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§1. Introduction

In [5], the author proved that the Gauss map of a nonflat complete
minimal surface immersed in R* can omit at most four points of the sphere,
and in [7] he revealed some relations between this result and the defect
relation in Nevanlinna theory on value distribution of meromorphic func-
tions. Afterwards, Mo and Osserman obtained an improvement of these
results in their paper [11], which asserts that if the Gauss map of a nonflat
complete minimal surface M immersed in R® takes on five distinct values
only a finite number of times, then M has finite total curvature. The
author also gave modified defect relations for holomorphic maps of a
Riemann surface with a complete conformal metric into the n-dimensional
complex projective space P?(C) and, as its application, he showed that, if
the (generalized) Gauss map G of a complete minimal surface M immersed
in R™ is nondegenerate, namely, the image G(M) is not contained in any
hyperplane in P™-!(C), then it can omit at most m(m 4+ 1)/2 hyperplanes
in general position ([8]). Here, the number m(m 4 1)/2 is best-possible
for arbitrary odd numbers and some small even numbers m (see [6]).
Recently, Ru showed that the “nondegenerate” assumption of the above
result can be dropped ([13]). In this paper, we shall introduce a new
definition of modified defect and prove a refined Modified defect relation.
As its application, we shall give some improvements of the above-mentioned
results in [5], [7], [8], [11] and [13].

We roughly explain here the modified defect relations given in this
paper. More precise statements are given in §5. Let M be an open
Riemann surface with a conformal metric ds* and consider a nondegenerate
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holomorphic map f of M into P*(C). We denote by 2, the pull-back of
Fubini-Study metric on P*(C) through f, and by f*(H)™ the n-truncated
pull-back of a hyperplane H in P*(C). In some cases, we regard them as
(1, 1)-currents on M.

We define the modified H-defect of H for f by

Dy(H): = 1 — inf{p > 0; f*(H)™ < p2, on M — K

for some compact set K} .

Here, by 2, < 2, we mean that there are a divisor v and a bounded
real-valued function k with mild singularities such that v > c¢ on the
support |v| of v for a positive constant ¢ and

Q4+ [v] = @, + dd°log k?

holds as currents, where [v] denotes the current corresponding to v.
We also define the H-order of f by

ps: = inf{p > 0; — Ricy, < pf2, on M — K for some compact set K} .

After Chen [2] we say that hyperplanes H; (1 < j < q) are located in
N-subgeneral position if H,N---NH;,, =g for all 1 <j, < ---<jy<gq,
where g > N > n. Particularly, we say that H, (1 <j < q) are in general
position if they are in n-subgeneral position.

The modified defect relation proved in this paper is stated as follows:

THEOREM 1.1. Let M be an open Riemann surface with a complete
conformal metric ds®, and let f be a nondegenerate holomorphic map of M
into P*(C) For the particular case where M is biholomorphic with a
compact Riemann surface M with finitely many points removed, we assume
that f cannot be extended to a holomorphic map of M into P(C). Then,

for arbitrary hyperplanes H,, ---, H, in P™(C) located in N-subgeneral
position,
(1.2) SIDAH) < @N —n+ D(1+ £,

=1

Let M be a (connected, oriented) minimal surface immersed in R™.
We can regard M as an open Riemann surface with a conformal metric.
The set of all oriented 2-planes in R™ can be identified with the quadric

Qn-oC) = {(w,:- -t wy); wh + - + wi, = 0(E P™1(C)).
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By definition, the Gauss map of M is the map G : M — @,,_,(C) (CP™*(C))
which maps each pe M to the point in @, _,(C) corresponding to the
oriented tangent plane of M at p. By the assumption of M, G is a holo-
morphic map of M into P"-(C). We can conclude from Theorem 1.1 the
following:

THEOREM 1.3. Let M be a nonflat complete minimal surface immersed
in R™ with infinite total curvature, and let G be the Gauss map of M.
Then, for arbitrary hyperplanes H,, ---, H, in P"(C) located in general
position,

% Gl < A D

For a holomorphic map f of an open Riemann surface M into P*(C)
and a hyperplane H in P*(C) we can show that D(H) =1 if f-'(H) is
finite. This yields the following improvement of a result of Ru ([13]):

COROLLARY 1.4. Let M be a nonflat complete minimal surface immersed
in R™ with infinite total curvature, and let G be the Gauss map of M. If
G~'(H)) are finite for q hyperplanes H,, - - -, H, in P"~(C) located in general
position, then g < m(m + 1)/2.

In the case m = 3, @(C) can be identified with P}C). The Gauss
map G of M is considered as a holomorphic map of M into PYC) with
pec < 2. Theorem 1.1 implies the above-mentioned result given by Mo and
Osserman.

In this paper, we also consider minimal surface with branch points.
We introduce the new notion of branching H-order for minimal surfaces
and give modified defect relations for the Gauss map which relate to this
notion.

The author wishes to thank Professor I. Wakabayashi for his useful
critical comments.

§ 2. Nochka weights for hyperplanes in subgeneral position

For later use, we recall an algebraic theorem given by Nochka in [12]

(cf. [2]).
We consider g hyperplanes H; (1 <j < ¢) in P*(C) which are given by

H:(A,W)=0 (1<j<q)
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for A,e C**' — {0}, where ¢ > N > n and (A, W) means a,w, +---+ a,w,
for a vector A=(a,, -- -, a,) and homogeneous coordinates W=(w,:- - -: w,).
After Chen ([2]), we give the following definition.

DerFiniTION 2.1. We say that hyperplanes H,, - .-, H, (or vectors A,,
.-+, A) are in N-subgeneral position if, for every 1 <j < ... <jy<q,
A,,A,, - -, A,, generate C**', or equivalently,

H,n---NH,=03.

We assume that H,, ---,H, are in N-subgeneral position in the
following.

Set @:=1{1,2,---,q}. For each R < @ we denote by #R the number
of elements of R and by d(R) the dimension of the vector subspace of
C"*! generated by {A,;je R}. For convenience sake, we set d(@) = 0.

In [12], Nochka has given the following theorem to prove Cartan’s
conjecture.

TreOREM 2.2. Let H,, H,, ---,H, be hyperplanes in P*(C) located in
N-subgeneral position, where ¢ >2N —n + 1. Then there are some constants
w(l), - -, 0(q) and 6 satisfying the following conditions;

(i) 0<u(ND<I<T 1<Lj<0),

(ii) Zq:w(j)=n+1+0(q~2N+n~1),

=1
n+1 n+1
— - L y
@) oy —ar1 S9SN
(v) if RCQ and 0< 4R < N + 1, then 3 w(j) < d(R).

