [yJ and yw > 1 on |ι»β| by Poincare-Lelong formula, we

get (5.1).

DEFINITION 5.2. For an arbitrary compact subset K of M we set

ηj(H)κ: = inf fo > 0; / * ( # ) M -< tfβ, on M - K).

We define the modified H-defect of H for / by

Df(H): = 1 — inffy/fl)*; if is an arbitrary compact subset of M}.

Remark 5.3. The notion of H-defect defined in the previous paper [8]

is essentially equal to the quantity ηs(H)κ for the case where K = 0 .

The modified H-defect has the following properties.

PROPOSITION 5.4. (i) 0 < DJJH) < 1.

(ii) // there exists a bounded nonzero holomorphic function g on M — K

for a compact set K such that vg > min(y(/, H), ή), or particularly, if $f~\H)

is finite, then Df(H) = 1.

(iii) // v(f, H)(a) >m at every a ef~\H) — K for some compact set K,

then Df(H) > 1 - n/m.

Proof. The assertion (i) is obvious. The function k: = \g\ is a bounded

continuous function with mild singularities. Since

/*(#)[»] + {Vg _ rninM/, H), n)] = ηΩf + ddc log k2

on M — K for η — 0, we have (ii). To see (iii), consider the bounded

function

u. _ / \F(H)\ y/»

V17Γ/ '
By the assumption, ^ is a continuous function with mild singularities and

satisfies

f—»(/, ») ~ min(i;(/, iϊ), n)] = - ^
V. m λmm

o n M - I Since (n/m)v(f, H)>n> min(v(f, H), n) on f~\H) - K by the

assumption, we have Df(H) > 1 — ra/m.

Now, we recall the classical defect for a nondegenerate holomorphic

map of an open neighborhood of ΔR>OO: = {z; R < \z\ < + oo} into PW(C).
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The order function of / and the counting function (truncated by ή)

of a hyperplane H for / are defined by

T,(r) = Γ *L ί Ω, (R < r < + oo),
J R t J R<\z\<t

JV/r)™ = Γ -*- f /*(#)« (Λ < r < + oo)
J R t J R<\z\<t

respectively. The classical defect (truncated by n) is defined by

™ = 1 - lim sup Nλrf^ #

We can easily prove the following relation by the same arguments as in

the previous paper [7, § 1].

PROPOSITION 5.5. Let f be a nondegenerate holomorphίc map of an

open Rίemann surface M into Pn(C). Assume that, for some open subset

G of M with compact boundary dG, there is a biholomorphic map Φ of a

neighborhood of M — G onto a neighborhood of JRyO0 such that Φ(M — G) =

ΔRyθa and Φ(dG) = {z; \z\ = R}, and assume that the restriction f: = f-Φ~x \ΔR^

has an essential singularity at oo, namely, the map f(l/z) : {z; 0 < \z\< 1/R}

-^Pn(C) has no holomorphίc extension to {z; \z\ < 1/J?}. Then, for every

hyperplane H

0 < D,(H) <

The classical defect relation improved by Nochka is given as follows:

THEOREM 5.6. Let f be a nondegenerate holomorphic map of an open

neighborhood of AR)OO into P"(C) such that it has an essential singularity

at oo. Take q (> 2N - n + 1) hyperplanes Hj (1 < j < q) in Pn(C) located

in N-subgeneral position and consider Nochka constants ω(j). Then,

± <n

For the proof, see [12] or [2],

Now, we consider a nonconstant holomorphic map / of an open

Riemann surface M with a pseudo-metric ds2 into PW(C).

DEFINITION 5.7. For an arbitrary compact set K we set

pf: = inf{p > 0; - Ricds2 -< PΩf on M - K} ,
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where we set ^* = + oo if there is no p with the above property. We

define the H-order of / by

pf = inί{pf; K is an arbitrary compact subset of M) .

To state the modified defect relation, we give another definition.

DEFINITION 5.8. Let M be an open Riemann surface of finite type,

namely M is biholomorphic with a compact Riemann surface M with

finitely many points removed. A holomorphic map of M into Pn(C) is

said to be transcendental if / has no holomorphic extension to M.