JER

For the proof, see [12] or 12].

DErFINITION 2.3. We call constants w(j) (1 <j<gq) and 6 with the
properties (i)~ (iv) Nochka weights and a Nochka constant for H,, ----, H,
respectively.

By definition, H, (1 < j < ¢) are in general position if and only if they
are in n-subgeneral position. If H,, - .., H, are in general position, then
we have necessarily o(1) = -+ = w(g) =6 = 1.

We give here a property of Wronskians relating to Nochka weights.
Let f,, - - -, f, be holomorphic functions without common zeros on a domain
D in C. We denote the Wronskian of f, - - -,f, by

VV(fm "'7fn) = det(f%);oél,mgn)
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Assume that f,, - - -, f, are linearly independent over C, or W(f,, - - -, f.)
# 0. Consider g vectors

Aj = (ajo’ Qjyy * ',ajn) eC (1<j<9q

located in N-subgeneral position and take Nochka weights w(j) (1 <j < g),
where ¢ > 2N — n + 1. Set

Fi=apfy+ - +a,.fn A<ji<q).

For a nonzero meromorphic function ¢ on D we define the map v, : D—Z
by

v,(€): = the order of the meromorphic function + at ¢.

Consider a function

o = IV/(f(h""fn)l
|F1 P ‘IFq 0@

and set

a

Yo = Vw — 2 w(j)”Fj,

J=0
where W= W(f,, - - -, f.).

LEMMA 2.4. In the above situation, we have
y, + i}lw(j)min(u,j, n) > 0.
Proof. 1t suffices to show that
2.5) v = 3 0() s — )"
where x* means max(x, 0) for a real number x. In fact, since

min(”F,», n) + (ij —n)" =vp,,

we can conclude from (2.5)
q . . q . q . .
Y, + Zow(.])mln(”t'p n) =vy — le(l)”z«*i + le(.])mln(vp,»a n)
Jj= J= J=
2 - .
> Z]lw(J)((vF, —n)" +min(z,n) —vp) =0.
=

To prove (2.5), take a point {e D, and set @: = {1,2, ---, ¢} and
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S:={jeQ;v () >n+1}.
We may assume that S # @. Then, #S < N. For, otherwise, by N-sub-

generality of A,’s there are n 4 1 distinct j,, ---,j, € S such that 4,, -,
A, are linearly independent. So, f,, ---,f, are represented as linear
combinations of F(H,), - --, F(H,,), whence f,, - --, f, have a common zero

at {. We now consider the sets S, (0 <t < ?) such that
Si=p+ScS,c---c8§, =8

and for each je S, — S._, vz () equals some constant m,, where m, > m, >
--+>m,>n+ 1. Let V(R) be the vector space generated by {A;;je R}
for each R € @. Then,

V(S) € V(S) < --- € V(S).
For each r take a subset T, of S, such that T,_, C T, and {4A;;je T} gives
a basis of V(S,). We then have #(T. — T,_,) = d(S,) — d(S,.,). For brevity,
we set m¥: = m, — n. By the use of Theorem 2.2, (iv) we obtain

S o()r — 1) = 0(Ner, —n) =3, 3 al)md

j=1 JjES t=1 jE€ES:~8S—1

=3 5 eG)(Zmr —m.) +mr)
= (mif —m¥) 2 0() + (nf —md) Z o) + -+ m T ()
< d(S)(mF — mE) + d(SY(mF — njaj*)2+ et d(st)mz]ke L

= d(S)m¥ + (d(S) — d(S)mF + - + (d(S) — S, _)m¥
= 4$Tim¥ + (T, — Toym§f + -« + #(T, — T,_)mf.

A
pendent, after a suitable nonsingular linear transformation of homogeneous
coordinates, we may assume that f,=F,, --,f, = F,. Then, by the

Set T, = {jo, - - -, i}, where kB <n. Since A;

Jor °

;. are linearly inde-

Laplace’ expansion theorem of determinants, W is expanded as the sum
of the products of some minors of degree n — k& and some minors of
degree k£ + 1 whose components consist of the < n-th derivatives of F},
---, F,. This implies that

v (0) 2,-; (e — 7).

Since v, ({) = m, for every je T, — T.., this quantity coincides with the
last term of the above inequalities. This completes the proof of Lemma
2.4.
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§3. Some properties of the contact functions for derived curves

We recall some known results on the derived curves for a holomorphic
map of an open Riemann surface M into P*(C).

Let f: M — P*(C) be a nondegenerate holomorphic map. Take a
reduced representation f= (f,:---:f,) on M with holomorphic functions
f, on M having no common zeros. Set |f|| = (ic;calfiP? and F =
(fo, -+ -, f»). For each p e M, taking a holomorphic local coordinate on
some neighborhood U of p, we set F“ = (f{¥, -+, f¥) for each [ = 0,1,

.-, and define the map

Foim FOANFON-- AF®:U—>AC* 0O<k<n—1),

where Fy = F®:=F. Letnx: /\*'C*"' — {0} - P¥#(C) denote the canonical
projection, where N,: = (Z‘ i i) — 1. By definition, the k-th derived curve
of f is the map f* = =n.F,, which does not depend on the choice of a
holomorphic local coordinate and so is well-defined on the totality of M.

We locally define
[Fel=(C 25 \W(f - [0 O<k<n-—-1).

0<jo< < jk<n

By definition, the pull-back £, of the Fubini-Study metric on P¥¥(C) by
f* is locally given by

Qk = dd° IOg]Flclz ’
where d° = (v —1/4x)(6 — 3). Take a hyperplane

H:(A W)=0,
where A = (a,, - -+, @,) is a unit vector. Set
IF(H)P=|F,V A= 5 | 5 aW(fufu - fF
0<i1< o <ig<n j#i1, ++r, ik
where \/ denotes the interior product as in [14]. We define the contact
functions
X F(H)(@)P
H = ‘_k___._,
ou(H)(2) IF(2)f

which are well-defined on the totality of M and do not vanish identically.
For k =0, we have F(H) = F(H): = (A, F) and ¢(H) = |F(H)}/|fII.
We now give the following so-called sums into products estimates.
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Tueorem 3.1. Let H, ---,H, be hyperplanes in P"(C) located in N-
subgeneral position and o(j) (1 <j < q) be Nochka weights for these hyper-
planes. For an arbitrarily given a >1 and 0 < k<n — 1 set

¢jk: — 90k+1(Hj) .
o(H)) log® (a/p.(H)))
Then, there exists a positive constant C, depending only on k and H, such
that
q . q 1/(n-k)
(32) S 0()0, = C [l 03)
J= J=

on M — UISJSG{z; ‘/9k(Hj)(z) = 0}.

For the case where H, are in general position, this is classical (cf,,
e.g., [4] or [14]). For the general case, the proof is given by similar
arguments by the use of Theorem 2.2 (cf.,, [2]). Since the description of
Chen is lengthy, we give here a shorter proof.

For the proof, we use the following elementary inequality.

(3.3) For all positive number x,, ---,x, and a,, - - -, a,,
ax + o+ ax, > (@ o e )(xfr g
Proof of Theorem 3.1. Let
H:(WA)=0 (1<j<q),

where we choose A; with |A,;| = 1 for each j.

We consider the set #%, of all subsets R of Q: = {1, 2, - - -, g} such that
d(R)<n —k. For each Pe G(n, k) we take a nonzero decomposable
(k + 1)-vector E such that P= {XeC**'; E A\ X = 0} and set

- in[1EV Af .
«lfk(P)—rlgl;imm{ BT ,JﬁR}.\

which depends only on P. We regard -, as a function on the Grassmann
manifold G(n, k). For each nonzero vector E=E, A\---/\ E, we set

R:={je @ EV A,=0}.

Since EV A, = 0 means that A, is contained in the orthogonal comple-
ment of the vector space generated by E,, ---, E,, we see d(R) < n — k,
namely, R ¢ #%,. This yields that +, is positive everywhere on G(n, k).
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Since 4, is continuous on the compact space G(n, k), it has a positive
lower bound § on G(n, k).

Take a point z with F,(2) #+ 0. Since F(2) determines a point Pe
G(n, k), there is a set R in %, such that ¢(H,) = |E V A,}|\E} = v(P)
> § for all j¢ R. Therefore, we can choose a finite positive constant K
depending only on H,’s such that @,(z) < K for all j¢ R. Set S =
{i; @, > K}. We may assume S+ @. In fact, otherwise, we have

2'1: w(j)@jk > Kl°< Ifl ( @jk )w(j)/zo) > Kl(,(ﬁ ( ¢jk )w(j))l/(n—k) ’
i=1 i=t\ K =i\ K

where [;: = >0, w(j). We see SC R and so d(S)<n — k. Then, I: =
>lies®()) < n —k by Theorem 2.2, (iv) and #S < N hy the assumption.
By the help of (3.3) we obtain

g . . @, \ewn
> 00 > 3 0()D, > KI ] (_f_k_>
JES jes\ K

=1
@ w(j)/(n—k) q @ o(j)/(n—k)
> KI ( fk) >C <_1_>
- [l K - le K

JjES

for some constant C. Eventually, we can find a positive constant C,
satisfying (3.2), which depends only on % and H,, -+, H,. This gives
Theorem 3.1.

Now, we give the following improvement of [8, Proposition 3.5].

TueoREM 3.4. Let H,, ---, H, be hyperplanes in P*(C) located in N-
subgeneral position and let w(j)(1 <j < q) and 0 be Nochka weights and
a Nochka constant for these hyperplanes, where q¢ > 2N —n + 1. For
every ¢ > 0 there exist some positive numbers a(>1) and C depending only
on ¢ and H, (1 <j < q) such that

n:l F lZE
ddc log [—[k—O‘ k
[Ti<j<aoicn—1 log*Y(a/p.(H,))
(3.5) \F \20(q—21v’+n—1)\F \2 2/(n(n+1))
> ¢ ° . ) v Tdz A e
S FH )P [Tkzs logialew(H )

Proof. The proof is similar to that for the case where H; are in
general position. We state here only its outline. As is proved in [4, p. 129]
(or [14, p. 122]), for each positive ¢ there exists a constant @, depending
only on ¢ such that for every hyperplane H in P*(C) and a > q,

1 (H) €
ddc 1 > P+ 2, — =80,
%8 Tog@lo ) = oxE)logaloH) 2
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where [/, = > 9., 0(j) and 2, = dd°log|F,f. Choosing some ¢ > a, we
denote the left hand side of (3.5) by A. According to Theorem 3.1 and
(3.3) we get

n-1 q L m=1 2‘/’k+1(Hj) e
Aze2 Ot 2,00) §o<¢k(H,) log* (a/w(H,) 10>Q ‘

=52 (z w(j)%)ak > G z(n @f;,aﬂ)'““"'”gk
k=0 \j

k=0 i=1 j=0

n—1

2/(r(n+1))

> (ﬁ q)g,gﬁxzw)) V—1dz A dz
k=0 \j=1

for some positive constants C, and C,, where 2, = 22+ —1dz A dz. Observe

Mo, = tBE 71
O T TFEY - Tog el H)

and

\FWff

n-1
]—I Ri(n~k) —
k=0

as in the previous paper [8, p. 373]. We obtain

F |2(L0—n—1)!F IZ 2/(rn(n+1)) _

AzC( |Fy : ) V=1dz A dz.
[T (FH)P 1725 log(alp(H )Y

Since I, —n —1=0(q — 2N 4+ n — 1) by Theorem 2.2, (ii), we can con-

clude Theorem 3.4.

§4. Metrics with negative curvature

Let M be an open Riemann surface. We consider a function u on
M possibly with singularities in a discrete subset of M.

DerFiniTION 4.1. We call © a function with mild singularities on an
open subset D of M if u is a C= function on D except a discrete subset
E of D and for every ae D we can write

(4.2) lu(2)| = |2| T]. |log|g.(2)vi(2)I[‘u*(2)

around a with real numbers ¢ and z,, positive C* functions u*, v, and some
nonzero holomorphic functions g,(z) satisfying the condition g,(0) = 0,
where z is a holomorphic local coordinate with z(a) = 0 around a. We
mean by a continuous function on D with mild singularities a function
with mild singularities which is complex-valued and continuous on the
totality of D.
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Let u be a function with mild singularities on D. We define a map
v, of D into R by

v,(a): = the number ¢ with the property (4.2) for some r and u*

for each a ¢ D, which does not depend on a choice of a holomorphic local
coordinate z. By a divisor on M we mean a map v of M into R such
that the support |v|: = {p;v(p) # 0} has no accumulation point in M.
The above v, is a divisor on D, which we call the divisor of u. The
divisor of a nonzero meromorphic function ++ is nothing but the divisor
v, stated in § 2.