THEOREM 5.9. Let M be an open Riemann surface with a complete

continuous pseudo-metric ds2 and let f be a nondegenerate holomorphic map

of M into Pπ(C). Take q ( > 2N — n + ΐ) hyperplanes in N-subgeneral

position and Nochka constants ω(j) (1 < j < q). If M is not of finite type

or else f is transcendental, then

(5.10)
. 7 = 1

Before proving Theorem 5.9, we notice that Theorem 1.1 stated in § 1

is an easy consequence of Theorem 5.9. Let A denote the right hand

side of (1.2). Then we have

A > 2N - n + 1 + -££»- - q + ±(n + 1 + p,σn - ± ω(
σ u \ .7 = 1

fψ{Df{HΪ -ΐ)>q + ± φAH,) - 1) = f
. 7 = 1 θ . 7 = 1 . 7 = 1

by the help of Theorem 2.2, where σn: = n(n + l)/2. This gives Theorem

1.1.

Proof of Theorem 5.9. It suffices to prove (5.10) for the case io/<

Moreover, we may assume that M is not of finite type. In fact, if M is

of finite type and / is transcendental, Theorem 5.9 is obvious from Theorem

5.6.

Take arbitrary constants p > 0 and η5 (1 <j < q) satisfying the condition

(5.11) - Ric,s2 •< PΩ, , Λ(f l i) w -< VJ Of

on M — K for a compact set K. By definition, there are divisors [vi] and

bounded continuous real-valued functions kj with mild singularities such

that Vj > Cj on |i^| for some positive constant Cj and
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+ ddc log *}

o n M - £ Here, we may assume that 0 < ks < 1. Set h5 : = ΛJ/||W. Then,

each loghj is harmonic on M— (iΓ U |vΛy| U/"XϋΓ )̂) and vhj — min(v(f, Hj), ή)

Set

: = θ(q-2N+n-l)-± ω(j)Vj.

We shall prove

(5.12) r < pσn .

Assume that γ > ^ ^ Take a positive number ε with γ > εσn+ι and set

(5.13) p : = j(σn + τnε) >

For an arbitrary holomorphic local coordinate z, using the same notation

as in § 3, we set

* V ftU(\F(Hi)\ ΠS^logία/?^)))-^ /

Then, the pseudo-metric rfτ2: = ̂ l ^ l 2 is defined on M — K independently

of the choice of holomorphic local coordinate z. Here, ηz = 0 if ψu

= 0. On the other hand, if we set

ψ\ =

and p0: = ̂  + Σj»iωO')yAj, then v0 > & on |po| for some d > 0, because

ô = Σ ωϋ)(^y - min(y(/, iί,), n)) + (v, + Σ ωC/)min(y(/, /ί,), ή))

> Σ

by Lemma 2.4. This implies that dτ1 is a continuous pseudo-metric on

M — K. We suitably extend dτ2 to a continuous pseudo-metric on the

totality of M.

We shall next prove that dτ2 has strictly negative curvature on

M — K. To this end, we recall the following inequality given in [8,

Proposition 3.8]:

https://doi.org/10.1017/S0027763000003755 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003755


32 HIROTAKA FUJIMOTO

dd° loglFof \FJ • • |Fπ.,f > M^'-^Y'S^ldz A dz .

This and Theorem 3.4 yield that

dd'logηl > r ~ ε σ*+ 1 Ω, + —-f -ddclog(\FQf. . . l^.,! 2)
σn + ετn Δ{an + ετj

1 ΓTn-1 I 27 |2e

+ - ddc log lU-olJ*!
T 2( + ) Π

±Es(W Wfcfe Λ>
~ 2 σn(σn + ετ

/ ii^rt-*^.-.)-.*..,.^,! ΠLoi^r \V(' + r )

t ^ Ί t f a Λ d*
- 1\Πj.1(|F(flί)iπ::iiog(o/f),Hί)))-««7

where Co, Q are some positive constants. On the other hand, since \hs\

< 11/11%

on M — if. This concludes that ddc log^2 > C2η
2 for some positive constant

C2. Therefore, dr2 has strictly negative curvature on M — K.

Now, we represent each hyperplane Hj (1 < j < g') as

iϊ"̂  :α j O^o + + αyn^n = 0.