DerinITION 4.3. We call ds® a (conformal) pseudo-metric on M if for
each a € M we may write ds* = 22|dz* around e with a nonnegative function
2, with mild singularities and a holomorphic local coordinate z. For a
pseudo-metric dz* = 22|dz[* we define the divisor of ds* by v, =v,. A
continuous pseudo-metric ds® means a pseudo-metric such that 1, is con-
tinuous.

DeriniTION 4.4, For a pseudo-metric ds* = 2|dz]’ on M we define the
Ricci form by

Ric,,, = — dd* log 2
as a current, which is well-defined on the totality of M because it does
not depend on the choice of holomorphic local coordinate z. We define
also the total curvature C(M) of M by C(M) = — f Ric,,. for a conformal
M
metric ds® on M.

The Gaussian curvature ¢ ,,, of ds* is defined by

_dlog2i, - _ 4(9*/920z) log 2,

Hap = 22 22

only on the set where ds* #= 0. The curvature ;.. is said to be strictly
negative if there exists a positive constant C such that Ric,,, < — CQ,,.
on M as currents, where Q,,. denotes the area element with respect to
the metric ds®.. As is well-known, if the universal covering surface of M
1s biholomorphic with the unit disc in C, then M has the complete con-
formal metric with constant curvature — 1 which is called the Poincaré
metric of M and denoted by d¢i in the following.

Let v be a divisor on M. We denote by [v] the current which cor-
responds to v, namely the map of 2 into C defined by
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() = IM vop = 3, u(2)p(2),

zeM

where 2 denotes the space of all C> differentiable functions on M with
compact supports. In some cases, a (1, 1)-form @ on M is regarded as a
current on M by defining 2(p): =f 2 for each pe 2.

For two (1, 1)-currents 0,, 2, gn some open set U and a positive
constant ¢, by the notation 2, <, £, we mean that there are divisor v and
a continuous real-valued bounded function k with mild singularities on
U such that v(2) > ¢ for each ze|v| and

Q, + ] = 2, + dd° log k’

on U. For brevity, we mean by 2, < 2, or 2, > 2, that 2, <, 2, for some
positive number c.
Obviously, we have the following:

ProposiTioN 4.5. (i) If 2, <., and 2,<,9, for a constant ¢ > 0,
then 2, <, 2,
() If 0, <8, then a9, + 2 < af, + 2 for every 2 and a > 0.

The purpose of this section is to prove the following:

THEOREM 4.6. Let M be an open Riemann surface with a complete
continuous pseudo-metric ds* and let dt* be a continuous pseudo-metric on
M whose curvature is strictly negative outside a compact set K. Assume
that there exists a constant p with 0 < p <1 such that

- Ricdsz <l~pp(_ Ricdﬂ)

on M — K. Then M is of finite type, namely M is biholomorphic with a
compact Riemann surface from which finitely many points have been removed.

For the proof of Theorem 4.6, we recall the following generalization
of Schwarz lemma.

LemMa 4.7. Let di* be a continuous pseudo-metric on d,: = {w;|w|
< R} whose curvature is strictly negative. Then, for some positive constant
G,

de* < Cydd’, .

For the proof, see [1, pp. 12~ 14].
We need also the following result given by A. Huber.
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THEOREM 4.8. For an open Riemann surface M, if there is a complete
conformal metric ds® on M such that

J max(— %‘ds% O)stz < + oo,
M

then M is of finite type, where Q,,. is the area element with respect to ds’.

The proof is omitted. For the details, refer to [10, Theorem 13, p. 61,
Theorem 15, p. 71], [16, Theorem 1, p. 316] and [3].

Proof of Theorem 4.6. By assumption, there are a divisor v and a
continuous real-valued bounded function k£ on M— K with mild singularities
such that v(2) > 1 — p for every ze|v| and

— Ricy. + [¥] = p(— Ric,,.) + dd°log £*.

Here, we may assume that the divisor v and the continuous function k&
with mild singularities are defined on the totality of M and 0 < k < 1.
Take a nowhere zero holomorphic 1-form » and write

ds* = 2|of, de* = 7f|ef,
where 1,  are continuous functions with mild singularities on M. Set

kn?
rat

u: =

Then, v: = log u is harmonic on M — (K U |v)), v, > 1 —p on |[v| — K and
4.9 A=e"kp <e 'y,
Define a new pseudo-metric

dpt 1= e~/u-D| ]

on M and set M;: = {ae M;y,(a) > 0}. Then, dp* is a metric on M,
which is flat on M, — K and v;, < —1 on M —(KUM,) because v, >1—p
on |v,| — K. For the proof of Theorem 4.6, it suffices to prove that

(4.10) The surface M, is complete with respect to the metric do’.

In fact, if (4.10) is true, then M, is of finite type by Theorem 4.8,
because

max(— g2, 0) 24,. = IK max(— A gpe, 0) Q24,0 < 0.

My
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This implies that M is also of finite type.
Assume that (4.10) is not true. Then
dy: = dist,, (K, o0M,) < + oo,

where dist,, (K, 0M,;) denotes the distance between K and the boundary
oM, of M,. So, for a sufficiently small positive number § there is a
rectifiable curve 7,(£)(0 < ¢ < 1) such that y,(0) € K, 7,(t) tends to oM, as
t—1 and L,,(y,) < d, + 6, where L,,(y,) denotes the length of the curve
7o With respect to the metric dp’. If we take some ¢, sufficiently near to
1, the point p,: = 74(%,) satisfies the inequalities

dista,(K.p) > %, Lol 1) < %,
where 7|[a, f) denotes the part of y from ¢t = « to t = .

Since dp* is flat on M, — K, there is an isometry @ of a disc 4;: =
{we C;|w| < R} with the standard metric onto an open neighborhood of
po in M, — K with the metric dp* such that #(0) = p,. We take the largest
R (< + o) such that there is a local isometry @ of 4, onto some open
set in M, — K with @(0)=p,. Then, we see easily R <L,,(y,|[t,, 1)) < d,/2.
By the definition of R, we can find a point @, in 94, such that, for the
line segment

N'w=ts, 0<t<1),

the image y: = @(I") tends to the boundary of M, — K as t tends to 1.
Then, y cannot tend to the set K nor M — (KUM,). In fact, if y tends
to K, then we have an absurd conclusion

R > dist,, (K, po) > d,/2

and, if y tends to the set M — (KUM,), then R = L,,(y) = + oo because
v, < —1 on M — (KUM,). Therefore, y tends to the boundary of M.
Now, we shall estimate the length of y with respect to the metric ds®.

To this end, we define a function 7 with mild singularities by dr = 7dp.
Then, since

dr = ple| = je" """V wl,
we have

77 — ﬁe""’/(l—m .
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By the use of (4.9), the length of y with respect to ds* is estimated by
Lds(r) SJ e—vvzzlwl SJ e—vﬁpe-pv/(x-p)lw| Zf f]Pdp
T 7 T
= [ @orondp = | G-oyidul.

On the other hand, by the assumption of dr the curvature of @*(dz) is
strictly negative on 4,. It follows from Lemma 4.7 that

0*(dr) = H-D)|dw| < Codo'm

for a positive constant C,. Since the Poincaré metric do¢%, is given by
R 2 e
e = O = ) 14!
for some positive constant C,, we see

R

L < Cf (i

)pldw] < 1&.1%*-? < oo,

— D
where each C; denotes some constant. This contradicts the completeness

of M with respect to ds®. Therefore, we have (4.10) and so the proof of
Theorem 4.6 is completed.

§5. Modified defect relations
Let f be a nondegenerate holomorphic map of M into P*(C) and let
H:(A,W)=0

be a hyperplane in P*(C), where A is a unit vector. Take a reduced
representation f = (fy:---:f,) on M and set F = (f,, - - -, f,), where f,, ---, [,
are holomorphic functions without common zeros. We consider the divisor
v(f, H) = vy for the function F(H): = (A, F). The n-truncated pull-back
[*(H)™ of the divisor corresponding to H stated in § 1 is defined by

f*(H)™ = [min@(f, H), n)] .
We have always
(5.1) fHH)™ < Q.

In fact, if we take a nonzero holomorphic function g with v, =min(v(f, H), n),
for k: = |F(H)|/|If|| and w: = |F(H)/g| we see 0 < k£ <1 and
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[*(H)™ + dd* log u* = dd° log ||f|} + dd° log k*.

As dd°loguw? = [y,] and v, > 1 on |v,| by Poincaré-Lelong formula, we
get (5.1).

DeriniTION 5.2. For an arbitrary compact subset K of M we set
pH)*: = inf{p > 0; f¥*(H)"™ < 2, on M — K} .
We define the modified H-defect of H for f by
D,H): =1 — inf{,(H)*; K is an arbitrary compact subset of M} .

Remark 5.3. The notion of H-defect defined in the previous paper [8]
is essentially equal to the quantity 5/(H)* for the case where K = .

The modified H-defect has the following properties.

ProrosiTiON 5.4. (1) 0 < D(H) < 1.

(ii) If there exists a bounded nonzero holomorphic function g on M — K
for a compact set K such that v, > min(v(f, H), n), or particularly, if $f-'(H)
is finite, then D/ (H) = 1.

(i) If v(f, H)(a) > m at every acf~'(H) — K for some compact set K,
then D(H) >1 — n/m.

Proof. The assertion (i) is obvious. The function k: =|g|is a bounded
continuous function with mild singularities. Since

f¥H)™ + [y, — min((f, H), n)] = 92, + dd° log ¥*

on M — K for =0, we have (ii). To see (iii), consider the bounded

function
k:= ( | F(H)| )n/m.
I
By the assumption, k is a continuous function with mild singularities and
satisfies

fHH)™ + [—Zl-v(f, H) — min(v(f, H), n)] = %—dd” log |IfIF + dd°log k*

on M — K. Since (n/m)u(f, H) > n > min((f, H), n) on f-'(H) — K by the
assumption, we have D(H) > 1 — n/m.

Now, we recall the classical defect for a nondegenerate holomorphic
map of an open neighborhood of 4, .: = {z; R < |2] < + oo} into P*(C).
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The order function of f and the counting function (truncated by n)
of a hyperplane H for f are defined by

Tf(r)=j’ﬂf 2, R<r< + o),
R t JR<izI<t

Ny = % [ g ®<r<+ o)

R<|zI<t

respectively. The classical defect (truncated by n) is defined by

. N (r)m
d(H)Y" =1 — limsup —L/__,
f( ) n ST p Tf(r)
We can easily prove the following relation by the same arguments as in
the previous paper [7, § 1].

ProrosiTioN 5.5. Let f be a nondegenerate holomorphic map of an
open Riemann surface M into P"(C). Assume that, for some open subset
G of M with compact boundary 0G, there is a biholomorphic map @ of a
neighborhood of M — G onto a neighborhood of 4, ., such that ®(M — G) =
Ag.. and ®(0G) = {z;|z| = R}, and assume that the restriction f: = f-®'| 4, ..
has an essential singularity at oo, namely, the map f(1/2) : {z;0 < |2| < 1/R}
— P*(C) has no holomorphic extension to {z;|z| < 1/R}. Then, for every
hyperplane H

0 < D(H) <d(H)" <1.
The classical defect relation improved by Nochka is given as follows:

THEOREM 5.6. Let f be a nondegenerate holomorphic map of an open
neighborhood of 4, . into P*(C) such that it has an essential singularity
at oo. Take q (> 2N — n + 1) hyperplanes H, (1 < j < q) in P*(C) located
in N-subgeneral position and consider Nochka constants w(j). Then,

S (S H)M <n+1.

Jj=1
For the proof, see [12] or [2].

Now, we consider a nonconstant holomorphic map f of an open
Riemann surface M with a pseudo-metric ds* into P*(C).

DerFIiNITION 5.7. For an arbitrary compact set K we set

p¥: = inf{p > 0; — Ric,,, < p2, on M — K},
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where we set p¥ = + oo if there is no p with the above property. We
define the H-order of f by

p; = inf{p¥; K is an arbitrary compact subset of M} .
To state the modified defect relation, we give another definition.

DerFiniTION 5.8. Let M be an open Riemann surface of finite type,
namely M is biholomorphic with a compact Riemann surface M with
finitely many points removed. A holomorphic map of M into P*(C) is
said to be transcendental if f has no holomorphic extension to M.

THEOREM 5.9. Let M be an open Riemann surface with a complete
continuous pseudo-metric ds* and let f be a nondegenerate holomorphic map
of M into P*(C). Take q (> 2N — n + 1) hyperplanes in N-subgeneral
position and Nochka constants o(j) (1 <j < q). If M is not of finite type
or else f is transcendental, then

(5.10) S o(DAH) <n+ 14 oM ED,
=1
Before proving Theorem 5.9, we notice that Theorem 1.1 stated in §1
is an easy consequence of Theorem 5.9. Let A denote the right hand
side of (1.2). Then we have

A22N~n+1+£%—=Q+%<n+1+pf0n—iw(j)>

j=1

> g+ 5D DH) - D2 q+ X DAH) - 1) = 3 DAH)

by the help of Theorem 2.2, where ¢,: = n(n 4+ 1)/2. This gives Theorem
1.1.