For some holomorphic local coordinate z and each pair of indices j> k,

we choose indices iu , ίk with 1 < ix < < ik < q such that

For convenience' sake, we set ψ}0 = F{H3). By the theorem of identity,

ψz

jk φ 0 for every holomorphic local coordinate z. We now define

k. =

Then, /J is bounded because

< + OO .
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Set

* Ί : = \<P\ ft l ^ l ω ω > "*• = Π
i l l<j<0<k

Then log v is harmonic on M — (ULUI^I), vVl > c" on | ^ J for some c"', not

depending on each ε, and vV2>e/q on \vV2\. We consider the function ηz

for some ε such that

IQ + on+1 + pτn σn+ι + pτn

and, moreover, — Ricds2-<1_2)|θβ/. Then, we have 0 < p < 1 and

on 1̂ 1 — K. Since

^y, l |/ | |(r-β(; n + i)/((rn+ern)|,V(*n+8rn)
ίXι7/z — 11/11 u >

we have

| O β / + Γ P v 1 = p ddc log ηl + ddc log

L γ — εσn + i J

This gives that

-<!_,,/)(— Ricdr2)
on M — K. This contradicts the assumption by Theorem 4.6. Thus, we

conclude (5.12).

By Theorem 2.2, we can rewrite (5.12) as

i -η3)<n + 1 + ^ Ώ .

Taking the supremum of the left hand side and the inίimum of the right

hand side for all admissible constants ηj9 p and compact set K, we can

conclude

2 ω(j)Df(Hj) < n + 1 + pfσn .
i = i

The proof of Theorem 5.9 is completed.
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§ 6. Modified defect relations for Gauss maps

Let x = (xu , xm) : M-^ Rm be a (possibly branched) minimal surface.

By S we denote the set of all branch points, namely points where the

Jacobi matrix of x are not of maximal rank. The set of all oriented

2-planes in Rm may be identified with the quadric Qm_2(C) in P 7*" 1^). By

definition, the Gauss map G of M i s the map of M — S into Qm_2(C) which

maps each p e M — S to the point in Qm_2(C) corresponding to the oriented

tangent plane of M at p. The surface M is considered an open Riemann

surface with the conformal pseudo-metric ds2 induced from the standard

metric on Rm. Taking a holomorphic local coordinate z, we set f%: = dxjdz,

which are holomorphic by the assumption of M. The set S coincides with

the set of common zeros of the functions ft (1 < ί < m).

DEFINITION 6.1. We now define the branching divisor of M by

vds = m i n ^ . ; 1 < i < m),

which is well-defined on the totality of M independently of holomorphic

local coordinate z.

The Gauss map G is locally given by

on M — S. Take a nonzero holomorphic function h on M with vh = vd8.

If we set gi: = fjh (1 < ί < m), we have

on the common domain of gt's except S. The right hand side of this has

the holomorphic extension across S. We define the Gauss map G of M

to be the holomorphic map of M into P^^C) locally given by the right

hand side of the above identity.

DEFINITION 6.2. For an arbitrary compact subset K of M we set

pg\ = inΐ{p; [ι>di] < pΩG on M - K].

We define the branching H-order of M by

pds: = inf{ρfs; K is an arbitrary compact subset of M].

Obviously, if x : M-+ Rw is an immersion, then pds = 0.

THEOREM 6.3. Let x : M - » R w be a complete minimal surface and
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G:M-+PN(C) the Gauss map of M, where N = m — 1. Consider the

smallest projective linear subspace PW(C) of P*(C) which includes G(M).

Take q hyperplanes Hu ,Hqin P*(C) such that Hj: = HjΠPn(C)(1 <j<q)

are hyperplanes in Pn(C) located in N-subgeneral position, where q > 2N

— n + 1. If M is not of finite type, then for Nochka weight ω(j) for Hj

ω(j)DG(H^ < n + 1 + ( 1 + p i ^ n + 1 }

Proof. By assumption, the Gauss map G is nondegenerate as the map

into PTC(C). Take a system of homogeneous coordinate (wQ : : wN) on

P^(C) such that PW(C): = {(w0 : : wN); wn+ί= =wN=Q} and a reduced

representation G = (go: : g j of G as a map into PΏ(C). So, we have

for a constant C > 0 and ||g||: = (|£0|
2 H + |gJ2)1/2 Then, /f are linear

combinations of hg0, , Λ̂ TC for a holomorphic function h with vΛ = vds.