Proof of Theorem 5.9. It suffices to prove (5.10) for the case p,< 4+ oco.
Moreover, we may assume that M is not of finite type. In fact, if M is
of finite type and f is transcendental, Theorem 5.9 is obvious from Theorem
5.6.

Take arbitrary constants p >0 and », (1 <j < ¢) satisfying the condition

(5.11) — Ricy,e < pR,,  fXH)™ < 9,2,

on M — K for a compact set K. By definition, there are divisors [v,] and
bounded continuous real-valued functions k; with mild singularities such
that v; > ¢; on |y,;| for some positive constant ¢; and
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FHYM + [v,] = 5,2, + dd° log k2

on M — K. Here, we may assume that 0 < k, < 1. Set A,:= &,||f||". Then,
each log &; is harmonic on M—(KU|v,,|Uf~'(H}) and v,,—min((f, H), n)
—_ Vj.

Set

Jj=1

We shall prove

(5.12) r < o0, .

Assume that y > pg,. Take a positive number ¢ with y > es,,, and set

(5.13) pr= 0O+ 708) .

7 — €0ns
For an arbitrary holomorphic local coordinate z, using the same notation
as in § 3, we set

Ny = ( ||f”r‘€an+‘an] n?=1|hj|"’(f) l—“cl=0lele )1/(%“,”) '
2 l—I?:l(‘ FH)| 1= log(a/gok(Hj)))“(J’)

Then, the pseudo-metric de*: = 5?|dz| is defined on M — K independently
of the choice of holomorphic local coordinate z. Here, 7, = 0 if ¢,(H,)
= 0. On the other hand, if we set

_ ||
[14-: | FH )PP

@
and vy =y, + > 4., 0(j)v,, then vy, > ¢’ on |y| for some ¢’ > 0, because

= 33 0() 6, = minG(f, H), ) + (3 + 3 0()minG(f, H), n)

j=1

> 2, 0() (v, — min(u(f, Hy, n))

Jj=1
by Lemma 2.4. This implies that dz® is a continuous pseudo-metric on
M — K. We suitably extend dz* to a continuous pseudo-metric on the
totality of M.

We shall next prove that d:z? has strictly negative curvature on
M — K. To this end, we recall the following inequality given in [8,
Proposition 3.8]:
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dde log | Fyf|FiP- - -|F,_} > &(W)W«/‘:‘ldz Adz.
G 0 n+1

n

This and Theorem 3.4 yield that

ddelog g2 > 1 = %1 £ ddclog(F,p---|F,_
0BT = o, + e, ' 2(a, + et,) og(Fef -1 Faeil)
1 n;l‘F l25
+ _—ddc log k=0 & i
2(0, + er,) nlstq,ogkgn-l IOgM(J)(a/GDk(Hj))

& Ta /'Fﬂllenlz
2 Un(o'n + Efn)\ lFo|20n+1
C

lFolZO(q-2N+n-l)‘Fn 12 1/on — -
Kmﬂmmwmﬂwwmmwﬁ V—ldz )\ dz.

S o AP Dt B [Ty \Yot) g e
-“wwwmmmmmw) ?

where C,, C, are some positive constants. On the other hand, since |A,]

< lifl,

\Y

1/tn
) dz A d'z

+

”f““q—ﬂ“ﬂ—l)—wnﬂ 2 ||f”7"50n+lh'i’(1) .. ,h«;(q)

on M — K. This concludes that dd¢log5* > C,»* for some positive constant
C,. Therefore, dz* has strictly negative curvature on M — K.
Now, we represent each hyperplane H, (1 < j < q) as

H :opwy+ - +a,,w,=0.

For some holomorphic local coordinate z and each pair of indices j, k&,
we choose indices i, -+, i, with 1 < i, <...< i, < ¢q such that

’\Iriizz Z ikajlw(fl,fi;’ "'7fik):_£0'

#0000,

For convenience’ sake, we set %, = F(H,). By the theorem of identity,
¢ # 0 for every holomorphic local coordinate z. We now define

b — ( icicqogmgn-a| Wiel® lOgm(h(a/SDk(Hj)) )1/("“"")
HOSkgn‘lle ‘E

Then, k is bounded because

il log*(alpu(H)) _ (1 FH \"* 1 ge
|F, [ jé(lmj)b“mmmm

< sup x4 1og"’(’>(9—) < 4 oo.
x

0<e<1
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Set

q
vt = ol ] 1yl*Y, v = I1 |5, v = v, .
Jj=1 1<j<q,0€k<n~1

Then log v is harmonic on M — (K U|y,)), v,, > ¢” on |v,,| for some ¢”, not
depending on each ¢, and v,, >¢/q on |v,,|. We consider the function 7,
for some ¢ such that

=09 >e>max< I = 09 ’7"—{)0',;-—0”‘0).
Ons1 + T, plq + 641 + 070 Gpi + pTa

and, moreover, — Ricy,:<,_,0%,. Then, we have 0 < p < 1 and

v > mln(i C//) > (T - egn—l)(l _ p)
- q - e

on |v,| — K. Since

k77z — “f”“’"5”n+l)/(ﬂn+€fn)v1/(ﬂn+5?1:) ,

we have

02 + || = pdd-log s + dd- log k.
7 T €0n.t
This gives that
— Ricy,. <y, p(— Ric,.)

on M — K. This contradicts the assumption by Theorem 4.6. Thus, we
conclude (5.12).
By Theorem 2.2, we can rewrite (5.12) as

1

Zw(j)(l_m)én-l-l—l—po'n.

Jj=1

Taking the supremum of the left hand side and the infimum of the right
hand side for all admissible constants 7,, o and compact set K, we can
conclude

S 0)DAH) < n+ 1+ g0,

The proof of Theorem 5.9 is completed.
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§ 6. Modified defect relations for Gauss maps

Let x = (x,, - -+, x,) : M- R™ be a (possibly branched) minimal surface.
By S we denote the set of all branch points, namely points where the
Jacobi matrix of x are not of maximal rank. The set of all oriented
2-planes in R™ may be identified with the quadric @, _,(C) in P*-(C). By
definition, the Gauss map G of M is the map of M — S into @,,_,(C) which
maps each pe M — S to the point in @,,_,(C) corresponding to the oriented
tangent plane of M at p. The surface M is considered an open Riemann
surface with the conformal pseudo-metric ds* induced from the standard
metric on R™. Taking a holomorphic local coordinate z, we set f;: = 9x,/0z,
which are holomorphic by the assumption of M. The set S coincides with
the set of common zeros of the functions f; (1 < i < m).

DerFINITION 6.1. We now define the branching divisor of M by
ve, = min{y;; 1 <1 < m},

which is well-defined on the totality of M independently of holomorphic
local coordinate z.
The Gauss map G is locally given by

G=(fi:fw

on M — 8. Take a nonzero holomorphic function A on M with v, = y,,.
If we set g,: =f,/h (1 <i< m), we have

G=(g:8&: " :8)

on the common domain of g,’s except S. The right hand side of this has
the holomorphic extension across S. We define the Gauss map G of M
to be the holomorphic map of M into P™-(C) locally given by the right
hand side of the above identity.

DerFINITION 6.2. For an arbitrary compact subset K of M we set
o¥: = inf{p; [vs,] < pQs on M — K}.
We define the branching H-order of M by
past = Inf{pk; K is an arbitrary compact subset of M} .
Obviously, if x: M -» R™ is an immersion, then g, = 0.

THEOREM 6.3. Let x: M —R™ be a complete minimal surface and
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G:M—P¥C) the Gauss map of M, where N=m — 1. Consider the
smallest projective linear subspace P™(C) of P¥(C) which includes G(M).
Take q hyperplanes H,, - - -, H, in P¥(C) such that H,: = H,NP"(C)(1<j < q)
are hyperplanes in P*(C) located in N-subgeneral position, where q > 2N
—n -+ 1. If M is not of finite type, then for Nochka weight «(j) for ﬁj

o)D) < n+ 14 L pelnr D

Proof. By assumption, the Gauss map G is nondegenerate as the map
into P*(C). Take a system of homogeneous coordinate (w,:---:wy) on
P¥(C) such that P*(C):={(w,: - -+ : wy); Wy=---=wy=0} and a reduced
representation G = (g;:---:g,) of G as a map into P*(C). So, we have

ds* = 2|/f[*|dzf < ClhPilg|F|dzF

for a constant C > 0 and ||g|: = (& + - - +|8.1)"%. Then, f; are linear

combinations of hg,, - - -, hg, for a holomorphic function 2 with v, = v,,.
So, for each p > 0 such that [v,,] < o2, on M outside a compact set K,
we have

— Ricge < (o + 12 .
Taking the infimum of the right hand side for various p, we obtain

(6'4) P(; g pds + 1 .
Theorem 6.3 is now immediate consequence of Theorem 5.9.

COROLLARY 6.5. Let x: M — R™ be a complete nonflat minimal surface
with infinite total curvature, let G : M — P¥(C) be the Gauss map of M and
let n be the least dimension of projective linear subspaces of PY(C) which
include G(M), where N = m — 1. Then, for arbitrary hyperplanes H,, - - -,
H, in P¥(C) located in general position and not including G(M),

2N —n+1)
5 .

(6.6) 3 Do(H) < 2N — n + 1 4 L+ padi(

Proof. Let us denote by P*(C) the smallest projective linear subspace
which includes G(M). Then, as is easily seen, hyperplanes H,NP*(C),
-+, H NP*C) of P*(C) are located in N-subgeneral position. If M is
biholomorphic with a compact Riemann surface M with finitely many
points removed and G is not transcendental, then Ric,,. 1s continuously
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extended to M and so C(M) = C(M) < + oo, which contradicts the as-
sumption. So, we have the situation in Theorem 1.1 for the map G
considered as a map into P*(C). Since ps < pg, + 1 by (6.4), Corollary
6.5 is a direct result of Theorem 1.1.

We shall give here the proof of Theorem 1.3. By assumption the
Gauss map G is not a constant. We have (6.6) for some n with 1 <n <N,
Here, p;, = 0 because M has no branch points. These imply that

iDo(HJ)£2N—n+1+ n@2N —n+1)

2
_ N4 DW 42 NN —n -1
2
L WHDN+2) _ mm+ 1)
o 2 2

This gives Theorem 1.3.

Now, we consider a holomorphic curve in C™ given by a nonconstant
holomorphic map w = (w,, w,, - - -, w,) : M — C™. The space C™ is identified
with R*™ by associating a point (x;, + v —1y,, ---, %, + ¥ —1y,) € C* with
(X, Y, -+ Xm, ¥m). The curve w:M — C™ is considered as a minimal
surface w = (x, ¥1, -+, X, Yu) : M — R™. By Cauchy-Riemann’s equations,
we know

fo=% _yA W 1<i<m.
0z 0z

Therefore, the Gauss map of M is given by
G=(fi:—v=1fi: - ifp: = V/=1f)
and so G(M) is included in the projective linear subspace
PYC):= {0yt iUy ) e P (C)yu, = vV —1v, 1 < i < m)}.

Particularly, if M is not included in any proper affine subspace of C", G
is nondegenerate as a map into P™~*(C). The Gauss map G considered
as a map of M into P*-*(C) is the same as the complex Gauss map of M
defined in the previous paper [8, p. 369].

As an easy consequence of Theorem 6.3, we have the following im-
provement of [8, Theorem 2.10].

COROLLARY 6.7. Let w: M — C™ be a holomorphic curve in C* which
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is complete and not included in any affine hyperplane, and let G be the
Gauss map of M considered as a map of M into the above-mentioned space
P™-Y(C). If M is not of finite type, then

i: DG(Hj) <m+ (pds + Dm(m — 1)
= = 2

for arbitrary hyperplanes H,, - - -, H, in P"~'(C) in general position.

We next consider a minimal surface x = (x,, x,, x,) : M — R?. In this
case, the quadric @,(C) is canonically biholomorphic with P(C). Instead
of the Gauss map G: M — @Q(C) we may study the classical Gauss map
g : M — PY(C) defined by

g=(fi:fi —vV-1f),
where f, = 0x,/02z (i = 1, 2,3). Then, the metric of M is given by
ds’ = |hF (&l + & F)|dzf

for a reduced representation g = (g,:g) and a nonzero holomorphic
function A with v, = min(y,, v,, v;) (cf., {7, p. 254]). Since v,;, == v,, we have
— Ricy, < (p + 2)2, whenever [v,,] < pf2,. This yields

Pe < pas + 2.
According to Theorem 6.9, we can easily prove the following:

THEOREM 6.8. Let x: M - R® be a nonflat complete minimal surface
which has infinite total curvature, and let g: M — P (C) be the classical
Gauss map. Then, for arbitrary distinct points a,, - - -, a, in P'(C),

(6.9) 3 Dler) < 4+ pas .-

ExampLE 6.10. We give here an example of a minimal surface with
infinite total curvature, for which the branching H-order is equal to two
and the equality holds for the above modified defect relation (6.9).