So, for each ^ > 0 such that [vds] < pΩG on M outside a compact set K,

we have

- Ricds2 <(p + ϊ)Ωσ.

Taking the infimum of the right hand side for various p, we obtain

(6.4) pG <pds + l .

Theorem 6.3 is now immediate consequence of Theorem 5.9.

COROLLARY 6.5. Let x : M-> R"1 be a complete nonflat minimal surface

with infinite total curvature, let G : M-> P^(C) be the Gauss map of M and

let n be the least dimension of projective linear subspaces of P*(C) which

include G(M), where N = m — 1. Then, for arbitrary hyperplanes Hu

Hq in PN(C) located in general position and not including G(M),

(6.6) ± DG(H3) <2N-n + l+ (1 + fr

Proof. Let us denote by Pπ(C) the smallest projective linear subspace

which includes G(M). Then, as is easily seen, hyperplanes iϊiΠPn(C),

•",HqΠPπ(C) of PW(C) are located in iV-subgeneral position. If M is

biholomorphic with a compact Riemann surface M with finitely many

points removed and G is not transcendental, then R i c ^ is continuously
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extended to M and so C(M) = C(M) < + oo, which contradicts the as-

sumption. So, we have the situation in Theorem 1.1 for the map G

considered as a map into P^C). Since pG < pds + 1 by (6.4), Corollary

6.5 is a direct result of Theorem 1.1.

We shall give here the proof of Theorem 1.3. By assumption the

Gauss map G is not a constant. We have (6.6) for some n with l<n<N.

Here, ρds = 0 because M has no branch points. These imply that

2 i V » + l +
Δ

(N + V(N + 2) - (iV - n)(N - n - 1)
2

(N+1KN+2) _ m(m + ϊ)

This gives Theorem 1.3.

Now, we consider a holomorphic curve in C'n given by a nonconstant

holomorphic map w = (wl9 w29 , α>m) : M->-Cm. The space Cm is identified

with R2m by associating a point (xt + ΛA^ΊJJ, , xm + v ^ l ^ m ) e Cm with

(Xi>yu ' ' •> ^mJw) The curve w; : M-> Cm is considered as a minimal

surface w = (xu yu , xm, ym) : M —>• R2m. By Cauchy-Riemann's equations,

we know

dz

Therefore, the Gauss map of M is given by

and so G(M) is included in the protective linear subspace

P - ι ( C ) : = {(u, : υx : : um : i J e F^XC); Ui = Λ ^ Ϊ U , (1 < i < m)}.

Particularly, if M is not included in any proper affine subspace of Cm, G

is nondegenerate as a map into Pm"1(C). The Gauss map G considered

as a map of M into Pm"1(C) is the same as the complex Gauss map of M

defined in the previous paper [8, p. 369].

As an easy consequence of Theorem 6.3, we have the following im-

provement of [8, Theorem 2.10].

COROLLARY 6.7. Let w :M->Cm be a holomorphic curve in Cm which
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is complete and not included in any affine hyperplane, and let G be the

Gauss map of M considered as a map of M into the above-mentioned space

P^XC). // M is not of finite type, then

for arbitrary hyperplanes Hu -, Hq in P^'^C) in general position.

We next consider a minimal surface x = (xu x2, x3) : Λf —• R3. In this

case, the quadric Qi(C) is canonically biholomorphic with P^C). Instead

of the Gauss map G : M -» Qi(C) we may study the classical Gauss map

£ : M - > P ( C ) defined by

where ft = dXildz (ί = 1, 2, 3). Then, the metric of M is given by

+ \gl\Ύ\dz\2

for a reduced representation g = (g0 : gx) and a nonzero holomorphic

function h with vh = min(^1? y2, y3) (cf., [7, p. 254]). Since vds = yft, we have

— Ricds < (p + 2)Ωg whenever [vds] < pΩg. This yields

ρg < pas + 2 .