Our construction is due to the Weierstrass-Enneper representation
theorem for minimal surfaces in R®. We shall suitably choose meromorphic
functions f and g on a simply connected open Riemann surface M and
show that, for the meromorphic 1-forms
o= A —gYfdz . (4 gfde

901' ’

.. = gfd
9 2 @ = gfdz
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and a point z,e M, the map

(6.11) (%, %5, %3): = (Re I:o ¢i(2), Re J: ¢:(2), Re J:O ¢3(z)>

of M into R® gives a minimal surface with the desired properties. To this
end, we first take a meromorphic function ¢ on C such that ¢ takes the
values a; (1 < i < 3) with multiplicity three and all zeros of ¢(z) — w are
simple for every w € C — {a,, a,}, where a; = {c0}. For the existence of such
a function, see [9, p. 45]. Consider the domain D: = C — (¢~ (a,) Ud~"(a,)
and the analytic subset V*: = {(z, w); ¢(2) = w*} of D X C. Let M be the
normalization of the closure of V* in D x P(C) and M the universal
covering of M. Then M is canonically regarded as a covering surface
over D with the projection F: M — D.
Now, consider the many-valued meromorphic function

g0): = (¢-F)"(©
on M. By the definition of M, g has single-valued branch on M, by

which we define the function g. We next consider the many-valued
meromorphic function

P/ _
(¢ F)(©Q) — a)"*(¢- F)(©) — a))'”’

Since (¢-F) — a, and (¢-F) — a;, have poles of order three at every point
of (¢-F) '(c0), f has a single-valued branch on M, by which we define the
function f. For these functions f and g, we shall prove that the minimal
surface x = (%, %;, %,) : M — R* defined by (6.11) has all desired properties.

Take a reduced representation g = g,/g,, or g = (g, : g) as a map into
PY(C). The induced metric is given by

(6.12) f(©): =

dst = L17r + 1gprider = L g + g pridey .
4 4|8l
Obviously, v, = 0 at each point where g has no zero or no pole. The
same is true at each point where g has a pole, because g, has a zero of
order one and the denominator of the right hand side of (6.12) has a pole
of order two at such a point. Moreover, y4,(§) = vz{{) = 2 whenever
g() = 0. These show that v,, = 2v,,. If we consider a bounded function

k: =g P&l + &P (< 1), we obtain
[ve.] = dd°log|g | = 2dd° log | g|} + dd°log k.
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This gives pg, < 2.

We next show that M is complete. Assume that there is a curve [’
in M which is of finite length and tends to the boundary. For I7: = F(I')
in D we have

L= L, (I = |F'(OIA + (- F)QF) d

8()IW¢R©—mmwm©—%wlq
=j 1+ g2 \dal.,

r1$(2) — ai”$(2) — @,

and /" tends to the set 9D = {co}U¢ '(a;) Up '(a;). On the other hand,
we can easily find a positive constant C, such that

L@
|6(2) — a:[”|9(2) — au”*

for every ze D. If I” tends to oo, then we get an absurd conclusion

choj |dz| = + oo
.

Otherwise, there exists some point 2, € ¢ '(a;) Up '(a;) such that I tends
to z. Changing indices if necessary, we may assume that ¢(z) = a,.
Then, we find a neighborhood U of z, and a positive constant C, such
that the following inequality holds on U

L@ g 1
[6(2) — a,|?|9(2) — @l — |z — 2|
because v,_,,(2,) = 3. For the portion /" of I in U, we obtain
1+ [g(2)[" |dz|  _
L> dz|>C | = = .
> | o apiel —ar 2 O S =

This concludes the completeness of M.
On the other hand, since ¢(2) # a,, a, on D, we see

g € (@, a0, @i, alf, alfo, @i’}

for every ¢ e M, where w denotes one of the primitive third roots of unity.
So, the modified defects of these values are all one. This shows that the
inequality (6.9) is best-possible in this case.

https://doi.org/10.1017/5S0027763000003755 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003755

40 HIROTAKA FUJIMOTO

REFERENCES

[1] L. A. Ahlfors, Conformal invariants, Topics in Geometric Function Theory,
McGraw Hill, New York, 1973.

[2] W. Chen, Cartan’s conjecture: Defect relation for meromorphic maps from para-
bolic manifold to projective space, Notre Dame Dissertation, 1987.

[3] S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space,
J. Analyse Math., 19 (1967), 15-34.

[4] M. J. Cowen and P. A. Griffiths, Holomorphic curves and metrics of negative
curvature, J. Analyse Math., 29 (1976), 93-153.

[ 51 H. Fujimoto, On the number of exceptional values of the Gauss map of minimal
surfaces, J. Math. Soc. Japan, 40 (1988), 235-247.

, Examples of complete minimal surfaces in R™ whose Gauss maps omit

m(m+1)/2 hyperplanes in general position, Sci. Rep. Kanazawa Univ., 33 (1988),

37-43.

, Modified defect relations for the Gauss map of minimal surfaces, J. Differen-

tial Geom., 29 (1989), 245-262.

, Modified defect relations for the Gauss map of minimal surfaces. II, J.
Differential Geom., 31 (1990), 365-385.

[9] W. K. Hayman, Meromorphic functions, Oxford Math. Monographs, Clarendon
Press, Oxford, 1964.

[10] A. Huber, On subharmonic functions and differential geometry in the large, Com-
ment, Math. Helv., 32 (1957), 13-72.

[11] X. Mo and R. Osserman, On the Gauss map and total curvature of complete mini-
mal surfaces and an extension of Fujimoto’s theorem, J. Differential Geom., 31
(1990), 343-355.

[12] E. I. Nochka, On the theory of meromorphic functions, Soviet Math. Dokl., 27 (2)
(1983).

[13] M. Ru, On the Gauss map of minimal surfaces immersed in R™, preprint.

[14] B. V. Shabat, Distribution of values of holomorphic mappings, Transl. Math.
Monographs Vol. 61, AMS, 1985.

[15] M. Tsuji, Potential theory in modern function theory, Maruzen Tokyo, 1959.

[16] B. White, Complete surfaces of finite total curvature, J. Differential Geom., 26
(1987), 315-326.

[6]

[71]

[8]

Department of Mathematics
Faculty of Science
Kanazawae University
Kanazawa, 920

Japan

https://doi.org/10.1017/50027763000003755 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003755