According to Theorem 6.9, we can easily prove the following:

THEOREM 6.8. Let x : M - > R 3 be a nonflat complete minimal surface

which has infinite total curvature, and let g:M->Pι(C) be the classical

Gauss map. Then, for arbitrary distinct points au ,aq in Pι(C),

(6.9) ± Dg(aj) < 4 + Pds .

EXAMPLE 6.10. We give here an example of a minimal surface with

infinite total curvature, for which the branching H-order is equal to two

and the equality holds for the above modified defect relation (6.9).

Our construction is due to the Weierstrass-Enneper representation

theorem for minimal surfaces in R3. We shall suitably choose meromorphic

functions / and g on a simply connected open Riemann surface M and

show that, for the meromorphic 1-forms

Δ Δ
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and a point z0 e M, the map

(6.11) (xu x2, x8): = (Re Γ ψι(z), Re Γ ψ2{z\ Re Γ φ3(z))
\ J zo J z0 J ZQ /

of M into R3 gives a minimal surface with the desired properties. To this

end, we first take a meromorphic function φ on C such that φ takes the

values at (1 < i < 3) with multiplicity three and all zeros of φ(z) — w are

simple for every w e C — {aί9 a2}, where α3 = {oo}. For the existence of such

a function, see [9, p. 45]. Consider the domain D: = C — (φ'Xa^Uφ~ι{a2))

and the analytic subset V*: = {(z, w); φ(z) = w*} of ΰ X C. Let M be the

normalization of the closure of V* in D X P!(C) and M the universal

covering of M. Then M is canonically regarded as a covering surface

over D with the projection F : M -> D.

Now, consider the many-valued meromorphic function

on M. By the definition of M, g has single-valued branch on M, by

which we define the function g. We next consider the many-valued

meromorphic function

F'(ζ)
(6.12)

((φ F)(ζ)-aύ — πΛ1*3

Since (</> F) — aγ and (φ-F) — a2 have poles of order three at every point

of (^•F)"1(oo), / has a single-valued branch on M, by which we define the

function /. For these functions / and g, we shall prove that the minimal

surface x = (xl9 x2, xs) : M-> R3 defined by (6.11) has all desired properties.

Take a reduced representation g = gjgo, or g = (g0 : gλ) as a map into

P^C). The induced metric is given by

ds* = l |/ | 2 (i + \g\J\dζf = -jβjilg*? + \gΛΎ\dζ?.
4 4|gΓ

Obviously, vds = 0 at each point where g has no zero or no pole. The

same is true at each point where g has a pole, because g"0 has a zero of

order one and the denominator of the right hand side of (6.12) has a pole

of order two at such a point. Moreover, vds(ζ) — vF>(0 = 2 whenever

g(ζ) = 0. These show that vds = 2vgl. If we consider a bounded function

k: = \gι\2K\go\2 + \gif)(< 1), we obtain

[vds] = ddc log Iftl* - 2ddc log IÎ H2 + ddc log /e2.
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This gives pds < 2.

We next show that M is complete. Assume that there is a curve Γ

in M which is of finite length and tends to the boundary. For Γr: = F(Γ)

in D we have

_ r i + \Φ(z)r i^i

and Γ' tends to the set 3D = {00} U^'^i) U ^ " ^ ) . On the other hand,

we can easily find a positive constant Co such that

\φ(z) - a.Πφiz) - a2r "

for every zeD. If Γ' tends to 00, then we get an absurd conclusion

L>cΛ \dz\=
J r

0 0 .

Otherwise, there exists some point ZQeφ~λ{ax)\Jφ~\a^) such that Γr tends

to ZQ. Changing indices if necessary, we may assume that φ(zQ) = au

Then, we find a neighborhood U of z0 and a positive constant Cx such

that the following inequality holds on U

1 + \φiz)F > c 1
\φ(z) - a^"\φ(z) - (

because υφ-aί(z^ = 3. For the portion Γ of Γ' in U, we obtain

\dz\>cΛ
f \φ(z) - a,r\φ{z) - α 2 r - if \z - zo

This concludes the completeness of M.

On the other hand, since φ{z) ψ au α2 on D, we see

^/3, αj/8ω,

for every ζ e M, where ω denotes one of the primitive third roots of unity.

So, the modified defects of these values are all one. This shows that the

inequality (6.9) is best-possible in this case.
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